第6章-高分子材料的表面改性方法上课讲义
- 格式:ppt
- 大小:5.50 MB
- 文档页数:103
高分子材料的表面改性与性能在当今科技飞速发展的时代,高分子材料凭借其优异的性能和广泛的应用领域,已经成为材料科学领域的重要组成部分。
然而,高分子材料的表面性能往往限制了其在某些特定场合的应用。
为了拓展高分子材料的应用范围,提高其性能,表面改性技术应运而生。
高分子材料的表面改性是指在不改变材料本体性能的前提下,通过物理、化学或生物等方法对材料表面的化学组成、微观结构和物理性能进行调整和优化。
其目的是改善高分子材料的表面润湿性、黏附性、耐磨性、耐腐蚀性、生物相容性等性能,以满足不同领域的应用需求。
物理改性方法是表面改性中较为常见的一类。
其中,等离子体处理是一种高效的技术手段。
等离子体中的高能粒子能够与高分子材料表面发生碰撞和反应,引入新的官能团,增加表面粗糙度,从而改善表面的亲水性和黏附性。
例如,经过等离子体处理的聚乙烯薄膜,其表面能显著提高,与油墨、涂料的结合力增强,印刷和涂装效果得到明显改善。
另一种物理改性方法是离子束注入。
通过将高能离子注入到高分子材料表面,可以改变表面的化学组成和结构,进而改善其性能。
比如,将氮离子注入到聚四氟乙烯表面,可以显著提高其耐磨性和耐腐蚀性。
化学改性方法在高分子材料表面改性中也具有重要地位。
化学接枝是一种常用的化学改性手段。
通过在高分子材料表面引入活性基团,然后与其他单体进行接枝反应,可以在表面形成一层具有特定性能的接枝聚合物层。
例如,将丙烯酸接枝到聚丙烯表面,可以使其具有良好的亲水性和生物相容性。
表面涂层也是一种常见的化学改性方法。
在高分子材料表面涂覆一层具有特定性能的涂层材料,如金属涂层、陶瓷涂层或聚合物涂层,可以显著改善其表面性能。
比如,在塑料表面涂覆一层金属涂层,可以赋予其良好的导电性和电磁屏蔽性能。
除了物理和化学改性方法,生物改性方法在近年来也受到了广泛关注。
生物改性主要是通过在高分子材料表面固定生物活性分子,如蛋白质、酶、抗体等,赋予材料特定的生物功能。
表面化学改性摘要:表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如亲水性、生物相容性、抗静电性能、染色性能等,或者促使聚合物或者某些非聚合物材料成为一种具有特殊功能性的材料。
表面改性的方法有很多报道,最简单的可以归结为两类:化学改性、物理改性。
本报告主要介绍一些非聚合物本体表面通过在表面接枝聚合物等化学反应方法的表面改性和一些聚合物本体表面的化学改性。
通过化学改性,得到在某一方面有具体应用的功能材料。
关键词:化学改性,聚合物,表面1非聚合物本体表面通过在表面接枝聚合物等化学反应方法的表面改性生物材料由于在使用的过程当中会存在非特异蛋白不可控的吸附,导致生物材料与生物体会产生凝固、补体激活血小板粘附,免疫反应等反应,所以作者首先是研究在硅晶片表面接枝聚乙烯吡咯烷酮,聚乙烯吡咯烷酮有着很好的抗蛋白吸附性,且作为生物材料方面的应用有着悠久的历史。
作者通过图1所示的合成路径,采用表面—引发ATRP自由基活性聚合得到了在硅表面上接枝聚合物链长度和密度可控的聚乙烯吡咯烷酮改性的硅表面,再研究了其抗蛋白性质与接枝聚合物的长度和密度的关系。
图1受此表面改性的方法的启发,作者进一步研究了利用嵌段共聚物改性的表面用于结合数量和活性可控的生物大分子。
其研究背景是相比于传统表面引发自由基聚合,在表面接枝聚合物刷采用可控活性自由基聚合技术可以使表面结构的厚度,结构和组成得到精确的控制。
且利用聚合物与酶蛋白的结合,可以使材料表面具有生物催化活性,本文的主要介绍在硅晶片表面接枝合成POEGMA-co-PGMA 嵌段聚合物刷,其机理如图2,首先采用表面—引发ATRP 自由基活性聚合合成POEGMA片段,POEGMA具有抗蛋白吸附特性,然后控制第一段的长度10nm,利用电子活化再生原子转移自由基聚合合成POEGMA-co-PGMA 嵌段共聚物,PGMA带有环氧基团,能够与酶蛋白上的氨基或者羧基发生开环反应,从而接上酶蛋白,最后得到具有生物活性的硅表面。