第七章 聚合物的表面改性技术介绍
- 格式:doc
- 大小:18.00 KB
- 文档页数:3
聚合物材料的表面改性技术及应用引言:聚合物材料在现代工业中起着重要的作用,然而,由于其表面性质的限制,其应用受到了一定程度的限制。
为了克服这一问题,科学家们开发了各种表面改性技术,使聚合物材料具有更广泛的应用领域。
本文将介绍一些常见的聚合物材料表面改性技术及其应用。
一、化学改性技术化学改性技术是通过在聚合物材料表面引入新的化学官能团,改变其表面性质的方法。
其中,最常用的方法是表面接枝聚合。
通过在聚合物表面引入具有特定官能团的单体,然后进行接枝聚合反应,可以改变聚合物表面的化学性质。
这种方法可以使聚合物表面具有更好的亲水性、抗菌性等特性,从而扩展其应用领域。
例如,将聚合物表面接枝亲水性单体,可以制备具有良好润湿性的聚合物薄膜,用于医疗器械、食品包装等领域。
二、物理改性技术物理改性技术是通过物理方法改变聚合物材料表面的性质。
其中,最常用的方法是表面涂覆。
通过在聚合物表面涂覆一层具有特定性质的材料,可以改变其表面的光学、电学、热学等性质。
例如,将聚合物表面涂覆一层导电性材料,可以制备具有导电性能的聚合物薄膜,用于电子器件等领域。
此外,还可以利用等离子体处理、激光照射等方法对聚合物表面进行改性,以提高其光学、机械性能等。
三、纳米改性技术纳米改性技术是利用纳米材料对聚合物表面进行改性的方法。
纳米材料具有较大的比表面积和独特的物理、化学性质,可以在聚合物表面形成纳米尺度的结构,从而改变其性质。
例如,将纳米颗粒添加到聚合物中,可以增强其力学性能和耐磨性。
此外,还可以利用纳米粒子自组装技术制备具有特定结构和功能的聚合物薄膜,用于传感器、光学器件等领域。
四、应用前景聚合物材料的表面改性技术为其应用领域的拓展提供了新的可能。
通过改变聚合物材料的表面性质,可以使其具有更好的耐磨性、抗菌性、润湿性等特性,从而适用于更广泛的领域。
例如,在医疗器械领域,利用聚合物材料的表面改性技术可以制备具有抗菌性能的医疗器械,从而降低感染风险。
聚合物表面改性方法摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。
关键词:聚合物;表面改性;应用聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。
为了改善这些表面性质,需要对聚合物的表面进行改性。
聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。
聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。
下面将结合具体聚合物材料详细介绍各种改性方法。
1溶液处理方法1.1含氟聚合物PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。
为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。
此处理液的配制是由1mol的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。
将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。
然后用蒸馏水洗。
除去表面上微量的金属。
氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。
正常情况处理液贮存有效期为2个月。
处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。
处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。
聚合物材料表面改性及其光电性能研究随着科技的发展,新材料的诞生和研究已经成为一个重要的领域。
在有机聚合物材料的研究中,表面改性可以改善聚合物材料的光电性能,这对于一些材料在实际应用中的性能表现有很大的影响。
因此,本文将探讨聚合物材料表面改性及其光电性能研究的相关内容。
一、聚合物材料表面改性方法1. 化学改性化学改性是指利用化学反应的方法对表面进行改性。
在聚合物材料中,通常使用的化学改性方法有表面刻蚀、化学表面氟化等。
在表面刻蚀中,通过氧化剂等在表面进行氧化刻蚀,使得表面上的化学键断裂,产生官能团,并引入新的官能团,可以实现表面的化学修饰。
此外,化学表面氟化是通过将引入氟元素到表面,增加其亲水性、耐腐蚀性和耐热性等性质。
2. 物理改性物理改性是指通过物理手段改变表面性质,通常采用机械打磨和离子束轰击等方法进行。
机械打磨是指通过机械摩擦力对表面进行研磨,使表面变得更加平滑光滑,从而改变表面性能。
离子束轰击是利用某种离子束,使其撞击在表面上,从而改变表面性质。
3. 生物改性生物改性是利用生物技术对表面进行改性。
在聚合物材料表面改性中,可以通过生物改性引入生物分子,并将其与聚合物表面的化学键进行结合,从而提高其生物相容性、生物可降解性和抗菌性等性质。
二、聚合物材料表面改性的光电性能研究1. 光学性能光学性能是指材料对光学效应的表现。
在有机聚合物材料中,表面改性可以改善其光学性能。
例如,在聚合物材料中引入光学纳米结构可以实现局域表面等效现象,在材料中引入光致变色分子可以实现快速构建光电器件。
2. 电学性能电学性能是指材料对电子效应的表现。
聚合物材料的表面改性可以改善其电学性能。
例如,在聚合物材料表面引入氧化铝或氮化硅的纳米粒子可以提高材料的电学性能。
此外,聚合物材料表面的电子亲和力和电导率等性质也可以通过表面改性来提高,从而改善材料的电学性能。
三、总结通过对聚合物材料表面改性及其光电性能研究的探讨,可以发现表面改性是改善聚合物材料性能的重要手段。
聚合物材料的表面改性方法聚合物材料是一类具有广泛应用前景的材料,具有质轻、高强度、耐腐蚀等特点。
然而,由于其表面的化学稳定性较差,导致其在某些特殊环境下容易受到损伤。
为了改善聚合物材料的性能,人们通过表面改性方法对其进行处理,并赋予其更多的功能。
本文将介绍一些常见的聚合物材料的表面改性方法。
物理气相沉积(PVD)是一种常见的表面改性方法。
通过将金属等材料以适当的气氛转变为气体态,然后使其在高真空环境中与聚合物材料表面发生反应,从而形成一层新的材料。
PVD能够显著提高聚合物材料的硬度、耐磨性和耐腐蚀性。
此外,PVD还可以通过控制沉积参数来调节材料层的粗糙度和结构,从而实现对材料性能的精确调控。
化学沉积是另一种常见的聚合物表面改性方法。
化学沉积利用化学反应使金属或其他材料以原子或分子的形式沉积在聚合物材料的表面上。
与物理气相沉积不同,化学沉积可以在常压或低压下进行。
化学沉积能够根据反应条件的不同,形成不同厚度、形貌和成分的材料层,从而使聚合物表面的性能得到改善。
例如,通过化学沉积薄层二氧化硅,可以增强聚合物材料的耐候性和耐磨性。
离子注入是一种通过将离子注入到聚合物表面来改变其性能的方法。
离子注入可以显著改变聚合物的化学结构和表面性质,从而实现对材料性能的调节。
通过控制注入的离子种类和能量,可以使聚合物材料表面发生化学反应,形成新的摩擦性能、光电性能等。
离子注入方法具有对材料表面改性效果持久、成本低廉等优点,因此得到了广泛应用。
高能束流 (EB) 辐照是一种利用电子束对聚合物材料进行表面改性的方法。
在高能束流辐照下,能量较高的电子束穿透聚合物材料,与其分子相互作用,从而引发一系列化学反应。
这些反应可以引起预期的表面改性效果,如增加表面粗糙度、提高耐久性和改善光学性能等。
由于高能束流辐照能够实现材料的局部改性,因此在一些特定应用中得到了广泛应用。
总之,聚合物材料的表面改性是提高其性能的重要途径。
通过物理气相沉积、化学沉积、离子注入和高能束流辐照等方法,可以赋予聚合物材料更多的功能性和改善其性能。
聚合物表面改性方法综述摘要:聚合物表面改性的方法很多,本文主要对溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法进行综述。
前几种方法都是化学处理法, 在基底上形成的新的极性表面层与体相结合一体, 非常牢固;最后一种方法为物理过程, 能够精确控制改性区域, 对于改善材料表面微摩擦性能有重要作用。
关键词:聚合物;表面改性;化学处理法;物理过程在当今的社会中,材料是人类赖以生存和发展的重要物质,是现代工业和高科技发展的基础和关键。
由于材料单体的种类有限,而且材料单体的单一的某的些性能比较差,不符合人们所求,所以要对其材料经行改性。
聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。
为了改善这些表面性质,需要对聚合物的表面进行改性。
聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。
聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。
1溶液处理方法1.1溶液氧化法溶液氧化法是一种应用时间较长的处理方法, 由于其简便易行, 可以处理形状复杂的部件, 且条件易于控制, 一直受到广泛关注。
溶液氧化法对聚合物表面改性影响较大的因素主要是化学氧化剂的种类及配方、处理时间、处理温度。
常用的氧化体系有: 氯酸- 硫酸系、高锰酸- 硫酸系、无水铬酸- 四氯乙烷系、铬酸- 醋酸系、重铬酸- 硫酸系及硫代硫酸铵- 硝酸银系等, 其中以后两种体系最为常用。
溶液氧化法处理聚乙烯表面是一个典型的氧化反应, 反应的温度和时间对氧化处理有很大的影响, 王博等系统的研究了用重铬酸钾- 浓硫酸、高锰酸钾-浓硫酸体系处理市售农用聚乙烯薄膜表面时温度和时间对表面性质的影响[ 1]。
实验发现, 当氧化体系温度低于30 o C时, 氧化处理基本不能发生, 温度升高,对制备氧化深度大的产品有利, 但是过高的温度会使聚乙烯表面萎缩变形, 最适宜的温度为45~ 60 o C。
聚合物材料表面与界面学院:材料科学与工程专业:高分子姓名:王清平学号:311106000606 指导老师:王晓冬聚合物表面改性综述摘要:聚合物表面由于表面能低、化学惰性、表面被污染以及存在弱边界层等原因,聚合物材料表面常常呈现出表面惰性和憎水性,比如难于润湿和粘合。
所以对聚合物表面常常需要进行表面处理,以此来改变其表面化学组成,增加表面能,改善结晶形态和表面形貌,除去污物,增加弱边界层等,以提高聚合物表面的润湿性和黏结性等。
聚合物表面改性的方法有很多,如化学改性、表面改性剂法、光改性、力化学改性、偶联剂改性、辐照改性和等离子体改性等等。
这些方法一般只引起10~10-1 nm厚的表面层的物理变化或化学变化。
本章着重介绍聚合物表面改性的一些方法。
关键词:聚合物表面改性方法聚乙烯、聚苯乙烯、聚碳酸酯、聚甲基丙烯酸甲都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了这些材料的进一步应用。
为了改善这些表面性质,需要对聚合物的表面进行改性。
聚合物表面改性是指在不影响材料本体性能的前提下,在材料表定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。
聚合物表面改性方法很多,大体可以分为两类:化学改性和物理改性。
化学改性方法主要有溶液处理法、低温等离子体处理法、表面接枝法、离子注入法改性包括机械改性和表面涂覆改性等,这种改性方法不发生化学反应,近年来发展起来的原子力显微探针震荡法就是一种物理改性方法。
本文将结合具体聚合物材料详细介绍各种改性方法及其改性机理。
化学改性:化学氧化法、化学浸蚀法、化学法表面接枝、含氟高聚物的改性、其他化学改性方法化学氧化法:聚乙烯和聚丙烯是大品种通用高分子材料,但它们的表面能低,如聚乙烯的表面能只有31mJ/m2,属于非极性难粘塑料,这就制约了它们在某些方面的应用。
因此,需对它们进行表面改性。
化学氧化法是较早的用于对聚烯烃进行表面改性的方法,即用氧化剂处理聚烯烃,使其表面粗糙并氧化生成极性基团在化学氧化法中,酸氧化法是最为常见的一种表面处理方法,常用的强酸性氧化液有:无水铬酸四氯乙烷系、铬酸醋酸系、氯酸硫酸系以及重铬酸盐硫酸系等,其作用原理是:处理液的强氧化作用使聚合物表面分子被氧化,在材料表面层生成羟基、羰基、羧基、磺酸基和不饱和键等极性基团,这些基团的生成,可使聚合物表面活化,使亲油表面活化成亲水表面,达到提高聚合物表面张力的目的;同时弱边界层因溶于处理液中而被破坏,甚至造成分子链断裂,形成密密麻麻的凹穴,增加表面的粗糙度。
聚合物表面改性的技术手段及其应用聚合物是一种非常重要的高分子材料,广泛应用于工业、医疗和生活中。
然而,由于聚合物的物化性质和表面特性不稳定,需要对聚合物进行改性以提高其性能,使之更符合实际应用需求。
其中,聚合物表面改性技术是最具有效性和实用性的手段之一。
本文将介绍聚合物表面改性的技术手段及其应用。
1. 聚合物表面改性的技术手段1.1 化学表面改性化学表面改性是一种通过化学反应来将物质附着到聚合物表面的方法,从而改变聚合物表面的特性。
通常采用的化学表面改性方法包括:酸碱处理、溶液浸润、化学键结合等。
例如,微波辐射方法可用于对聚乙烯表面进行氧化改性,将氧原子的引入到聚合物表面,增加其亲水性。
1.2 物理表面改性物理表面改性是一种通过物理手段来改变材料表面性质的方法,可通过改变表面形貌、纹理、颜色、色泽等方面来改变物质表面性质。
例如,凸点纳米表面可增强材料的粘附性、硬度和磨损性,从而提高材料的性能。
1.3 光化学表面改性光化学表面改性是一种以光为驱动力通过化学反应来改变材料或材料表面性质的方法,可用于材料的光降解、光合成、光催化等。
例如,光降解技术可将有机分子通过可见光辐照分解成无害物质,减少聚合物的环境污染。
2. 聚合物表面改性的应用2.1 材料涂层聚合物表面改性技术可用于涂层领域,以提高涂层的附着力、耐磨性、防腐蚀性和耐老化性。
例如,在航空航天领域,采用聚合物表面改性技术制备出具有高温稳定性和防腐蚀性的涂层,可以提高航空器的性能。
2.2 生物医学材料聚合物表面改性技术可用于生物医学材料领域,以提高其组织相容性、生物降解性、生物相容性和抗菌性能。
例如,聚合物表面改性技术可以用于制备具有超支链结构的聚己内酯材料,提高其生物降解性,从而可以作为内部骨钉等医疗器械的材料。
2.3 环保领域聚合物表面改性技术可用于环保领域,以提高材料的光降解和光催化能力,减少聚合物的环境污染。
例如,通过聚合物表面改性技术制备出具有光降解能力的聚苯乙烯材料,可以在光照条件下将污染物分解成无害物质。
聚合物表面改性聚合物表面改性根据方法可以分为以下几种:化学改性、光化学改性、表面改性剂改性、力化学处理、火焰处理与热处理、偶联剂改性、辐照与等离子体表面改性。
一、化学改性化学改性是通过化学手段对聚合物表面进行改性处理,其具体方法包括化学氧化法、化学浸蚀法、化学法表面接枝等。
1.1化学氧化法是通过氧化反应改变聚合物表面活性,例如聚乙烯这种材料的表面能很低,用氧化剂处理聚乙烯,使其表面粗糙并氧化生成极性基团,从而使其表面能增高;在室温下将聚乙烯在标准铬酸洗液中浸泡1-1.5h,66-71℃条件下浸泡1-5min,80-85℃处理几秒钟,也可以达到同样效果;通过臭氧氧化处理可有效地改善聚丙烯表面的亲水性,处理前的表面接触角为97°,臭氧氧化处理后,表面接触角将达到67°。
1.2化学浸蚀法是用溶剂清洗可除去聚烯烃表面的弱边界层,例如通过用脱脂棉蘸取有机溶剂,反复擦拭聚合物表面多次等1.3聚合物表面接枝,是通过在表面生长出一层新的有特殊性能的接枝聚合物层,从而达到显著的表面改性效果。
二、光化学改性光化学改性主要包括光照射反应、光接枝反应。
2.1光照射反应是利用可见光或紫外光直接照射聚合物表面引起化学反应,如链裂解、交联和氧化等,从而提高了表面张力。
如用波长184nm的紫外线在大气中照射聚乙烯能使表面发生交联,粘接的搭接剪切强度提高到15.4Mpa。
2.2光接枝反应就是利用紫外光引发单体在聚合物表面进行的接枝反应,该技术尤其适用于聚合物的表面改性,这是因为紫外线能量低,条件温和,只是在聚合物表面引发接枝聚合反应,很难影响到聚合物本体。
例如对于一些含光敏基(如羰基),特别是侧链含光敏基的聚合物,当紫外线光照射其表面时,会发生反应,产生表面自由基。
三、表面改性剂改性采用将聚合物表面改性剂与聚合物共混的方式是一种简单的改性办法,它只需要在成型加工前将改性剂混到聚合物中,加工成型后,改性剂分子迁移到聚合物材料的表面,从而达到改善聚合物表面性能的目的。
聚合物的表面改性技术研究聚合物在现代工业和日常生活中扮演着至关重要的角色,然而,其表面性能往往限制了它们在某些特定领域的应用。
为了拓展聚合物的应用范围,提高其性能,聚合物的表面改性技术应运而生。
聚合物表面改性的意义在于改善其表面的物理、化学和生物学特性,从而满足不同的应用需求。
例如,提高聚合物表面的亲水性可以增强其与水的相容性,改善润湿性;增加表面的耐磨性能够延长其使用寿命;赋予表面抗菌性能则可以应用于医疗卫生领域等。
目前,常见的聚合物表面改性技术多种多样。
物理改性方法是其中的一类重要手段。
等离子体处理就是一种常见的物理改性技术。
等离子体中的高能粒子能够与聚合物表面发生碰撞和反应,引入新的官能团,改变表面的化学组成和结构。
这种方法具有处理速度快、效果显著的优点,并且不会对聚合物的本体性能造成太大影响。
例如,在处理聚四氟乙烯(PTFE)表面时,可以显著提高其表面的亲水性和粘结性。
另外,离子束辐照也是一种有效的物理改性方法。
通过控制离子束的能量和剂量,可以在聚合物表面产生微小的损伤和结构变化,从而改变其表面性能。
例如,在聚乙烯表面进行离子束辐照处理后,其表面硬度和耐磨性得到明显提高。
化学改性方法同样在聚合物表面改性中发挥着重要作用。
表面接枝改性是一种常用的化学方法。
通过化学反应将特定的官能团或聚合物链段接枝到聚合物表面,从而实现对表面性能的调控。
例如,将亲水性的聚乙二醇(PEG)接枝到聚苯乙烯表面,可以使其具有良好的生物相容性。
化学蚀刻也是一种常见的化学改性手段。
利用特定的化学试剂对聚合物表面进行蚀刻,形成微观的粗糙结构或孔隙,从而改变表面的物理和化学性质。
例如,在聚碳酸酯表面进行化学蚀刻,可以提高其表面的粗糙度,增强其与其他材料的结合力。
除了上述的物理和化学改性方法,还有一些其他的改性技术也值得关注。
涂层技术是一种简单而有效的方法。
在聚合物表面涂覆一层具有特定性能的涂层材料,如金属涂层、陶瓷涂层或聚合物涂层,可以显著改善其表面性能。
聚合物表面改性方法及其在涂料工业上的应用详解聚合物是一种常见的高分子化合物,具有广泛的应用领域,如塑料制品、纺织品、建筑材料等。
然而,由于其表面性质限制了其在某些领域的应用,因此需要对聚合物表面进行改性处理。
本文将详细介绍聚合物表面改性的方法,并重点讨论其在涂料工业上的应用。
聚合物表面改性方法主要包括物理方法和化学方法两种。
一、物理方法1. 表面涂覆表面涂覆是一种常见的聚合物表面改性方法,通过在聚合物表面涂覆一层薄膜或涂层,改变其表面性质。
常见的表面涂覆方法包括溶液涂覆、溅射涂层和电镀等。
2. 离子注入离子注入是一种通过将离子注入聚合物表面改变其性质的方法。
通过特定的离子注入装置,将带有高能量的离子注入到聚合物表面,使其发生物理或化学改变。
离子注入可以改变聚合物的表面硬度、疏水性和电导率等性质。
3. 气体等离子体处理气体等离子体处理是一种利用高能量等离子体处理聚合物表面的方法。
通过将聚合物表面暴露在含有等离子体的气体环境中,聚合物表面会发生化学交联、化学改性及物理改变等过程,从而改变其表面性质。
二、化学方法1. 表面修饰表面修饰是一种将化学物质通过化学反应与聚合物表面进行结合的方法。
常用的表面修饰方法包括聚合物表面接枝、聚集态修饰和功能化修饰等。
表面修饰可以改变聚合物表面的化学性质、疏水性、疏油性等。
2. 表面包覆表面包覆是一种将聚合物表面包覆上一层具有特定性质的化合物的方法。
表面包覆可以改变聚合物表面的光学性质、耐候性、耐腐蚀性等。
常见的表面包覆方法包括溶胶-凝胶法、沉积法和压电喷雾法等。
聚合物表面改性在涂料工业上具有重要的应用。
1. 提高涂料附着力聚合物表面经过改性处理后,可以在涂料与基材之间形成更牢固的结合,提高涂料的附着力。
改性处理可以增加聚合物表面的粗糙度和亲水性,从而使涂料更容易附着在聚合物表面上,减少剥离和脱落现象。
2. 提高涂层的耐磨性和耐化学性聚合物表面改性可以增加涂料的耐磨性和耐化学性,提高涂层的使用寿命。
第七章聚合物的表面改性技术介绍第七章聚合物的表面改性聚合物表面改性原因:①聚合物表面能低②聚合物表面具有化学惰性难以润湿和粘合③聚合物表面污染及存在弱边界层聚合物表面改性的目的:①改变表面化学组成,引进带有反应性的功能团②清除杂质或弱边界层③改变界面的物理形态④提高表面能,改进聚合物表面的润湿性和黏结性⑤设计界面过渡层第七章聚合物的表面改性聚合物的表面改性的方法:电晕、火焰、化学改性、等离子改性、辐照、光化学改性等。
这些方法一般只引起10-8~10-4m 厚表面层的物理或化学变化,不影响其整体性质。
7-1 电晕放电处理电晕放电是聚烯烃薄膜中最常用的表面处理方法。
因为聚烯烃,聚丙烯等烯烃是非极性是非极性材料,有高度结晶性,其表面的印刷、粘接、涂层非常困难。
电晕放电处理装置如图7-1 电晕放电处理原理:塑料薄膜在电极和感应辊之间通过。
当施加高压电时,局部发光放电,产生电子、正离子、负离子等高能离子。
电子的冲突电离作用使电子、离子增殖,产生的正离子、光子又发生二次电离而持续放电,结果在阳极和阴极之间产生电晕。
这些高能粒子与聚合物表面作用,使聚合物表面产生自由基和离子,在空气中氧的作用下,聚合物表面可形成各种极性基团,因而改善了聚合物的黏结性和润湿性。
7-1 电晕放电处理7-1 电晕放电处理以上两图表明:1.电晕处理后低密度聚乙烯(LDPE)表面张力的变化:开始表面张力随电晕处理的电流增大而显著提高,当电流超过100 mA 后,表面张力增加速度趋缓2.电晕处理后低密度聚乙烯(LDPE)剥夺力的影响(变化同上)7-2 火焰处理和热处理一、火焰处理:1.定义:用可燃性气体的热氧化焰对聚合物表面进行瞬时高温燃烧,使其表面发生氧化反应而达到处理的目的。
2.常用可燃气体:采用焦炉煤气或甲烷、丙烷、丁烷、天然气和一定比例的空气或氧气。
即焦炉煤气甲烷、丙烷、丁烷、天然气7-2 火焰处理和热处理3.常用火焰处理来提高其表面性能的物质(粘接性)聚乙烯、聚丙烯的薄膜、薄片吹塑的瓶、罐、桶等4.例如:用聚丙烯制作汽车保险杠,用火焰处理来提高其表面的可漆性。
第七章聚合物的表面改性
聚合物表面改性原因:①聚合物表面能低②聚合物表面具有化学惰性难以润湿和粘合③聚合物表面污染及存在弱边界层聚合物表面改性的目的:①改变表面化学组成,引进带有反应性的功能团②清除杂质或弱边界层③改变界面的物理形态④提高表面能,改进聚合物表面的润湿性和黏结性⑤设计界面过渡层
第七章聚合物的表面改性
聚合物的表面改性的方法:电晕、火焰、化学改性、等离子改性、辐照、光化学改性等。
这些方法一般只引起10-8~10-4m 厚表面层的物理或化学变化,不影响其整体性质。
7-1 电晕放电处理
电晕放电是聚烯烃薄膜中最常用的表面处理方法。
因为聚烯烃,聚丙烯等烯烃是非极性是非极性材料,有高度结晶性,其表面的印刷、粘接、涂层非常困难。
电晕放电处理装置如图
7-1 电晕放电处理
原理:塑料薄膜在电极和感应辊之间通过。
当施加高压电时,局部发光放电,产生电子、正离子、负离子等高能离子。
电子的冲突电离作用使电子、离子增殖,产生的正离子、光子又发生二次电离而持续放电,结果在阳极和阴极之间产生电晕。
这些高能粒子与聚合物表面作用,使聚合物表面产生自由基和离子,在空气中氧的作用下,聚合物表面可形成各种极性基团,因而改善了聚合物的黏结性和润湿性。
7-1 电晕放电处理
7-1 电晕放电处理
以上两图表明: 1.电晕处理后低密度聚乙烯(LDPE)表面张力的变化:开始表面张力随电晕处理的电流增大而显著提高,当电流超过100 mA 后,表面张力增加速度趋缓2.电晕处理后低密度聚乙烯(LDPE)剥夺力的影响(变化同上)
7-2 火焰处理和热处理
一、火焰处理:1.定义:用可燃性气体的热氧化焰对聚合物表面进行瞬时高温燃烧,使其表面发生氧化反应而达到处理的目的。
2.常用可燃气体:采用焦炉煤气或甲烷、丙烷、丁烷、天然气和一定比例的空气或氧气。
即焦炉煤气甲烷、丙烷、丁烷、天然气
7-2 火焰处理和热处理
3.常用火焰处理来提高其表面性能的物质(粘接性)聚乙烯、聚丙烯的薄膜、薄片吹塑的瓶、罐、桶等
4.例如:用聚丙烯制作汽车保险杠,用火焰处理来提高其表面的可漆性。
5.原理:火焰燃烧的温度可达1000-2700oC,处理的时间极短(0.01~0.1s内)(以避免工件受高温影响而发生变形、软化甚至熔化)
7-2 火焰处理和热处理
火焰中含有许多激活的自由基、离子、电子和中子,如激发态的O﹑NO﹑OH和NH,可夺取聚合物表面的氢,随后按自由基机理进行表面氧化反应,使聚合物表面生成羰基、羧基、羟基等含氧活性基团和不饱和双键,从而提高聚合物的表面活性。
二、热处理1.定义:7-2 火焰处理和热处理
把聚合物暴露在热空气中进行氧化反应,使其表面引进羰基、羧基以及某些胺基和过氧化物,从而获得可润湿性和黏结性。
2.热处理的温度只有几百(<500oC)摄氏度,远低于火焰处理的温度,因而处理时间较长。
7-3 化学处理
指用化学试剂浸洗聚合物使其表面发生化学和物理变化的方法。
优点:工艺简单,设备投资小,因而应用广泛。
一、含氟聚合物1.如聚四氟乙烯(PTFE )、氟化乙烯-丙烯共聚物(FEP )和聚三氟乙烯( PTFE )等
7-3 化学处理
①优点:优良的化学稳定性、电性能、自润滑性以及耐高、低温性能,并有较高的机械强度,在化学、电子工业和医学方面有广泛应用。
②缺点:含氟聚合物的表面能很低,是润湿性最差、粘接最难的聚合物,使其应用受到限制。
因此必须进行表面改性。
7-3 化学处理
2.化学改性方法:用钠氨或钠萘溶液处理含氟聚合物。
以钠萘溶液为例:处理液的配置是将23g金属钠加到含128g萘的1L四氢呋喃中,搅拌反应2h ,至溶液完全变成暗棕色。
处理:将含氟聚合物浸泡在钠萘溶液中1~5 min ,使聚合物表面变黑,取出用丙酮洗,继之用蒸馏水洗,烘干即可。
处理后含氟聚合物的表面张力、极化度、可润湿性都显著提高。
7-3 化学处理
二、聚烯烃的液态氧化处理(酸处理)1.聚烯烃的特点:常用聚烯烃有聚乙烯和聚丙烯等,其特点是表面能低(为提高其表面活性,通常对其进行表面处理) 2.表面改性方法:液态氧化法:酸氧化法是聚烯烃最常用的表面处理方法之一
7-3 化学处理
常用氧化体系重铬酸盐/硫酸硫酸铵/硫酸银溶液铬酸/醋酸高锰酸钾/硝酸、双氧水等其中重铭酸盐/硫酸是最重要的液态氧化体系。
方法:处理液的参考配方为:重铬酸钠(钾)5份、蒸馏水8 份、浓硫酸100份。
处理:将聚烯烃在处理液中室温下浸泡1~1.5h, 66~71 ℃条件下浸泡l~5min, 80~85℃浸泡几秒钟。
7-3 化学处理
3.处理后的性能(光电子能谱、紫外光谱和红外光谱)处理后,聚烯烃表面上检测出了羟基、羧基、磺酸基和不饱和双键,这些极性基团是氧化的产物。
经酸蚀后聚烯烃的表面张力增加,与水的接触角减小,可润湿性,粘合性提高三、尼龙的碘处理尼龙6,尼龙66用碘化钾溶液处理(碘浓度0.050.5mol/L)制成镀金属制品。
尼龙与金属镀层粘结性上升
7-4 臭氧氧化
臭氧氧化法对聚丙烯及其共聚物的表面处理取得了良好的效果。
原理:
叔碳原子上的H被臭氧氧化,生成大分子自由基大分子自由基与氧反应,生成过氧化自由基,大分子自由基与·OH 反应,生成羟基或碳碳双键,双键被臭氧氧化,生成羰基、羧基、醛基或酯键等含氧极性基团,表面的物理性能和化学性能发生了很大变化。
臭氧是对人有害的物质,10-8浓度的臭氧就可被人感知。
美国劳动环境法规定臭氧的许可浓度是10-7以下。
因此,采用臭氧处理时,必须采用严格措施防止臭氧泄漏。
7-5 低温等离子体处理
一、等离子体概述
1.等离子体:一种全部或部分电离了的气体状态物质,其中含有亚稳态和激发态的原子、分子、离子和电子,而正电荷类物质与负电荷类物质的含量大致相等,所以称为等离子体。
等离子态被称为“物质的第四态”。
(由电离的导电气体形成,其中包括6种典型粒子:电子、正离子、负离子激发态原子或分子基态原子或分子、光子。
事实上就只由大量正负带电粒子和中性粒子组成,则正电荷总数=负电荷总数)
7-5 低温等离子体处理
2.等离子体中的电离气体此类气体都是发光的、电中性的,由电晕放电、高频电磁振荡、激光、射频或微波、高能辐射(如α 射线和β射线)以及其他方法产生出来的束子
3.等离子体产生的过程数离子或电子在高频高压电场中被加速而得到较大动能,能量足够大的粒子碰到其他分子使其电离产生新的自由离子、电子、自由基等粒子,其中荷电粒子又被继续加速,再碰撞其他分子使之电离,如此循环反复形成等离子体。
7-5 低温等离子体处理
二、等离子体处理对聚合物的表面的改性效果1.表面交联等离子体轰击聚合物表面,可使聚合物表面产生自由基,表面交链是由聚合物自由基之间的重新组合而引起的。
2.极性基团的引入等离子体处理可在聚合物表面引进各种极性基团。
如NH3 等离子体或N2与O2混合的等离子体处理可在高分子表面引人胺基、亚胺基等。
7-5 低温等离子体处理
3.对润湿性的影响等离子体处理引人的极性基团结合在聚合物表面上,因此改善了表面的润湿性,使聚合物的表面张力增大,接触角变小。
(表面张力即为表面能,随着时间延长这些良好的性能都不变)4.对黏结性的影响经等离子体处理的聚合物,由于表面引进了极性基团,使其与其他材料的黏结强度大大增强。
7-5 低温等离子体处理
5.其他作用等离子体处理可引起聚合物表面的链裂解作用,裂解的小分子产物被蒸发除去,引起聚合物失重,聚合物表面变得粗糙,或形成了小坑.对黏结性可能有利。
裂解产物中的降解聚合物,与未降解比相对分子质量降低,玻璃化温度和黏度较低,因此可通过界面的流动性和相互扩散改善可黏结性。
当然,聚合物的降解和失重会使其强度有所下降。
(聚合物降解,分子质量降低,玻璃化温度降低可通过界面扩散和流动性改善可粘结性)7-6 表面接枝
一、概述1.表面接枝:是在聚合物的表面生长出一层新的具有特殊性能的其他聚合物,从而使表面层的结构和性能与本体不同。
①接枝的聚合物层仅在表面,本体仍然保持原来的聚合物结构,所以不能看作是共聚物。
②由于表面接枝的聚合物层是可设计的,所以表面接枝是聚合物表面改性的有效方法。
7-6 表面接枝
二、表面接枝聚合法1.是通过某种特殊技术,使聚合物表面产生活性基,该表面大分子活性种引发乙烯基单体在聚合物表面接枝聚合。
2.表面接枝聚合所用单体一般是乙烯基单体,活性中心大多数是自由基,通过自由基引发单体聚合。
7-6 表面接枝
3.引入活性点的方法:光化学法射线辐射法紫外线法等离子体法化学接枝法。