最新开关电源概述
- 格式:doc
- 大小:73.00 KB
- 文档页数:2
开关电源及发展现状一、开关电源的基本原理和发展概述在现代电子设备中,开关电源广泛应用于各种领域,如计算机、通信、工业控制等。
开关电源可以将交流电转换为直流电,并通过高频开关器件(如功率MOSFET、IGBT)进行高效率的电能转换,同时使用电感元件对电流进行滤波,使输出具有较低的波动和噪声。
随着电子技术的快速发展,开关电源在以下几个方面得到了显著的改进和发展:1. 尺寸和重量的减小:通过改进电路设计和采用高效的器件和材料,现代开关电源相对于传统的线性电源来说,体积和重量更小。
因此,在移动电子设备和便携式设备中得到广泛应用。
2. 高效率和能量节约:开关电源的输出效率较高,通常可以达到90%以上,更加有效地利用电能。
这不仅有助于减少能源消耗,降低发热量,同时也减小了对环境的影响。
3. 可调性和稳定性:现代开关电源通常具有可调的输出电压和电流,以适应不同设备的需求。
同时,通过采用反馈控制技术和高精度的电压/电流传感器,可以实现较高的输出稳定性和精度。
4. 数字化和智能化:随着微处理器和数字信号处理技术的广泛应用,开关电源实现了数字化控制和智能化管理。
这使得对电源状态、过载保护、故障诊断等进行实时监测和管理成为可能。
二、开关电源发展的现状目前,开关电源领域的发展主要集中在以下几个方面:1. 高频功率器件的改进:高频开关器件的性能和可靠性对于开关电源的效率和稳定性至关重要。
近年来,功率MOSFET和IGBT等器件的性能不断提高,使得开关电源可以实现更高的开关频率和更高的输出功率。
2. 多电平拓扑的应用:传统的开关电源通常采用单级拓扑结构,但这种结构在高功率和高频率应用中存在一定的限制。
近年来,基于多电平(Multi-level)拓扑的开关电源得到了广泛研究和应用,例如三电平、多电平变频和混合拓扑结构,能够提高电能转换效率和减小电磁干扰。
3. 新型材料和元件的应用:随着功率电子技术的发展,新型材料和元件的应用进一步推动了开关电源的发展。
开关电源概念基本概念凡是用半导体功率器件作为开关,将一种电源形态转变成为另外一形态的主电路叫做开关变换器电路。
在转变时,以自动控制稳定输出并有各种保护环节的电路,称为开关电源。
开关电源是进行AC/DC、DC/DC、DC/AC功率变换的装置。
这些变换由主回路和控制回路两大部分完成。
主回路将输入的交流电传递给负载,它决定开关电路的结构形式,变换要求,功率大小,负载能力等。
控制回路按输入、输出的条件来检测、控制回路的工作状况。
推挽正激式开关电源由于输出电感和续流二极管的作用。
输出电源是连续的。
变换器在开关晶体管导通时经变换器向负载传输能量。
输出功率范围较大。
高频变压器既要起变压器隔离和传输能量的作用。
又起到电感线圈储能的作用。
该电源既能独立使用。
又可相互并联使用。
输入可以是交流电压。
也可以是控制电路以集成的PWM脉宽调制电路为基础组成。
能十分方便实现稳压调节及过压、欠压、限流和关断电源输出等保护控制功能。
直流电压。
应用灵活、运行可靠、能长期稳定地运行于工业环境中。
开关电源通常由六大部分组成如图2.1所示,第一部分是输入电路。
它包含低通滤波和一次整流环节。
220V 交流电经低通滤波和桥式整流后得到未稳压的直流电压V1,此电压送到第二部分进行功率因数校正,其目的是提高功率因数。
第三部分是功率转换,它是由电子开关和高频变压器来完成的,是把功率因数的直流电压变换成受控制的、符合设计要求的高频方波脉冲电压。
第四部分是输出电路,用于将高频方波脉冲电压经整流滤波后变成直流输出。
第五部分是控制电路,输出经过分压采样后与电路基准电压进行比较放大。
第六部分是高频振荡发生器,它产生一种高频波段信号,该信号与控制信号叠加进行脉宽调制达到脉冲宽度调制。
推挽式开关电源的优缺点推挽式开关电源的优点如下:①推挽式开关电源输出电流瞬态响应速度很高,电压输出特性很好。
推挽式开关电源是所有开关电源中电压利用率最高的开关电源。
由于推挽式开关电源中的两个控制开关轮流交替工作,其输出电压波形非常对称,并且开关电源在整个周期之内都向负载提供功率的输出,因此,其输出电流瞬态响应速度很高,电压输出特性很好。
开关电源拓扑结构概述主回路——开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离史与非隔离式两大类型。
一、非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1、串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D 自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
2、并联式结构并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D 导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。
由此可见,并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。
并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。
3、极性反转型变换器结构极性反转——输出电压与输入电压的极性相反。
电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。
开关管T交替工作于通/断两种状态,工作过程与并联式结构相似,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL 靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自感电动势通过续流二极管D对负载RL供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。
TI开关电源基础知识目录1. 内容概览 (3)1.1 电源的重要性 (4)1.2 开关电源的概述 (5)2. 开关电源的工作原理 (6)2.1 开关型转换器的基本结构 (7)2.2 电流连续和电压连续型转换器 (8)2.3 开关频率的选择 (10)3. 开关电源的类型 (11)3.1 反激式转换器 (12)3.2 正激式转换器 (14)3.3 桥式转换器 (14)3.4 半桥转换器 (16)3.5 推挽转换器 (17)4. 开关电源的设计流程 (18)4.1 系统级设计 (19)4.2 输入和输出电压的选择 (20)4.3 开关频率和占空比的确定 (21)4.4 主开关和滤波器的选择 (22)5. 关键组件和工作原理 (24)5.1 主开关 (26)5.2 次级侧整流二极管 (27)5.3 输入和输出滤波电感 (28)5.4 输出滤波电容器 (29)5.5 反馈网络 (31)6. 设计举例与案例分析 (31)6.1 反激式转换器设计实例 (33)6.2 正激式转换器设计实例 (34)6.3 桥式转换器设计实例 (35)6.4 半桥转换器设计实例 (37)6.5 推挽转换器设计实例 (39)7. 电源效率与负载调整率 (40)7.1 效率计算 (42)7.2 负载调整率 (43)8. 开关电源的设计注意事项 (43)8.1 EMI抑制措施 (45)8.2 热管理 (46)8.3 电磁兼容性与安全 (47)8.4 封装与稳定 (49)9. 现代开关电源技术 (50)9.1 软开关技术 (52)9.2 多相电源 (53)9.3 高频转换器技术 (54)9.4 变频技术 (55)9.5 数字控制技术 (56)10. 测试与调试 (58)10.1 工作频率和占空比的测试 (59)10.2 输出电压和波形的测试 (60)10.3 效率和负载调整率的测试 (61)10.4 EMI和噪声测试 (63)11. 结论与展望 (64)11.1 开关电源的发展趋势 (65)11.2 未来研究方向 (66)1. 内容概览开关电源作为现代电子设备中不可或缺的组成部分,以其高效、节能、小巧等特点赢得了广泛的应用。
1000v超高电压输入开关电源原理概述及解释说明1. 引言1.1 概述在现代电力系统和电子设备领域,超高电压输入开关电源具有重要的应用价值。
它是一种特殊的电源设计,能够提供高达1000V以上的输入电压,并将其转换为稳定的输出电压以供特定设备使用。
超高电压输入开关电源广泛应用于核能、航空航天、军事和科学研究等领域。
1.2 文章结构本文将对1000v超高电压输入开关电源原理进行全面的概述和解释说明。
文章主要分为五个部分,包括引言、超高电压输入开关电源原理、解释说明、应用现状及未来发展趋势以及结论。
通过这些部分的详细描述,读者可以了解该技术的基本原理、组成部分和工作过程,并获得对其应用领域、挑战和未来发展方向的全面认识。
1.3 目的本文旨在介绍1000v超高电压输入开关电源原理,并对其进行详细解释和说明。
通过清晰地阐述该技术的工作原理和特点,希望能够让读者更好地理解其在不同领域的应用,并展望其未来的发展趋势。
同时,本文还将提供一些可行解决方案,以帮助克服当前面临的挑战和问题。
以上就是文章“1. 引言”部分的内容。
该部分主要介绍了本文所要讨论的主题以及文章的结构和目标。
请根据需要进行修改和补充。
2. 超高电压输入开关电源原理2.1 输入开关电源概述超高电压输入开关电源是一种广泛应用于各种领域的电源设备,其主要功能是将传统的交流高压电源转换为适合特定设备使用的低压直流电。
它通过采用开关技术和相关的控制电路,实现对输入信号进行调整和处理,以提供稳定、可靠的输出供电。
2.2 超高电压应用及需求超高电压输入开关电源适用于许多需要较高工作电压的设备和系统,比如医疗设备、精密仪器、通信基站等。
这些设备需要更大功率和更高稳定性的供电,以确保正常运行和数据传输。
在一些特殊情况下,例如工业生产中的高能耗设备或科学实验中对能量输出要求较高的场景,超高电压输入开关电源展示出了巨大潜力。
因此,人们对于这种具有更大输出能力和效率更好的新型输入开关电源感兴趣。
什么是开关电源?开关电源是一种常见的电源供应器件,广泛应用于各种电子设备中。
那么,什么是开关电源呢?本文将从不同的角度解释开关电源的定义、工作原理以及其优势。
一、开关电源的定义开关电源是一种能将交流电转化为直流电,通过开关元件对电流进行调控的电力装置。
它将电源电压转换为稳定的直流电压,为电子设备的正常工作提供电力支持。
开关电源常用于计算机、通信设备、工业自动化、医疗设备等领域。
二、开关电源的工作原理开关电源的工作原理主要分为两个阶段:蓄能阶段和输出阶段。
首先,在蓄能阶段,交流电源通过整流电路进行整流,得到大致的直流电压。
然后,通过开关管或开关二极管等进行开关操作,在短时间内将大致的直流电压转换为高频脉冲电压。
最后,通过滤波电路将高频脉冲电压转换为稳定的直流电压,供给电子设备使用。
三、开关电源的优势1. 高效性:开关电源具有高效能转换特性,能够将电能转化为电子设备所需的正确电压和电流,减少能源的损耗。
2. 稳定性:开关电源在电流和电压的输出方面具备较高的稳定性,能够提供稳定可靠的电力供应。
3. 尺寸小巧:相比传统的线性电源,开关电源具有体积小、重量轻的特点,占据空间少,适合集成在各种小型电子设备中。
4. 全能性:开关电源能够适应不同电压等级的输入,具有较强的适用范围和灵活性,适合应用于不同领域的电子设备。
四、开关电源的应用案例1. 通信设备:开关电源广泛应用于通信基站、路由器、交换机等通信设备中,可为这些设备提供稳定的电力供应。
2. 工业自动化:开关电源在工业自动化领域中常用于控制系统、传感器等设备的供电,为工业生产提供必要的电力保证。
3. 医疗设备:开关电源具备输出电压稳定、电磁兼容性好等特点,可以广泛应用于医疗设备中,确保医疗器械的正常运行和患者的安全。
4. 汽车电子:开关电源可以为汽车电子设备提供稳定的电力支持,包括车载导航系统、音响设备等,提升驾驶体验和安全性。
总结:开关电源作为一种重要的电源供应器件,具有高效性、稳定性、尺寸小巧和全能性等优势,并在通信设备、工业自动化、医疗设备和汽车电子等领域发挥重要作用。
开关电源概述
精品好文档,推荐学习交流
仅供学习与交流,如有侵权请联系网站删除 谢谢
1 开关电源概述
开关电源就其与负载的连接方式来说,有并联型和串联型两种类型。
串联型开关电源主要用在早期的电视机中,这种开关电原通过开关调整管及整流二极管与电网相连,整个机板与电网相通,使机板带电,不便于与外部其它电器连接,因此在现代电子设备中己
巳很少使用,取而代之的是并联型开关电源。
下图是早电视机使用的串联型开关电源电路图:
并联型开关电源电路图如下:
并联开关电源输出端与电网通过开关变压器隔离,次级部分不带电,安全性好,也容易与外部设备连接。