防雷保护和接地设计
- 格式:docx
- 大小:28.94 KB
- 文档页数:4
1.防雷接地设计要求1.1.直击雷的防护机房所在大楼已有避雷针、避雷带等外部防雷设施,不再作外部防雷补充设计。
如之前无直击雷防护,需在机房顶层做避雷带或是避雷网。
1.2.电源系统的防雷1)、对于网络集成系统的电源线防护,首先,进入系统总配电房的电源进线,应采用金属铠装电缆敷设,电缆铠装层的两端应良好接地;如果电缆没有铠装层,则就将电缆穿钢管埋地,钢管两端接地,埋地的长度应不小于15米。
由总配电房至各大楼的配电箱以及机房楼层配电箱的电力线路,均应采用金属铠装电缆进行敷设。
这样可以大大减少电源线感应过电压的可能性。
2)、在电源线路上安装电源防雷器,是必不可少的防护措施。
根据IEC防雷规范中有关防雷分区的要求,将电源系统分为三级保护。
●在各大楼的总配电箱安装通流容量为60KA~80KA的二级电源防雷箱(如ZS150E-300);●在机房的重要设备(如交换机、服务器、UPS等)的电源进线处安装通流容量20~40KA的三级电源防雷器(如ZSPDTT20KC/2);●在机房控制中心硬盘刻录机及电视墙设备电源处用插座式防雷器(如FACP-10)所有防雷器均应良好接地。
选用防雷器要注意接口的形式和接地的可靠性,重要场所应设置专用的接地线,切不可将防雷接地线与避雷针接地线并接,且要尽量远离、分开入地。
1.3.机房等电位连接在机房防静电地板下,沿着地面上布置40*3紫铜排,形成闭合环接地汇流母排。
将配电箱金属外壳、电源地、避雷器地、机柜外壳、金属屏蔽线槽、门窗等穿过各防雷区交界的金属部件和系统设备的外壳,以及对防静电地板下的隔离架进行多点等电位接地就进至汇流排。
并采用等电位连接线4-10mm2铜芯线螺栓紧固的线夹作为连接材料。
同时在机房找出建筑物主钢筋,经测试确与避雷带连接良好,用14mm镀锌圆钢通过铜铁转换接头将接地汇流母排与之连接起来。
形成等电位。
采用联合接地网,目的是消除各地网之间的电位差,保证设备不因雷电的反击而损坏。
毕业综合作业移动基站防雷与接地系统的设计选题类型:论文学生姓名:***学号: ***********系部:通信工程系专业:移动通信技术班级: 102指导老师:***浙江·绍兴提交时间:2013年4月摘要本文论述了移动基站防雷接地系统经常出现的问题,结合平时的实地考察,切实地提出根据实际情况设计移动通信基站防雷接地系统的设计思想。
由于移动通信基站的天线设置大多安装在建筑物的房顶上,还有一部分安装在铁塔上,相对周围环境而言,形成十分突出的目标,从而导致雷击概率增多。
通信设备损坏,耗费了大量人力财力。
怎样才能有效地预防雷害,确保移动通信基站设备和工作人员的安全呢?必须根据每个基站的实际情况设计移动通信基站的防雷接地系统,实施基站针对性防雷。
关键词:防雷;接地;反击电压;分级防雷目录第一章移动基站防雷与接地系统简介 (1)1.1 防雷与接地系统 (1)第二章移动基站雷害的主要原因 (2)2.1 雷击的主要原因 (2)2.2 反击电压 (3)2.3 移动基站防雷措施 (5)第三章移动基站防雷与接地系统的整改案例 (8)5.1 案例1——大陈基站存在的问题及改造方案 (8)5.2 案例2——大港头基站存在的问题及改造方案 (9)5.3 案例分析3——皇家地基站存在的问题及改造方案 (12)5.4 案例分析4——长坑基站存在的问题及改造方案 (15)5.5 案例分析5——石铺基站存在的问题及改造方案 (18)总结 (22)致谢 (23)参考文献 (24)第一章移动基站防雷与接地系统简介1.1 防雷与接地原理1.2 基站防雷与接地系统1.防雷与接地系统的组成(1)雷电接受装置:直接或间接接受雷电的金属杆(接闪器),如避雷针、避雷带(网)、架空地线及避雷器等;(2)接地线(引下线):雷电接受装置与接地装置连接用的金属导体。
它的作用是把雷电接受装置上的雷电流传递到接地装置上,接地线一般采用圆钢或扁钢组成;(3)接地体:包括接地装置和装置周围的土壤或混凝土,作用是把雷击电流有效地泄入大地,现在常用的接地装置有水平接地极、垂直接地极、延长接地极和基础接地极。
建筑物防雷与接地系统设计对于建筑物而言,防雷与接地系统的设计是非常重要的一部分,它能够保障建筑物免受雷击和电磁干扰。
本文将介绍建筑物防雷与接地系统设计的基本原则、步骤以及一些常用的技术和材料。
一、防雷与接地系统设计的基本原则1.综合考虑周边环境在进行防雷与接地系统设计时,需要综合考虑周边环境的因素,包括建筑物所处地理位置、气候条件、土壤情况等。
不同地区的自然环境差异较大,因此需要根据实际情况进行合理的防雷系统设计。
2.合理选择防雷措施根据建筑物的用途和特点,选择适当的防雷措施。
常见的防雷措施包括避雷针、避雷带、接地网等。
不同的防雷措施具有不同的特点和适用范围,需要根据具体情况进行选择。
3.合理布置接地系统接地系统是建筑物防雷设计中至关重要的一部分,它能够将雷击电流传导到地下,保护建筑物和人身安全。
因此,在接地系统的设计中,需要合理布置接地体和接地网,确保接地电阻达到规定的要求。
二、防雷与接地系统设计的步骤1.调查与分析首先,需要对建筑物周围的雷击情况、地质条件以及建筑物的用途进行调查与分析。
通过收集和分析相关数据,可以为后续的设计提供依据。
2.确定防雷措施根据建筑物的用途和特点,选择合适的防雷措施。
比如,在高层建筑中可以采用避雷针作为防雷装置,在工业厂房中可以采用避雷带等。
3.设计接地系统根据实际情况,设计合理的接地系统。
需要考虑接地体的数量、位置以及合理布置接地网等因素,确保接地电阻达到要求。
4.施工与检测根据设计方案进行施工,并在施工完成后进行接地系统的检测。
通过测试接地电阻等参数,验证接地系统的质量和可靠性。
三、常用的技术和材料1.避雷针避雷针是常见的防雷措施之一,它能够吸引和接收雷电,将雷击电流传导到地下。
避雷针通常由导体材料制成,比如铜或铝。
2.避雷带避雷带通常安装在建筑物的周围,能够将雷击电流引导到地下,起到保护建筑物的作用。
避雷带通常由导体材料制成,比如铜带或铝带。
3.接地体接地体是接地系统中的重要组成部分,它能够将雷击电流传导到地下。
建筑防雷与接地技术随着现代社会对电力需求的增加以及建筑设计的不断创新,建筑中防雷与接地技术的重要性也日益突出。
合理的建筑防雷与接地能够确保建筑物和其中的电气设备正常运行,同时保障人员和财产的安全。
本文将就建筑防雷与接地技术的原理、设计和施工进行探讨。
一、建筑防雷技术建筑防雷技术主要包括建筑物表面防雷和建筑物内部防雷两个方面。
1.1 建筑物表面防雷建筑物表面防雷主要通过安装避雷针、避雷带和避雷网等设备来保护建筑物自身免受雷电侵害。
其中,避雷针是最常见且有效的防雷装置,可将雷电引向地下,从而保护建筑物和其中的电气设备。
避雷针的选择应根据建筑物的高度和周边环境进行合理的设计。
1.2 建筑物内部防雷建筑物内部防雷主要针对电气设备,通过合理的接地设计和防雷设备的安装来达到防雷目的。
其中,接地装置是重要的一环,可以将电气设备的金属外壳与地面形成良好的接触,将雷电引入地下,确保设备的正常运行。
二、建筑接地技术建筑接地技术是建筑防雷技术中的一项重要措施,其主要目的是保证建筑内的电气设备和人员在遭受雷击时能够安全、迅速地放电到地下。
2.1 规范的接地系统设计建筑接地系统的设计要符合相关规范标准,确保接地装置与地面接触良好,电阻值合理。
一般情况下,接地装置应放置在地下深度超过1米处,并且应该与建筑物的地基一同做好接地处理。
2.2 合适的导体选择建筑接地系统采用的导体应该选用优质的铜或铜合金材料,确保导电性能良好。
同时,根据具体工程情况,选择合适的导体截面和长度,以减小接地电阻。
三、建筑防雷与接地技术施工建筑防雷与接地技术的施工需要专业技术人员进行操作,确保施工质量与安全。
3.1 施工前的检测与规划施工前需要对建筑物和周边环境进行检测,了解地质条件、建筑物特点以及电气设备的用电情况等信息,以便合理规划和设计防雷与接地系统。
3.2 合理的设备安装与布线根据规划设计要求,进行防雷装置、接地装置和导体的安装与布线工作。
确保设备的安装位置合理,布线路径清晰明了,并进行必要的标志和保护。
变电站的防雷及接地保护避雷针与被保护物之间,应保持足够的安全距离,即Sk>0.3Rsh+0.1h;Sd>0.3Rsh,其中Rsh为避雷装置的冲击接地电阻;h 为被保护物的高度。
条件许可时,Sk与Sd应尽量大。
一般情况下,Sk>5m,Sd>3m。
避雷装置接地电阻不能太大,否则将增加避雷装置的高度,成本增加。
一般土壤工频接地电阻不大于10Ω。
35kV及以下配电装置的构架或房顶,用独立避雷针保护,装设在距离人行道路大于3m,也可采取均压措施,或铺设50~80mm的沥青加碎石层。
60kV及以上配电装置,可将避雷针(线)安装于架构或房顶。
所有被保护的设备均应在避雷针保护范围内。
一、电气装置接地要求1.接地要求(1)一般要求①接地。
为保证人身和设备安全,电气设备外壳宜接地;交流电气设备充分利用自然接地体,但要校验自然接地体的稳定性;直流电路中,不应利用自然接地体作电流电路的接地线或接地体。
②接地电阻。
设计接地装置时,考虑土壤干燥或冻结等因素,保证接地电阻符合要求。
③接地距离。
不同用途和不同电压的电气设备,除另有规定外,用一个总接地体,但电气设备的工作接地和保护接地,应与防雷接地分开,并保持安全距离。
④中性线。
中性点直接接地的供用电系统中,装设能迅速自动切除接地短路故障的保护装置;中性点非直接接地的供用电系统中,装设迅速反映接地故障的信号装置,必要时可装设延时自动切除故障装置。
(2)防静电接地要求①可靠连接。
车间内每个系统设备和管道应可靠连接,接头处接触电阻小于0.03Ω。
②接地连接。
车间内和栈桥上等平行管道,相距约10cm时,每隔20m要互相连接一次;相交或相距近于10cm的管道,应互相连接,管道与金属构架相距10cm处要互相连接。
③气体场所接地。
气体产品输送管干线头尾部和分支线处都应接地;贮存液化气体、液态氮氢化合物及其他有火灾危险的液体贮液罐,贮存易燃气体贮气罐等都应接地。
(3)特殊设备接地要求①接地体。
三类防雷设计要求一、基本概念防雷设计是指为了保护建筑物、设备和人员免受雷电侵害,采取一系列防雷措施的工程设计。
防雷设计要求主要包括三个方面:防雷保护等级、防雷接地系统和防雷装置。
二、防雷保护等级要求防雷保护等级是根据建筑物或设备所处的区域、高度和使用性质确定的,分为四个等级:一级、二级、三级和四级。
不同等级的建筑物或设备对雷电侵害的防护要求不同。
1. 一级防雷保护等级要求一级防雷保护等级适用于对人身安全要求极高的建筑物或设备,如医院、火车站等。
在一级防雷保护等级要求下,建筑物或设备需要采取多重防护措施,包括建立多个接地系统、安装避雷针等。
2. 二级防雷保护等级要求二级防雷保护等级适用于对人身安全要求较高的建筑物或设备,如学校、商场等。
在二级防雷保护等级要求下,建筑物或设备需要采取适当的防护措施,包括建立接地系统、安装避雷针等。
3. 三级防雷保护等级要求三级防雷保护等级适用于对人身安全要求一般的建筑物或设备,如住宅、办公楼等。
在三级防雷保护等级要求下,建筑物或设备需要采取基本的防护措施,包括建立接地系统、安装避雷针等。
4. 四级防雷保护等级要求四级防雷保护等级适用于对人身安全要求较低的建筑物或设备,如工厂、仓库等。
在四级防雷保护等级要求下,建筑物或设备需要采取简单的防护措施,包括建立接地系统等。
三、防雷接地系统要求防雷接地系统是指将建筑物或设备与地面有效连接的系统。
防雷接地系统要求主要包括接地装置、接地电阻和接地导体。
1. 接地装置要求接地装置是防雷接地系统的核心部分,主要由接地体和接地引下线组成。
接地体需要埋设在地下,形状可以是棒状、板状、网状等,材料可以是铜、铝等导电材料。
接地引下线需要与接地体连接,并与建筑物或设备连接。
2. 接地电阻要求接地电阻是指接地装置与地面之间的电阻。
接地电阻的大小直接影响到防雷接地系统的效果。
通常要求接地电阻小于10欧姆,以确保接地系统能够有效地将雷电流引入地下。
3. 接地导体要求接地导体是指将接地装置与建筑物或设备连接的导体。
防雷接地、保护接地、防静电接地常识防雷接地分为两个概念,一是防雷,防止因雷击而造成损害;二是静电接地,防止静电产生危害。
主要类型一、工厂防雷分为整体结构防雷,就是主厂房防雷,主要基础打接地极、接地带,形成一个接地网,接地电阻小于10欧。
再与主厂房的钢筋或钢构的主体连接。
水泥混凝土屋顶接避雷带或避雷针,墙外地面还得留有接地测试点,钢构应用镀锌扁铁作直接引到屋顶。
二、供电系统接地分为保护接地和工作点接地,保护接地是带电设备外壳接地。
工作点接地指零线接地,接地网做法与避雷接地方式一样,接地电阻小于4欧。
如达不到要求,则应加接地极,条件不好的,应加电解物及(或)更换土壤。
工作接地和保护接地在配电室独立引出,系统可并为一个。
工作方式,如地线和零线分开,也可合为一引到用电系统(或设备)。
接地系统须重复接地。
也有独立分开的方式,TN-S系统。
零地不能再合为一。
三、仪器仪表接地系统。
该系统接地电阻小于1欧,不能与防雷接地连接。
四、防静电接地,如油管等,每隔(弯头)35米就得有一处可靠接地(可系统也可独立),电阻小于30欧。
组成防雷接地装置部分概念:1)雷电接受装置:直接或间接接受雷电的金属杆(接闪器),如避雷针、避雷带(网)、架空地线及避雷器等。
2)引下线:用于将雷电流从接闪器传导至接地装置的导体。
3)接地线:电气设备、杆塔的接地端子与接地体或零线连接用的正常情况下不载流的金属导体。
4)接地体(极):埋入土中并直接与大地接触的金属导体,称为接地体。
分为垂直接地体和水平接地体。
5)接地装置:接地线和接地体的总称。
6)接地网:由垂直和水平接地体组成的具有泄流和均压作用的网状接地装置。
7)接地电阻:接地体或自然接地体的对地电阻的总和,成为接地装置的接地电阻,其数值等于接地装置对地电压与通过接地体流入地中电流的比值。
同时接地电阻也是恒量接地装置水平的标志。
防雷分类1)第一类:制造、储存火工品等,因火花引起爆炸,造成巨大破坏和人身伤亡;具有0区或20爆炸危险场所的建筑物;具有1区或21区爆炸危险场所。
建筑电气与智能化通用规范7 防雷与接地设计7.1雷电防护7.1.1建筑物应根据其发生雷电事故的可能性和后果所造成的损失或影响程度分为三类:第一类防雷建筑物、第二类防雷建筑物和第三类防雷建筑物。
建筑物的雷电防护分类应符合下列规定:1高度超过250m的建筑物应划为第一类防雷建筑物;2符合下列条件之一的建筑物应划为第二类防雷建筑物:1)高度超过100m,且不高于250m的建筑物;2)预计雷击次数大于0.25次/a的一般性民用建筑物或一般性工业建筑。
3符合下列条件之一的建筑物应划为第三类防雷建筑物:1)高度超过20m,且不高于100m的建筑物;2)预计雷击次数大于或等于0.05次/a,且小于或等于0.25次/a的一般性民用建筑物或一般性工业建筑物;3)在平均雷暴日大于15d/a的地区,高度在15m及以上的烟囱、水塔等孤立的高耸建筑物;在平均雷暴日小于或等于l5d/a的地区,高度在20m及以上的烟囱、水塔等孤立的高耸建筑物。
7.1.2建筑物应根据雷电防护的类别采取相应的防雷措施。
7.1.3当采用接闪网和接闪带保护时,接闪带应装设在建筑物易受雷击的屋角、屋脊、女儿墙及屋檐等部位,接闪网格设置要求应符合下列规定:1 第一类防雷建筑的接闪网格不应大于5m×5m或6m×4m;2 第二类防雷建筑的接闪网格不应大于10m×10m或12m×8m;3 第三类防雷建筑的接闪网格不应大于20m×20m或24m×16m。
7.1.4当采用接闪杆保护时,接闪杆滚球法保护设置要求应符合下列规定:1 第一类防雷建筑的滚球法保护半径不应大于30m;2 第二类防雷建筑的滚球法保护半径不应大于45m;3 第三类防雷建筑的滚球法保护半径不应大于60m。
7.1.5引下线应设在建筑物易受雷击的部位,且应沿建筑物外轮廓均匀设置。
建筑物应利用其结构钢筋或钢结构柱作为防雷装置的引下线,当无结构钢筋或钢筋柱可利用时,应专设引下线。
防雷与接地系统设计说明一. 设计依据1. 国家标准及规范:《民用建筑电气设计规范》JGJ 16-2008《建筑物防雷设计规范》GB50057-94(2000年版)《建筑物电子信息系统防雷技术规范》GB50343-2004《爆炸和火灾危险环境电力装置设计规范》GB50058-922. 国家标准图集:《建筑电气工程设计常用图形和文字符号》00DX001《防雷与接地安装》D501-1~4《室内管线安装》D301-1~33. 其它有关的国家及地方的现行规范,标准图集;4. 业主对施工图设计的要求及其它专业提供的设计资料.二. 工程概况1. 本工程建筑名称为宝兴TESCO购物中心位于广州天河区东圃;2. 本工程建筑物层数:购物中心地上4层,地下2层;地上每层建筑面积约8023m2,总建筑面积64720.1 m2,建筑高度21.15m。
3. 本工程建筑物为一般性民用建筑物。
三. 防雷及接地系统1. 本工程建筑年预计雷击次数为0.3312次/年,按第二类防雷建筑物设置防雷设施。
2. 防雷措施:本工程采取防直击雷、防侧击和防雷电波侵入措施。
2.1 防止直击雷措施2.1.1 在建筑物易受雷击的屋角、女儿墙等部位设置避雷带,并在建筑物屋面设置不大于10x10米或12x8米的避雷网格。
不同高度的避雷带应焊接连通。
2.1.2 屋面上所有金属构件应用∅12热镀锌圆钢与防雷装置焊接连通;突出屋面的非金属物体可加装独立小针保护。
2.1.3 采光天窗的金属框、钢雨蓬、钢栏杆、风管以等应用∅12热镀锌圆钢与防雷装置焊接连通;屋顶风机支架以及避雷短针应与防雷装置焊接连通,连接点不少于两处。
2.1.3 利用建筑物钢筋混凝土中的钢筋(两根主钢筋∅≥16mm)或钢结构柱作为防雷引下线,其间距不大于18m。
2.2 防侧击雷措施2.2.1 利用钢柱或柱子钢筋作为防雷引下线。
2.2.2 竖直敷设的金属管道及金属物的顶端和底端与防雷装置连接。
本建筑外墙上的广告排等金属外框的顶端和底端应就近与防雷装置焊接连通。
建筑物防雷与接地装置设计规范1. 引言随着科技的进步和社会的发展,建筑物在人们的日常生活中占据着重要的地位。
然而,暴雨、雷电等自然灾害给建筑物带来了潜在的威胁。
为了确保人员和设备的安全,建筑物防雷与接地装置的设计十分必要。
本文将论述建筑物防雷与接地装置的设计规范。
2. 设计原则2.1 安全性原则建筑物防雷与接地装置的设计必须确保人员和设备的安全。
减少雷击对建筑物和人员的威胁是设计的首要原则。
2.2 功能性原则防雷与接地装置的设计必须保证其功能的可靠性和有效性。
通过良好的设计,可以在雷电天气中有效地引导和分散雷电,并降低雷击导致的危险。
2.3 经济性原则设计应该考虑装置的成本和效益之间的平衡。
合理利用现有资源并减少成本,以实现性能和经济效益的最佳平衡。
3. 建筑物分类和防雷设计要求不同类型的建筑物具有不同的特点和功能,因此需要针对不同建筑物类别的特点进行防雷设计。
3.1 住宅建筑对于住宅建筑,应根据建筑物的高度和结构等特点确定合适的防雷措施。
例如,在房屋顶部安装合适的避雷针,以将雷电引向地下。
3.2 商业建筑商业建筑通常具有更高的建筑高度和较复杂的结构,因此需要更完善的防雷设计。
可以考虑在建筑物周围设置避雷网和接地装置,以确保雷电从建筑物中均匀分散。
3.3 工业建筑工业建筑物通常承载着大量的电气设备,因此需要更严格的防雷措施。
除了避雷针和避雷网的设置外,还需要对电气设备进行合适的接地设计,以确保电气设备在雷击时能够安全工作。
3.4 基础设施建筑基础设施建筑包括桥梁、隧道、输电线路等。
在设计防雷措施时,需要考虑建筑物的特殊环境和对周围环境的影响,以确保这些关键基础设施的稳定性和安全运行。
4. 防雷与接地装置设计步骤4.1 工程调研在设计防雷与接地装置之前,需要对建筑物进行详细调查和分析。
了解建筑物的结构、用途、环境条件等信息,确定潜在的雷击风险。
4.2 设计方案根据工程调研的结果,制定合适的防雷与接地装置设计方案。
接地与防雷措施一、TN-S接零保护系统1、工程采用TN-S接零保护系统,工作零线(N线)必须通过总漏电保护器,保护零线(PE线)必须由电源进线零线重复接地处或总漏电保护器电源侧零线处,引出形成局部TN-S接零保护系统。
2、施工现场临时用电采用三级配电、逐级保护,电源首、末端及线路中间分别设置重复接地,接地电阻不大于10Ω。
所有接地处设置接地标志。
3、保护零线采用黄/绿双色线,严格与相线、工作零线相区别,杜绝混用。
保护接零线的截面积与工作零线相同,且不小于干线截面积的50%,机械强度满足线路敷设方式的要求(架空敷设不小于10mm的铜芯绝缘线)。
4、不得有一部分电气设备接零保护,而另一部分设备接地保护,保护零线不经过开关、熔断器。
5、TN-S接零保护系统中,电器设备的金属外壳必须与PE连接。
下列设备不带电的外露可导电部分应保护接零:1)配电装置的金属箱体、框架及靠近带电部分的金属围栏和金属门;2)电机、变压器、电器、照明灯具、手持电动工具金属外壳;3)电动传动装置的金属部件;4)配电柜与金属柜金属部件。
二、重复接地1、一级箱处PE线做不少于二组重复接地,接地极采用50*50*5热镀锌角钢长度为2.5m,接地线采用40*4的热镀锌扁钢与接地体焊接,接地电阻不大于10Ω。
2、二级箱处PE线做一组重复接地,接地极采用50*50*5热镀锌角钢长度为2.5米,接地线采用40*4的热镀锌扁钢与接地体焊接,接地电阻不大于10Ω。
3、保护零线在配电系统的中间处和末端处做重复接地。
保护零线每处重复接地装置的接地电阻值不大于10Ω。
4、塔吊回路,在专用箱设置重复接地,接地电阻小于4 。
接地体采用50*50*5长度2.5m的热镀锌角钢,间隔5m打入地下。
接地线采用40*4的热镀锌扁钢与接地体焊接,保证接地体和PE线端子做良好的电气连接。
三、防雷接地现场塔吊防雷接地安装采用镀锌40*4扁钢和镀锌Φ20圆钢,三根圆钢两根扁钢焊接为一组,扁钢为三面施焊,圆钢与扁钢搭接焊为圆钢6倍D,圆钢长度2.5m垂直打入地下,留出焊接部分,焊完后,刷防锈漆做防腐处理,每台塔吊两组接地极装置,每组留一处检测点,两组之间设一个短接点,方便分组摇测,塔吊防雷接地电阻值不大于4Ω,摇测时间是每季度一次,雨季施工期间增加摇测频次,并认真做好遥测记录。
分布式并网光伏发电系统的防雷与接地设计随着光伏发电技术的发展和应用,分布式并网光伏发电系统在能源领域发挥着越来越重要的作用。
然而,作为一种新兴的能源技术,分布式并网光伏发电系统在面临雷电等自然灾害时也面临一些潜在的安全风险。
因此,该系统的防雷与接地设计显得尤为重要。
分布式并网光伏发电系统的防雷设计需要综合考虑以下几个方面。
首先,根据光伏电池板和并网逆变器的特点,确定合适的防雷保护设备。
其次,应考虑适当的接地方式和接地系统的设计。
最后,还需对设备进行定期的维护检测和更新。
在分布式并网光伏发电系统的防雷保护设备选择方面,应根据实际情况采用多种保护手段。
对于光伏电池板,可采用带有防雷装置的避雷器来保护;对于并网逆变器,可使用整流器和交流滤波器来防护。
对于接地设计,可以采用以下两种方式。
一种是将所有的金属构件都接地,以确保系统内各部分的等电位性和安全性。
这种方式需要考虑到系统内各个构件之间的接地电阻,必须保证其符合相关标准要求。
另一种方式是采用多个接地点,将光伏发电系统与建筑物的大地接地系统相连接。
这样可以降低对地电势的影响,并提高系统的安全性。
除了防雷保护设备和接地设计外,定期的维护检测也是分布式并网光伏发电系统防雷与接地设计的重要环节。
定期检查各个部件的连接状态,保证电缆的绝缘良好;定期测量接地电阻,确保其符合要求;对防雷保护装置进行检查和更新等,都是保证系统安全运行的关键。
在实际操作中,可借鉴国内外相关标准和规范,如IEC 60364-4-44:2018《电气住宅安装规范第444部分:防雷和过电压保护》、GB 50057-2010《民用建筑电气设计规范》等,对分布式并网光伏发电系统的防雷与接地设计进行参考和指导。
总之,分布式并网光伏发电系统的防雷与接地设计至关重要。
通过选择合适的防雷保护设备、合理的接地设计以及定期的维护检测,可以有效降低雷击风险,保障系统的安全稳定运行。
在未来的发展中,我们还应持续关注防雷与接地技术的创新和进步,为分布式并网光伏发电系统提供更加可靠和安全的防护措施。
防雷保护和接地设计
7.1 直击雷保护
7.1.1 保护对象
屋外配电装置,包括组合导线、母线廊道。
7.1.2保护措施
①110KV配电装置装设避雷针或装设独立避雷针;②主变压器装设独立避雷针;③屋外组合导线装设独立避雷针。
7.1.3 避雷针装设应注意的问题
应妥善采用独立避雷针和构架避雷针,其联合保护范围应覆盖全所保护对象。
根据《电力设备过电压保护技术规程》SDJ
—76规定:独立避雷针(线)宜设独
7
立的接地装置,避雷针及其接地装置与道路或出入口等的距离不宜小于3m。
110KV及以上的配电装置,一般将避雷针装在其构架或房顶上;6KV及以上的配电装置,允许将避雷针装在其构架或房顶上;35KV及以下高压配电装置,构架或房顶上不宜装设避雷针。
装在构架上的避雷针应与接地网连接,并应在其附近装设集中接地装置。
避雷针与主接地网的地下连接点至变压器接地线与主接地网的地下连接点,沿接地体的长度不得小于15m。
在主变压器的门型构架上,不应装设避雷针、避雷线。
110KV及以上配电装置,可将线路的避雷线引接到出线门型架上;35KV配电装置可将线路的避雷线引接到出线门型架上,但应集中接地装置。
我国规程规定:
(1)110KV及以上的配电装置,一般将避雷针在构架上。
但是在土壤电阻率ρ﹥Ω•
1000m的地区,仍宜装设独立避雷针,以免发生反击;
(2)35KV及以下的配电装置应采用独立避雷针来保护;
(3)10KV的配电装置,在ρ﹥Ω•
500m的地区宜采用独立避雷针,在ρ﹤500m的地区容许采用构架避雷针。
Ω•
变电站的直击雷防护设计内容主要是选择避雷针的指数、高度、装设位置、验算它们的保护范围、应有的接地电阻、防雷接地装置的设计等。
7.2 雷电侵入波保护
7.2.1 保护措施
避雷器结合进线段保护。
装设阀式避雷器是变电站对雷电过电压波进行防护的主要措施,它的保护作用主要是限制过电压波的幅值.但是为了使阀式避雷器
不至与负荷过重(流过的冲击电流过大)和有效的发挥其保护功能,还需要有”进线段保护”与之配合,这是现代变电站防雷接线的基本思路。
阀式避雷器的保护作用基
于三个前提:①它的伏秒特性与被保护绝缘的伏秒特性有良好的配合在一切电压波形下,前者均处于后者之下②它的③伏安特性应保证其残压低于被保护绝缘的冲击电气强度③被保护绝缘必须处于该避雷器的保护距离之内。
7.2.2 避雷器的设置
参考《电力设备过电压保护技术规程》SDJ 7—79中的规定:
第78条:变电站的每相母线上都应装设阀型避雷器,应以最短的接地线与配电装置的主接地网连接,同时应在其附近架设集中接地装置。
第80条:大接地短路电流系统中的中性点不接地变压器如中性点绝缘按线电压设计,应在中性点装设保护装置。
第83条:与架空线联络连接的三绕组变压器的10KV 绕组,如有开路运行的可能,应采用防止静电感应电压危害该绕组绝缘的措施。
在其一相出线上装设一只阀型避雷器。
第85条:变电站3~10KV 配电装置应在每相母线和每路架空线上装设阀型避雷器;①110KV ,35KV ,10KV 每段母线上均装一组避雷器;②变压器35KV 侧每一相上装一个避雷器,10KV 侧在一相上装一个避雷器;③110KV 中性点为分级绝缘且装有隔离开关,故需装一个避雷器;④35KV 架空出线连接处应装设一组避雷器。
7.2.3 变电站的保护
根据该变电站的实际情况需要设置四只避雷针分布在四周。
因为土壤电阻率ρ•Ω=100cm,仍宜装设独立避雷针,以免发生反击; 选取避雷针高h=50m 相邻两针的距离D=60m 对角的两针相距D=m 260被保护物高 m h x 10= 当=<=10252x h h m m 时
相邻两针间外侧保护半径为:
m
p
h h r x x 78.425.5/5.5)102505.1()25.1(=⨯⨯-⨯=-=
相邻两针间保护范围为:
m P D h h 39)50/5.57/(6050)7/(0=⨯-=⨯-=
相邻两针高x h 水平面上的保护范围为:
m h h b x x 5.43)1039(5.1)(5.10=-⨯=-=
对角两针间的保护范围为:
m P D h h 4.34)5.57/(50602507/20=⨯⨯⨯-=-= 对角两针高x h 水平面上的保护范围为: m h h b x x 6.36)104.34(5.1)(5.10=-⨯=-=。