弧长和扇形面积_教学设计(最新整理)
- 格式:pdf
- 大小:163.89 KB
- 文档页数:4
弧长与扇形的面积教学设计弧长与扇形的面积教学设计范文作为一位优秀的人民教师,可能需要进行教学设计编写工作,教学设计是实现教学目标的计划性和决策性活动。
我们应该怎么写教学设计呢?下面是小编帮大家整理的弧长与扇形的面积教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
弧长与扇形的面积教学设计1教学目标(一)教学知识点1.经历探索弧长计算公式及扇形面积计算公式的过程;2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.(二)能力训练要求1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力.2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.(三)情感与价值观要求1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.教学重点1.经历探索弧长及扇形面积计算公式的过程.2.了解弧长及扇形面积计算公式.3.会用公式解决问题.教学难点1.探索弧长及扇形面积计算公式.2.用公式解决实际问题.教学方法学生互相交流探索法教具准备2.投影片四张第一张:(记作A)第二张:(记作B)第三张:(记作C)第四张:(记作D)教学过程Ⅰ.创设问题情境,引入新课[师]在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索.Ⅱ.新课讲解一、复习1.圆的周长如何计算?2.圆的面积如何计算?3.圆的圆心角是多少度?[生]若圆的半径为r,则周长l=2r,面积S=r2,圆的圆心角是360.二、探索弧长的计算公式投影片(A)如图,某传送带的一个转动轮的半径为10cm.(1)转动轮转一周,传送带上的物品A被传送多少厘米?(2)转动轮转1,传送带上的物品A被传送多少厘米?(3)转动轮转n,传送带上的物品A被传送多少厘米?[师]分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360的圆心角,所以转动轮转1,传送带上的物品A 被传送圆周长的;转动轮转n,传送带上的物品A被传送转1时传送距离的n倍.[生]解:(1)转动轮转一周,传送带上的物品A被传送210=20cm;(2)转动轮转1,传送带上的物品A被传送 cm;(3)转动轮转n,传送带上的物品A被传送n =cm.[师]根据上面的计算,你能猜想出在半径为R的圆中,n的圆心角所对的弧长的计算公式吗?请大家互相交流.[生]根据刚才的讨论可知,360的圆心角对应圆周长2R,那么1的圆心角对应的弧长为,n的圆心角对应的弧长应为1的圆心角对应的弧长的n倍,即n .[师]表述得非常棒.在半径为R的圆中,n的圆心角所对的弧长(arclength)的计算公式为:l=.下面我们看弧长公式的运用.三、例题讲解投影片(B)制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即的长(结果精确到0.1mm).分析:要求管道的展直长度,即求的长,根根弧长公式l=可求得的长,其中n为圆心角,R为半径.解:R=40mm,n=110.的长= R= 4076.8mm.因此,管道的展直长度约为76.8mm.四、想一想投影片(C)在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的另一端拴着一只狗.(1)这只狗的最大活动区域有多大?(2)如果这只狗只能绕柱子转过n角,那么它的最大活动区域有多大?[师]请大家互相交流.[生](1)如图(1),这只狗的最大活动区域是圆的面积,即9;(2)如图(2),狗的活动区域是扇形,扇形是圆的一部分,360的圆心角对应的圆面积,1的圆心角对应圆面积的,即=,n的圆心角对应的`圆面积为n =.[师]请大家根据刚才的例题归纳总结扇形的面积公式.[生]如果圆的半径为R,则圆的面积为R2,1的圆心角对应的扇形面积为,n的圆心角对应的扇形面积为n .因此扇形面积的计算公式为S扇形= R2,其中R为扇形的半径,n为圆心角.五、弧长与扇形面积的关系[师]我们探讨了弧长和扇形面积的公式,在半径为R的圆中,n的圆心角所对的弧长的计算公式为l=R,n的圆心角的扇形面积公式为S扇形=R2,在这两个公式中,弧长和扇形面积都和圆心角n.半径R有关系,因此l和S之间也有一定的关系,你能猜得出吗?请大家互相交流.[生]∵l= R,S扇形= R2,R2= RR.S扇形= lR.六、扇形面积的应用投影片(D)扇形AOB的半径为12cm,AOB=120,求的长(结果精确到0.1cm)和扇形AOB的面积(结果精确到0.1cm2)分析:要求弧长和扇形面积,根据公式需要知道半径R和圆心角n 即可,本题中这些条件已经告诉了,因此这个问题就解决了.解:的长= 1225.1cm.S扇形= 122150.7cm2.因此,的长约为25.1cm,扇形AOB的面积约为150.7cm2.Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课学习了如下内容:1.探索弧长的计算公式l= R,并运用公式进行计算;2.探索扇形的面积公式S= R2,并运用公式进行计算;3.探索弧长l及扇形的面积S之间的关系,并能已知一方求另一方.Ⅴ.课后作业习题节选Ⅵ.活动与探究如图,两个同心圆被两条半径截得的的长为6 cm,的长为10 cm,又AC=12cm,求阴影部分ABDC的面积.分析:要求阴影部分的面积,需求扇形COD的面积与扇形AOB 的面积之差.根据扇形面积S=lR,l已知,则需要求两个半径OC与OA,因为OC=OA+AC,AC已知,所以只要能求出OA即可.解:设OA=R,OC=R+12,O=n,根据已知条件有:得.3(R+12)=5R,R=18.OC=18+12=30.S=S扇形COD-S扇形AOB= 1030- 18=96 cm2.所以阴影部分的面积为96 cm2.板书设计:略。
弧长和扇形的面积教学设计姜永娜教学目标知识与技能:1.会计算弧长及扇形的面积。
2.会计算圆锥的侧面积和全面积,并能用这些知识解决相关问题。
过程与方法:1.通过识图、阅读图形探索弧长、扇形及其组合图形面积的计算方法和解题规律。
2.在探究弧长公式和扇形面积公式的过程中,体会“从特殊到一般”的数学思想方法。
情感态度价值观:在合作交流中体验成功的快乐。
教学重难点重点:1.计算弧长和扇形面积;2.利用弧长和扇形面积公式进行计算。
难点:理解公式的推导过程教学媒体:多媒体教学过程设计一、复习引入已知⊙O半径为R,⊙O的面积S是多少?S=πR2我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积.为了更好研究这样的图形引出一个概念.扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
你能举例说出生活中的扇形吗?(比如扇子。
)问题1:请同学们观察下图,指出哪部分是扇形,并说出它是由哪条弧和哪两条半径构成?问题2:请同学们判断,在同圆或等圆中,是否具有相同圆心角的扇形面积也相等呢?学生同桌讨论,做出正确判断,老师予以补充说明。
结论:在同圆或等圆中,由于相等的圆心角所对的弧相等,所以具有相等圆心角的扇形,其面积也相等。
二、做一做认识了扇形,我们下面就来一起探究一下已知⊙O半径为R,如何求圆心角n°的扇形的面积1.教师引导学生迁移推导弧长公式的方法步骤:设置问题:圆的周长是多少?1°圆心角所对弧的长是多少?90°圆心角所对弧的长是多少?n°圆心角所对弧的长是多少?学生独立思考,给出答案。
(1)圆周长C=2πR;(2)1°圆心角所对弧长=;(3)90°圆心角所对弧长=2r901r 3602ππ⋅=;(4)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;n°圆心角所对弧长=.归纳结论:若设⊙O半径为R,n°圆心角所对弧长l,则(弧长公式)2.一起探究扇形面积(教师组织学生对比研究):(1)圆面积S=πR2;(2)圆心角为1°的扇形的面积=;(3)圆心角为1°的扇形的面积=2 1r 4π(4)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;(5)圆心角为n°的扇形的面积=.归纳结论:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则S扇形=(扇形面积公式)3.注意:(1)在应用扇形的面积公式S扇形=进行计算时,要注意公式中n的意义.n 表示1°圆心角的倍数,它是不带单位的;提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)S扇形= 12l R想一想:这个公式与什么公式类似?(小组合作研究)与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了.这样对比,帮助学生记忆公式.实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限.要让学生在理解的基础上记住公式.三、灵活应用例如图,⊙O的半径为10cm。
弧长与扇形的面积教案一、教学目标1. 理解弧长的概念和计算方法。
2. 掌握扇形面积的计算方法。
3. 能够应用弧长和扇形面积的知识解决实际问题。
二、教学内容1. 弧长的概念和计算方法。
2. 扇形面积的计算方法。
3. 弧长和扇形面积的应用。
三、教学过程1. 导入老师通过引入一道实际问题,如一个半径为10cm的圆的一条弧长为15cm,问这条弧长对应的圆心角是多少度,让学生思考并尝试解答。
2. 弧长的概念和计算方法(1)引导学生观察圆的弧形和其中一个弧长,进一步培养学生对弧的直观感受。
(2)让学生尝试用圆的半径和圆心角来计算弧长,通过实际测量验证计算结果的准确性。
(3)总结弧长的计算方法(弧长 = 半径×圆心角 / 360°),并让学生进行练习。
3. 扇形面积的计算方法(1)引导学生观察一个扇形和其对应的圆,进一步培养学生对扇形的直观感受。
(2)让学生尝试用圆的半径和圆心角来计算扇形的面积,通过实际测量验证计算结果的准确性。
(3)总结扇形面积的计算方法(扇形面积 = 1/2 ×半径×半径×圆心角 / 360°),并让学生进行练习。
4. 弧长和扇形面积的应用(1)导入一个实际问题:一个圆形花坛的周长为30米,花坛中心的喷泉水按每秒60毫升的速度喷出,问这个喷泉每分钟喷水多少升?(2)引导学生分析问题,并利用已学知识解答问题。
(3)通过解答问题,让学生认识到弧长和扇形面积在解决实际问题中的应用价值。
五、教学总结1. 弧长是圆的一部分长度,可以用圆的半径和圆心角来计算。
2. 扇形是圆的一部分面积,可以用圆的半径和圆心角来计算。
3. 弧长和扇形面积的计算方法是由圆的半径和圆心角决定的。
4. 弧长和扇形面积的知识在解决实际问题中有很大的应用价值。
六、教学延伸1. 可以引导学生查找更多弧长和扇形面积的实际应用例子,并进行讨论和分享。
2. 可以设计更多扩展题目和实践任务,让学生更加熟练运用弧长和扇形面积的知识。
教案:弧长和扇形面积教学目标:1. 理解弧长的概念及计算方法。
2. 掌握扇形面积的计算公式。
3. 能够运用弧长和扇形面积的知识解决实际问题。
教学重点:1. 弧长的计算。
2. 扇形面积的计算。
教学难点:1. 弧长的计算公式的应用。
2. 扇形面积的计算公式的应用。
教学准备:1. 课件或黑板。
2. 教学卡片。
3. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾圆的周长公式:C = 2πr。
2. 提问:如果我们知道圆的半径,如何计算圆的周长呢?二、新课:弧长(10分钟)1. 引入弧长的概念:在圆上,弧长是指连接圆上两点之间的部分的长度。
2. 解释弧长的计算方法:弧长= 圆心角/ 360°×2πr。
3. 示例:给定一个半径为5cm的圆,圆心角为90°,计算弧长。
三、练习:弧长的计算(10分钟)1. 学生独立完成练习题,老师巡回指导。
2. 选取部分学生的作业进行讲解和点评。
四、导入扇形面积的概念(5分钟)1. 引入扇形面积的概念:扇形面积是指圆心角所对应的圆弧与半径所围成的区域的面积。
2. 提问:扇形面积与圆的面积有何关系?五、新课:扇形面积的计算(10分钟)1. 解释扇形面积的计算公式:扇形面积= (圆心角/ 360°) ×πr²。
2. 示例:给定一个半径为5cm的圆,圆心角为90°,计算扇形面积。
3. 强调扇形面积与圆心角的关系:圆心角越大,扇形面积越大。
教学反思:本节课通过引入弧长和扇形面积的概念,让学生掌握了弧长和扇形面积的计算方法。
在教学过程中,通过示例和练习题的讲解,帮助学生理解和应用知识点。
在今后的教学中,可以结合实际问题,让学生更好地运用弧长和扇形面积的知识。
六、练习:弧长和扇形面积的综合应用(10分钟)1. 学生独立完成综合练习题,老师巡回指导。
2. 选取部分学生的作业进行讲解和点评。
七、课堂小结(5分钟)1. 回顾本节课所学内容:弧长的计算方法和扇形面积的计算方法。
《弧长和扇形面积(第一课时)》教案1.制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度教师引导同学们先观察思考一下:要这个弯形管道的展直长度包括哪些部分?进而求弧AB 长公式求解。
例2. 圆心, OA 教师引导学生观察共同总结出扇形的几何定义;(1)扇形的面积由哪些量决定?(2)如何求扇形的面积呢?学生通过前面弧长公式的学习,类比思考扇形面积的求法180n R l π=R 100°AOn °OB学生尝试独立解决以下问题:(1)半径为R的圆,面积是多少?(2)若设⊙O的半径为R,圆心角为n°的扇形面积为类比弧长公式的推导过程,得到扇形面积公式;教师对扇形面积公式进行解析,使学生更加清楚公式中涉及到的量。
例3. 如图,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积。
(精确到0.01m2)。
教师引导学生通过读题和识图,需要把文字语言和图形语言对应起来,排水管道的截面就是图中的圆.把已知条件转化成几何元素标在图上,进而分析出所求面积= S扇形OAB-S△OAB进而分别去求扇形和三角形的面积.教师引导学生求扇形和三角形时需要的量,如何得到?最终解决问题。
知能演练提升一、能力提升1.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为( )A.πB.1C.2D.2π32.如图,在扇形OAB 中,已知∠AOB=90°,OA=√2,过AB ⏜的中点C 作CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,则图中阴影部分的面积为( )A.π-1B.π2-1C.π-12D.π2−12⏜上一点,CD⊥OA,CE⊥3.如图,半径为10的扇形AOB中,∠AOB=90°,C为ABOB,垂足分别为D,E.若∠CDE为36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π4.如图,水平地面上有一面积为30π cm2的扇形OAB,半径OA=6 cm,且OA与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB与地面垂直为止,则点O 移动的距离为()A.20 cmB.24 cmC.10π cmD.30π cm5.某花园内有一块五边形的空地如图所示,为了美化环境,现计划在以五边形各顶点为圆心,2 m长为半径的扇形区域(阴影部分)内种上花草,那么种上花草的扇形区域总面积是()A.6π m2B.5π m2C.4π m2D.3π m26.如图,△ABC是正三角形,曲线CDE……叫做“正三角形的渐开线”,其中CD⏜,DE⏜,EF⏜……的圆心依次按A,B,C循环,它们依次相连接,若AB=1,则曲线CDEF 的长是.7.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长⏜的长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则EF为.(结果保留π)⏜是一段圆弧,AC,BD是线段,8.图中的粗线CD表示某条公路的一段,其中AmB⏜相切于点A,B,线段AB=180 m,∠ABD=150°.且AC,BD分别与圆弧AmB⏜的圆心O;(1)画出圆弧AmB(2)求A到B这段弧形公路的长.★9.如图,AB为☉O的直径,CD⊥AB,OF⊥AC,垂足分别为E,F.(1)请写出三条与BC有关的正确结论;(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.二、创新应用★10.图①是某学校存放学生自行车的车棚的示意图(尺寸如图),车棚顶部⏜所在是圆柱侧面的一部分,其展开图是矩形.图②是车棚顶部截面的示意图,AB圆的圆心为O.车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积.(不考虑接缝等因素,计算结果保留π)知能演练·提升 一、能力提升1.C 使用扇形的面积公式S=12lR 可求出其面积,即S=12×2×2=2. 2.B 3.A4.C 点O 移动的距离即扇形OAB 所对应的弧长,先运用扇形的面积公式S 扇形=nπR 2360求出扇形的圆心角n=300°,再由弧长公式l=nπR180,得l=10π cm .5.A6.4π 关键是确定圆心角和半径.因为△ABC 是边长为1的正三角形,所以CD⏜,DE ⏜,EF ⏜的圆心角都为120°,对应的半径分别为1,2,3. 因此CD ⏜=2π3,DE ⏜=4π3,EF ⏜=6π3=2π.所以曲线CDEF 的长是2π3+4π3+2π=4π. 7.π28.解 (1)如图,过点A 作AO ⊥AC ,过点B 作BO ⊥BD ,AO 与BO 相交于点O ,O 即为圆心.(2)因为AO ,BO 都是圆弧AmB ⏜ 的半径,O 是其所在圆的圆心, 所以∠OBA=∠OAB=150°-90°=60°. 所以△AOB 为等边三角形, 即AO=BO=AB=180 m . 所以AB⏜=60×π×180180=60π(m),即A 到B 这段弧形公路的长为60π m .9.解 (1)答案不唯一,只要合理均可.例如: ①BC=BD ;②OF ∥BC ; ③∠BCD=∠A ; ④BC 2=CE 2+BE 2; ⑤△ABC 是直角三角形;⑥△BCD 是等腰三角形.(2)连接OC (图略),则OC=OA=OB.∵∠D=30°,∴∠A=∠D=30°. ∴∠AOC=120°. ∵AB 为☉O 的直径, ∴∠ACB=90°.在Rt △ABC 中,BC=1,∴AB=2,AC=√3. ∵OF ⊥AC ,∴AF=CF. ∵OA=OB ,∴OF 是△ABC 的中位线. ∴OF=12BC=12.∴S △AOC =12AC ·OF=12×√3×12=√34,S 扇形AOC =13π·OA 2=π3.∴S 阴影=S 扇形AOC -S △AOC =π3−√34.二、创新应用10.分析 车棚的顶棚的展开图是矩形,顶棚的横截面是弓形,求出弓形的弧长,即得到了展开图的宽.解 连接OB ,过点O 作OE ⊥AB ,垂足为点E ,并延长交AB⏜于点F ,如图.由垂径定理,知E 是AB 的中点,F 是AB ⏜的中点,从而EF 是弓形的高. 故AE=12AB=2√3 m,EF=2 m . 设半径为R m, 则OE=(R-2)m .在Rt △AOE 中,由勾股定理, 得R 2=(R-2)2+(2√3)2. 解得R=4(m). 在Rt △AEO 中,AO=2OE ,故∠OAE=30°,∠AOE=60°,∠AOB=120°. 所以AB⏜的长为120×4π180=8π3(m). 即帆布的面积为8π3×60=160π(m 2).。