第五章 spss均值比较和T检验
- 格式:ppt
- 大小:1.61 MB
- 文档页数:47
第5章SPSS均值比较T检验和方差分析第5章主要介绍了SPSS软件中进行均值比较的方法,包括t检验和方差分析。
本文将详细介绍SPSS中进行均值比较的步骤,以及如何解读结果。
5.1t检验t检验是一种用于比较两个样本均值差异的统计方法。
在SPSS中,进行t检验的步骤如下:1.打开SPSS软件,并导入需要进行t检验的数据集。
2.选择“分析”菜单,在下拉菜单中选择“比较均值”选项,再选择“独立样本t检验”选项。
3.在弹出的对话框中,将需要比较的变量移动到“因子”框中,将“分组变量”移动到“因子”框中,并选择需要进行的假设检验类型。
4.点击“确定”按钮,等待计算结果。
5.在输出窗口中,可以查看计算结果,包括均值、标准差、样本量、t值和p值等。
通常,我们关注的是p值,如果p值小于0.05,则认为差异显著。
例如,我们想比较男性和女性的体重是否有显著差异。
我们将体重作为因变量,性别作为自变量,进行t检验。
在计算结果中,如果p值小于0.05,则可以认为男女性别对体重有显著影响。
5.2方差分析方差分析是一种用于比较三个或更多个样本均值是否存在差异的统计方法。
在SPSS中,进行方差分析的步骤如下:1.打开SPSS软件,并导入需要进行方差分析的数据集。
2.选择“分析”菜单,在下拉菜单中选择“比较均值”选项,再选择“单因素方差分析”选项。
3.在弹出的对话框中,将需要比较的变量移动到“因子”框中,将“分组变量”移动到“因子”框中,并选择需要进行的假设检验类型。
4.点击“确定”按钮,等待计算结果。
5.在输出窗口中,可以查看计算结果,包括均值、标准差、样本量、F值和p值等。
通常,我们关注的是p值,如果p值小于0.05,则认为差异显著。
例如,我们想比较不同药物对治疗效果的影响。
我们将药物作为因变量,治疗效果作为自变量,进行方差分析。
在计算结果中,如果p值小于0.05,则可以认为不同药物对治疗效果有显著影响。
通过以上步骤,我们可以在SPSS中进行均值比较、t检验和方差分析。
《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第5 章SPSS的参数检验1、某公司经理宣称他的雇员英语水平很高,如果按照英语六级考试的话,一般平均得分为75分。
现从雇员中随机选出11人参加考试,得分如下:80, 81, 72, 60, 78, 65, 56, 79,77,87, 76 请问该经理的宣称是否可信。
原假设:样本均值等于总体均值即u=u0=75步骤:生成spss 数据→分析→比较均值→单样本t 检验→相关设置→输出结果(Analyze->compare means->one-samples T test ;)采用单样本T 检验(原假设H0:u=u0=75, 总体均值与检验值之间不存在显著差异);单个样本统计量N 均值标准差均值的标准误成绩11 73.73 9.551 2.880单个样本检验检验值= 75差分的95% 置信区间t df Sig.( 双侧) 均值差值下限上限成绩-.442 10 .668 -1.273 -7.69 5.14分析:指定检验值:在test 后的框中输入检验值(填75),最后ok!分析:N=11 人的平均值(mean)为73.7,标准差(std.deviation)为9.55,均值标准误差(std error mean) 为2.87.t 统计量观测值为-4.22,t 统计量观测值的双尾概率p-值(sig.(2-tailed))为0.668,六七列是总体均值与原假设值差的95%的置信区间,为(-7.68,5.14), 由此采用双尾检验比较 a 和p。
T 统计量观测值的双尾概率p-值(sig.(2-tailed) )为0.668>a=0.05 所以不能拒绝原假设;且总体均值的95% 的置信区间为(67.31,80.14), 所以均值在67.31~80.14 内,75 包括在置信区间内,所以经理的话是可信的。
2、在某年级随机抽取35 名大学生,调查他们每周的上网时间情况,得到的数据如下(单位:小时):(1)请利用SPSS 对上表数据进行描述统计,并绘制相关的图形。