2019年名校中考模拟考试数学卷含答案
- 格式:doc
- 大小:1.20 MB
- 文档页数:9
2019年江苏省无锡市江阴中学中考数学模拟试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.1.﹣2的绝对值等于()A.﹣ B.C.﹣2 D.22.使有意义的x的取值范围是()A.x>﹣B.x>C.x≥D.x≥﹣3.右图是由4个相同的小正方体组成的几何体,其俯视图为()A.B.C.D.4.为丰富学生课余活动,某校开展校园艺术节十佳歌手比赛,共有18名同学入围,他们的A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.605.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<26.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.7.下列命题中,假命题是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径8.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.D.9.如图正方形ABCD的边长为2,点E、F、G、H分别在AD、AB、BC、CD上的点,且AE=BF=CG=DH,分别将△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,=y,则y关于x的函数图象大致为()得四边形MNKP,设AE=x,S四边形MNKPA.B.C.D.10.直线y=x+4分别与x轴、y轴相交于点M,N,边长为2的正方形OABC一个顶点O 在坐标系的原点,直线AN与MC相交于点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是()A.2﹣2 B.3﹣2C.D.1二、填空题(本大题共8小题,每小题2分,共16分,不需要写出解答过程,请把答案填写在答题卡的相应位置的横线上)11.因式分解:x3﹣4x=______.12.某外贸企业为参加2019年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为______.13.若x1,x2是方程x2+2x﹣3=0的两根,则x1+x2=______.14.如图,已知菱形ABCD的边长为5,对角线AC,BD相交于点O,BD=6,则菱形ABCD 的面积为______.15.如图,一个边长为4cm的等边三角形的高与ABC与⊙O直径相等,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为______.16.某商店服装销量较好,于是将一件原标价为1200元的服装加价200元销售仍畅销,在这基础上又涨了10%.现商家决定要回复原价,采用连续两次降价,每次降价的百分率相同的方法,则每次降价的百分率为______(精确到1%).17.两个完全重合的直角三角形Rt△ABC与Rt△DEF两直角边分别为3cm、4cm,点D放置在AB的中点,△DEF可以绕点D转动,当Rt△DEF旋转到一边与AB垂直时,两三角形重叠部分面积为______.18.如图,直线y=4﹣x交x轴、y轴于A、B两点,P是反比例函数y=(x>0)图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F,则AF•BE=______.三、解答题(本大题共10小题,共84分.请在答题卡题目下方空白处作答,解答时应写出文字说明、证明过程或演算步骤)19.计算(1)tan45°﹣(﹣2)2﹣|2﹣|(2)(2x﹣1)2+(x﹣2)(x+2)﹣4x(x﹣)20.(1)解方程:=2+(2)解不等式组::.21.如图,在▱ABCD中,E、F为对角线BD上的两点.(1)若AE⊥BD,CF⊥BD,证明BE=DF.(2)若AE=CF,能否说明BE=DF?若能,请说明理由;若不能,请画出反例.22.为了解江阴市七年级学生身体素质,从全市七年级学生中随机抽取部分学生进行了一次体育考试科目的测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试记录绘成如下两幅完全不同的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生数是______;(2)图1中∠n的度数是______.把图2条形统计图补充完成;(3)江阴市七年级共有9800名学生,如果全部参加这次体育科目测试,请估计不及格的人数.23.某市的育中考采取抽签决定考试项目,有甲、乙、丙三人分别擅长A:游泳;B:50米;C:1000米(假设就这三个项目研究).(1)求学生甲能抽到自己的喜欢的项目的概率;(2)如果甲乙丙三人在抽签时箱内只有个A、B、C不同项目的签,且各自抽签后将考签交给监考老师,求三人至少有一人抽到自己擅长项目的概率.24.“位似变化”是一种重要的几何变化,可以将图形放大或缩小,且与原图形相似.你能用位似变化解决下列问题吗?如图Rt△ABC中,∠C=90°,AC=12,BC=6,有矩形EFGH的一边EF在边AC上,点H 在斜边AC上,EF=2,HE=1.(1)请你用圆规和无刻度直尺在Rt△ABC内作一个最大的矩形且与矩形EFGH位似.(不要求写作法,但必须保留作图痕迹)(2)请证明你作图方法的正确性.(3)求最大矩形与矩形EFGH的面积之比.25.公司研究销售策略,如果销售10台A型和20台B型空气净化器的利润为4000元,销售20台A型和10台B型空气净化器的利润为3500元.(1)求每台A型空气净化器和B型空气净化器的销售利润;(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不超过A型空气净化器的2倍,设购进A型空气净化器x台,这100台空气净化器的销售总利润为y元.①求y关于x的函数关系式;②该公司购进A型、B型空气净化器各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型空气净化器出厂价下调m(0<m<100)元,且限定公司最多购进A型空气净化器70台,若公司保持同种空气净化器的售价不变,请你根据以上信息及(2)中条件,设计出使这100台空气净化器销售总利润最大的进货方案.26.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A 在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(﹣4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒4个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.27.△ABC中,AB=5,AC=4,BC=6.(1)如图1,若AD是∠BAC的平分线,DE∥AB,求CE的长与的比值;(2)如图2,将边AC折叠,使得AC在AB边上,折痕为AM,再将边MB折叠,使得MB′与MC′重合,折痕为MN,求AN的长.28.如图,二次函数y=ax2+bx+c的图象过A(6,0)、C(0,﹣3).且抛物线的对称轴为直线x=2,抛物线与x轴的另一个交点为B.(1)求抛物线的解析式;(2)若点F在第四象限的抛物线上,当tan∠FAC=时,求点F的坐标.(3)若点P在第四象限的抛物线,且满足△PAC和△PBC的面积相等.是否能在抛物线上找点Q,使得∠PAQ=∠CAO,求点Q的坐标.2019年江苏省无锡市江阴中学中考数学模拟试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.1.﹣2的绝对值等于()A.﹣ B.C.﹣2 D.2【考点】绝对值.【分析】根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.【解答】解:根据绝对值的性质,|﹣2|=2.故选D.2.使有意义的x的取值范围是()A.x>﹣B.x>C.x≥D.x≥﹣【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,3x﹣1≥0,解得,x≥,故选:C.3.右图是由4个相同的小正方体组成的几何体,其俯视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到从上往下两行正方形的个数依次为2,1,并且在左上方.故选C.4.为丰富学生课余活动,某校开展校园艺术节十佳歌手比赛,共有18名同学入围,他们的则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60【考点】众数;中位数.【分析】根据中位数和众数的定义解答.第9和第10个数的平均数就是中位数,9.60出现的次数最多.【解答】解:在这一组数据中9.60是出现次数最多的,故众数是9.60,而这组数据处于中间位置的那两个数是9.60和9.60,那么由中位数的定义可知,这组数据的中位数是9.60.故选B.5.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<2【考点】解一元一次不等式;一元一次方程的解.【分析】根据题意可得x>0,将x化成关于m的一元一次方程,然后根据x的取值范围即可求出m的取值范围.【解答】解:由mx﹣1=2x,移项、合并,得(m﹣2)x=1,∴x=.∵方程mx﹣1=2x的解为正实数,∴>0,解得m>2.故选C.6.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.7.下列命题中,假命题是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径【考点】命题与定理;直线的性质:两点确定一条直线;平行四边形的性质;等腰梯形的判定;切线的性质.【分析】根据直线的性质、平行四边形的性质、等腰梯形的性质和切线的性质判断各选项即可.【解答】解:A、经过两点有且只有一条直线,故本选项正确;B、平行四边形的对角线不一定相等,故本选项错误;C、两腰相等的梯形叫做等腰梯形,故本选项正确D、圆的切线垂直于经过切点的半径,故本选项正确.故选B.8.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.D.【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】一次函数当k大于0时,y值随x值的增大而增大,反比例函数系数k为负时,y 值随x值的增大而增大,对于二次函数根据其对称轴判断其在区间上的单调性.【解答】解:A、对于一次函数y=﹣x+1,k<0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;B、对于二次函数y=x2﹣1,当x>0时,y值随x值的增大而增大,当x<0时,y值随x值的增大而减小,故本选项错误;C、对于反比例函数,k>0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;D、对于反比例函数,k<0,函数的图象在每一个象限内,y值随x值的增大而增大,故本选项正确.故选D.9.如图正方形ABCD的边长为2,点E、F、G、H分别在AD、AB、BC、CD上的点,且AE=BF=CG=DH,分别将△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,=y,则y关于x的函数图象大致为()得四边形MNKP,设AE=x,S四边形MNKPA.B.C.D.【考点】动点问题的函数图象.【分析】根据图形得出y=S 正方形ABCD ﹣2(S △AEF +S △BGF +S △CGH +S △DEH ),根据面积公式求出y 关于x 的函数式,即可得出选项.【解答】解:∵AE=x ,∴y=S 正方形ABCD ﹣2(S △AEF +S △BGF +S △CGH +S △DEH )=2×2﹣2×[•x (2﹣x )+x (2﹣x )+x (2﹣x )+x (2﹣x )]=4x 2﹣8x +4=4(x ﹣1)2,∵0<x <2,∴0<y <4,∵是二次函数,开口向上,∴图象是抛物线,即选项A 、B 、C 错误;选项D 符合,故选D .10.直线y=x +4分别与x 轴、y 轴相交于点M ,N ,边长为2的正方形OABC 一个顶点O 在坐标系的原点,直线AN 与MC 相交于点P ,若正方形绕着点O 旋转一周,则点P 到点(0,2)长度的最小值是( )A .2﹣2B .3﹣2C .D .1【考点】一次函数图象与几何变换;一次函数图象上点的坐标特征;点、线、面、体.【分析】首先证明△MOC ≌△NOA ,推出∠MPN=90°,推出P 在以MN 为直径的圆上,所以当圆心G ,点P ,C (0,2)三点共线时,P 到C (0,2)的最小值.求出此时的PC 即可.【解答】解:在△MOC 和△NOA 中,,∴△MOC ≌△NOA ,∴∠CMO=∠ANO ,∵∠CMO +∠MCO=90°,∠MCO=∠NCP ,∴∠NCP +∠CNP=90°,∴∠MPN=90°∴MP ⊥NP∴P 在以MN 为直径的圆上,∵M (﹣4,0),N (0,4),∴圆心G为(﹣2,2),半径为2∴当圆心G,点P,C(0,2)三点共线时,P到C(0,2)的最小值,∵GN=GM,CN=CO=2,∴GC=OM=2,这个最小值为GP﹣GC=2﹣2.故选A.二、填空题(本大题共8小题,每小题2分,共16分,不需要写出解答过程,请把答案填写在答题卡的相应位置的横线上)11.因式分解:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出即可.【解答】解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).12.某外贸企业为参加2019年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为 1.05×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于105 000有6位,所以可以确定n=6﹣1=5.【解答】解:105 000=1.05×105.故答案为:1.05×105.13.若x1,x2是方程x2+2x﹣3=0的两根,则x1+x2=﹣2.【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系x1+x2=﹣直接代入计算即可.【解答】解:∵x1,x2是方程x2+2x﹣3=0的两根,∴x1+x2=﹣2;故答案为:﹣2.14.如图,已知菱形ABCD的边长为5,对角线AC,BD相交于点O,BD=6,则菱形ABCD 的面积为24.【考点】菱形的性质.【分析】根据菱形的对角线互相垂直且互相平分可得出对角线AC的长度,进而根据对角线乘积的一半可得出菱形的面积.【解答】解:由题意得:AO==4,∴AC=8,故可得菱形ABCD的面积为×8×6=24.故答案为:24.15.如图,一个边长为4cm的等边三角形的高与ABC与⊙O直径相等,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为3cm.【考点】切线的性质;等边三角形的性质.【分析】连接OC,并过点O作OF⊥CE于F,求出等边三角形的高即可得出圆的直径,继而得出OC的长度,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长【解答】解:连接OC,并过点O作OF⊥CE于F,∵△ABC为等边三角形,边长为4cm,∴△ABC的高为2cm,∴OC=cm,又∵∠ACB=60°,∴∠OCF=30°,在Rt△OFC中,可得FC=cm,即CE=2FC=3cm.故答案为:3cm.16.某商店服装销量较好,于是将一件原标价为1200元的服装加价200元销售仍畅销,在这基础上又涨了10%.现商家决定要回复原价,采用连续两次降价,每次降价的百分率相同的方法,则每次降价的百分率为 12% (精确到1%).【考点】一元二次方程的应用.【分析】设每次降价百分率为x ,根据:售价×(1﹣降价百分率)2=原价,列方程求解可得.【解答】解:设每次降价百分率为x ,根据题意,得:×(1+10%)(1﹣x )2=1200,解得:x 1≈1.88(舍),x 2≈0.12=12%,故答案为:12%.17.两个完全重合的直角三角形Rt △ABC 与Rt △DEF 两直角边分别为3cm 、4cm ,点D 放置在AB 的中点,△DEF 可以绕点D 转动,当Rt △DEF 旋转到一边与AB 垂直时,两三角形重叠部分面积为 、、 .【考点】旋转的性质. 【分析】分三种情况讨论:①如图1,当DF ⊥AB 时,重叠部分面积为梯形面积,求出MC 、DH 和CH 代入面积公式计算即可;②如图2,当DE ⊥AB 时,重叠部分面积为△DMN 的面积,求出MN 和DG 的长; ③如图3,当EF ⊥AB 时,重叠部分面积为△ADH 的面积,求出AD 和GH 的长.【解答】解:分三种情况:①如图1,当DF ⊥AB 时,则DE ⊥AC∴DE ∥CB则DE=BC=2,CH=AC=∵∠B=∠B ,∠BDM=∠BCA=90°∴△BDM ∽△BCA∴=∴=∴BM=∴CM=BC ﹣BM=4﹣=∴S 重叠部分=S 梯形CHDM =×(+2)×=②如图2,当DE ⊥AB 时,则EF ∥AB ,∴∠F=∠FDB ,过D 作DG ⊥BC ,垂足为G ,则AC ∥DG ,∵D 是BC 的中点,∴G 是BC 的中点,∴DG=AC=,BG=CG=2,∵∠F=∠B=∠FDB ,∴BN=ND ,设DN=x ,则BN=DN=x ,∴(2﹣x )2+=x 2,x=,∴BN=,由①得BM=,∴MN=BM ﹣BN=﹣=,∴S 重叠部分=S △DMN =×MN ×DG=××=; ③如图3,当EF ⊥AB 时,过H 作HG ⊥AB ,则HG ∥EF ,∵△ABC ≌△DFE ,∴∠FDE=∠CAB ,∴AH=DH ,∴DG=AG=AB=,又∵,∴=,GH=,∴S 重叠部分=S △ADH =×AD ×GH=××=;综上所述:重叠部分的面积为:、、;故答案为:、、.18.如图,直线y=4﹣x交x轴、y轴于A、B两点,P是反比例函数y=(x>0)图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F,则AF•BE=4.【考点】反比例函数与一次函数的交点问题.【分析】过点E作EC⊥OB于C,过点F作FD⊥OA于D,然后由直线y=4﹣x交x轴、y 轴于A、B两点,求得点A与B的坐标,则可得OA=OB,即可得△AOB,△BCE,△ADF是等腰直角三角形,则可得AF•BE=CE•DF=2CE•DF,又由四边形CEPN与MDFP 是矩形,可得CE=PN,DF=PM,根据反比例函数的性质即可求得答案.【解答】解:过点E作EC⊥OB于C,过点F作FD⊥OA于D,∵直线y=4﹣x交x轴、y轴于A、B两点,∴A(4,0),B(0,4),∴OA=OB,∴∠ABO=∠BAO=45°,∴BC=CE,AD=DF,∵PM⊥OA,PN⊥OB,∴四边形CEPN与MDFP是矩形,∴CE=PN,DF=PM,∵P是反比例函数图象上的一点,∴PN•PM=2,∴CE•DF=2,在Rt△BCE中,BE==CE,在Rt△ADF中,AF==DF,∴AF•BE=CE•DF=2CE•DF=4.故答案为:4.三、解答题(本大题共10小题,共84分.请在答题卡题目下方空白处作答,解答时应写出文字说明、证明过程或演算步骤)19.计算(1)tan45°﹣(﹣2)2﹣|2﹣|(2)(2x﹣1)2+(x﹣2)(x+2)﹣4x(x﹣)【考点】整式的混合运算;实数的运算;特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值、幂的乘方、绝对值可以解答本题;(2)根据完全平方公式、平方差公式、单项式乘以多项式可以解答本题.【解答】解:(1)tan45°﹣(﹣2)2﹣|2﹣|=1﹣4﹣(2﹣)=1﹣4﹣2+=﹣5+;(2)(2x﹣1)2+(x﹣2)(x+2)﹣4x(x﹣)=4x2﹣4x+1+x2﹣4﹣4x2+2x=x2﹣2x﹣3.20.(1)解方程:=2+(2)解不等式组::.【考点】解分式方程;解二元一次方程组.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集.【解答】解:(1)去分母得:1=2x﹣6﹣x,解得:x=7,经检验x=7是分式方程的解;(2),由①得:x≥1,由②得:x<4,则不等式组的解集为1≤x<4.21.如图,在▱ABCD中,E、F为对角线BD上的两点.(1)若AE⊥BD,CF⊥BD,证明BE=DF.(2)若AE=CF,能否说明BE=DF?若能,请说明理由;若不能,请画出反例.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)证明△AEB≌△CFD,即可得出结论;(2)画出图形说明即可.【解答】解:(1)∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD,在△AEB和△CFD中,,∴△AEB≌△CFD(AAS),∴BE=DF.(2)答:不能.反例:.22.为了解江阴市七年级学生身体素质,从全市七年级学生中随机抽取部分学生进行了一次体育考试科目的测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试记录绘成如下两幅完全不同的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生数是40;(2)图1中∠n的度数是144°.把图2条形统计图补充完成;(3)江阴市七年级共有9800名学生,如果全部参加这次体育科目测试,请估计不及格的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B级的有14人,所占的百分比是35%,据此即可求得测试的总人数;(2)利用360°乘以对应的百分比求得所在扇形的圆心角的度数;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)本次抽样测试的学生数是:14÷35%=40(人),故答案是40;(2)∠n=360×=144°,C即的人数是:40×20%=8(人),,故答案是:144°;(3)估计不及格的人数是:9800×=490(人),答:估计不及格的人数是490人.23.某市的育中考采取抽签决定考试项目,有甲、乙、丙三人分别擅长A:游泳;B:50米;C:1000米(假设就这三个项目研究).(1)求学生甲能抽到自己的喜欢的项目的概率;(2)如果甲乙丙三人在抽签时箱内只有个A、B、C不同项目的签,且各自抽签后将考签交给监考老师,求三人至少有一人抽到自己擅长项目的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据概率的定义即可解决.(2)此题需要三步完成;因为有三名学生选择餐厅,可以看做需三次完成的事件,所以需要采用树状图法.【解答】解:(1)∵只有A、B、C三个项目,∴学生甲能抽到自己的喜欢的项目A的概率=.(2)画树状图得,所以三人至少有一人抽到自己擅长项目的概率=.24.“位似变化”是一种重要的几何变化,可以将图形放大或缩小,且与原图形相似.你能用位似变化解决下列问题吗?如图Rt△ABC中,∠C=90°,AC=12,BC=6,有矩形EFGH的一边EF在边AC上,点H 在斜边AC上,EF=2,HE=1.(1)请你用圆规和无刻度直尺在Rt△ABC内作一个最大的矩形且与矩形EFGH位似.(不要求写作法,但必须保留作图痕迹)(2)请证明你作图方法的正确性.(3)求最大矩形与矩形EFGH的面积之比.【考点】作图-位似变换;矩形的性质.【分析】(1)作出△ABC的中位线MN,MD即可解决问题.(2)只要证明矩形的两边成比例即可.(3)根据矩形的面积公式求出比值即可.【解答】解:(1)①作AC的垂直平分线,TK,交AB于M,交AC于N,②过点M作MD⊥BC垂足为D,四边形MNCD就是所求.(2)∵MN⊥AC,MD⊥BC,∴∠C=∠MNC=∠CDM=90°,∴四边形MNCD是矩形,∵AN=NC,MN∥BC,∴AM=MB,∵MD∥AC,∴CD=DB,∴MD=AC=6,MN=BC=3,∴MD:CD=2,EF:HE=2,∴=,∴矩形EFGH与矩形MNCD是位似图形.(3)==9.25.公司研究销售策略,如果销售10台A型和20台B型空气净化器的利润为4000元,销售20台A型和10台B型空气净化器的利润为3500元.(1)求每台A型空气净化器和B型空气净化器的销售利润;(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不超过A型空气净化器的2倍,设购进A型空气净化器x台,这100台空气净化器的销售总利润为y元.①求y关于x的函数关系式;②该公司购进A型、B型空气净化器各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型空气净化器出厂价下调m(0<m<100)元,且限定公司最多购进A型空气净化器70台,若公司保持同种空气净化器的售价不变,请你根据以上信息及(2)中条件,设计出使这100台空气净化器销售总利润最大的进货方案.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设每台A型空气净化器的销售利润为a元,每台B型空气净化器的销售利润为b元,根据给定条件“销售10台A型和20台B型空气净化器的利润为4000元,销售20台A型和10台B型空气净化器的利润为3500元”可列出关于a、b的二元一次方程组,解方程组即可得出结论;(2)①根据购进A型空气净化器的台数,找出购进B型空气净化器的台数,根据A、B间的关系可得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再由销售利润=A型的利润+B型的利润,即可得出y关于x的函数关系式;②结合一次函数的性质以及x 的取值范围即可解决最值问题;(3)结合(2)找出y关于x的函数关系式,利用一次函数的性质分m﹣50<0、m﹣50=0和m﹣50>0来解决最值问题.【解答】解:(1)设每台A型空气净化器的销售利润为a元,每台B型空气净化器的销售利润为b元,依题意得:,解得:.答:每台A型空气净化器的销售利润为100元,每台B型空气净化器的销售利润为150元.(2)①设购进A型空气净化器x台,则购进B型空气净化器台,由已知得:100﹣x≤2x,解得:x≥,∴x≥34.∴y=100x+150=﹣50x+15000(x≥34,且x为正整数).②∵y=﹣50x+15000中,k=﹣50<0,∴y随x的增大而减小,∴当x=34时,y取最大值,此时100﹣x=66.故购进34台A型空气净化器和66台B型空气净化器的销售利润最大.(3)由已知得:y=x+150=(m﹣50)x+15000,当m<50时,m﹣50<0,则购进34台A型空气净化器和66台B型空气净化器的销售利润最大;当m=50时,m﹣50=0,则A、B两种空气净化器随意搭配(34≤A型号空气净化器数≤70),销售利润一样多;当m>50时,m﹣50>0,则购进70台A型空气净化器和30台B型空气净化器的销售利润最大.26.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A 在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(﹣4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒4个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【考点】一次函数综合题.【分析】(1)由C(0,8),D(﹣4,0),可求得OC,OD的长,然后设OB=a,则BC=8﹣a,在Rt△BOD中,由勾股定理可得方程:(8﹣a)2=a2+42,解此方程即可求得B的坐标,然后由三角函数的求得点A的坐标,再利用待定系数法求得直线AB的解析式;(2)在Rt△AOB中,由勾股定理可求得AB的长,继而求得∠BAO的正切与余弦,由PR ∥AC与折叠的性质,易证得RQ=AR,则可求得d与t的函数关系式;(3)首先过点分别作NT⊥RQ于T,NS⊥EF于S,易证得四边形NTOS是正方形,然后分别从点N在第二象限与点N在第一象限去分析求解即可求得答案.【解答】解:(1)∵C(0,8),D(﹣4,0),∴OC=8,OD=4,设OB=a,则BC=8﹣a,由折叠的性质可得:BD=BC=8﹣a,在Rt△BOD中,∠BOD=90°,DB2=OB2+OD2,则(8﹣a)2=a2+42,解得:a=3,则OB=3,则B(0,3),tan∠ODB==,由折叠的性质得:∠ADB=∠ACB,则tan∠ACB=tan∠ODB=,在Rt△AOC中,∠AOC=90°,tan∠ACB==,则OA=6,则A(6,0),设直线AB的解析式为:y=kx+b,则,解得:,故直线AB的解析式为:y=﹣x+3;(2)在Rt△AOB中,∠AOB=90°,OB=3,OA=6,则AB==3,tan∠BAO==,cos∠BAO==,在Rt△PQA中,∠APQ=90°,AP=4t,则AQ==10t,∵PR∥AC,∴∠APR=∠CAB,由折叠的性质得:∠BAO=∠CAB,∴∠BAO=∠APR,∴PR=AR,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR,∴RP=RQ,∴RQ=AR,∴QR=AQ=5t,即d=5t;(3)过点分别作NT⊥RQ于T,NS⊥EF于S,∵EF=QR,∴NS=NT,∴四边形NTOS是正方形,则TQ=TR=QR=t,∴NT=AT=(AQ﹣TQ)=(10t﹣t)=t,分两种情况,若点N在第二象限,则设N(n,﹣n),点N在直线y=﹣x+3上,则﹣n=﹣n+3,解得:n=﹣6,故N(﹣6,6),NT=6,即t=6,解得:t=;若点N在第一象限,设N(N,N),可得:n=﹣n+3,解得:n=2,故N(2,2),NT=2,即t=2,解得:t=.故当t=或t=时,QR=EF,N(﹣6,6)或(2,2).27.△ABC中,AB=5,AC=4,BC=6.(1)如图1,若AD是∠BAC的平分线,DE∥AB,求CE的长与的比值;(2)如图2,将边AC折叠,使得AC在AB边上,折痕为AM,再将边MB折叠,使得MB′与MC′重合,折痕为MN,求AN的长.【考点】翻折变换(折叠问题);平行线分线段成比例;相似三角形的判定与性质.【分析】(1)先判定三角形ADE是等腰三角形,再根据平行线分线段成比例定理,求得CE 的长;(2)先根据两角对应相等,判定△ABC∽△NB′C′,再根据相似三角形的对应边成比例,求得NC′与B′N的数量关系,最后结合BC′的长为1,求得NC′的长,进而得到AN的长度.【解答】解:(1)如图1,∵AD是∠BAC的平分线,DE∥AB,∴∠EAD=∠BAD=∠EDA,∴ED=EA,即三角形ADE是等腰三角形,。
2019届四川省成都市中考模拟试卷(四)数学一.选择题(共10小题,满分30分)1.(3 分)实数a 在数轴上对应点的位置如图所示,把a,﹣a,a 按照从小到大的顺序排列,2正确的是()A.﹣a<a<a B.a<﹣a<a C.﹣a<a <a D.a<a <﹣a22222.一个正常人的心跳平均每分钟70 次,一天大约跳的次数用科学记数法表示这个结果是()A.1.008×10 B.100.8×10 C.5.04×10D.504×1025343.(3 分)如图,在下列四个几何体中,从正面、左面、上面看不完全相同的是()A.①②B.②③C.①④D.②④4.(3 分)在平面直角坐标系中,P 点关于原点的对称点为P (﹣3,﹣),P 点关于x 轴的1对称点为P (a,b),则=()2A.﹣2 B.2 C.4 D.﹣45.(3 分)下列各式计算正确的是()A.(﹣3x )=9x B.(a﹣b)=a ﹣b C.a a=a D.x +x =x3262223262246.(3 分)如图,AD⊥CD,AE⊥BE,垂足分别为D,E,且AB=AC,AD=AE.则下列结论①△ABE≌△ACD②AM=AN:③△ABN≌△ACM;④BO=EO.其中正确的有()A.4 个B.3 个C.2 个D.1 个7.(3 分)某学校七年级1 班统计了全班同学在1~8 月份的课外阅读数量(单位:本),绘制了折线统计图,下列说法正确的是()A.极差是47 B.中位数是58C.众数是42 D.极差大于平均数8.(3 分)解分式方程+=3 时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3 D.2﹣(x+2)=3(x ﹣1)9.(3 分)如图,在平行四边形ABCD 中,BD⊥AD,以BD 为直径作圆,交于AB 于E,交CD 于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A.B.πC.30 ﹣12πD.π10.(3 分)已知y 关于x 的函数表达式是y=ax ﹣2x﹣a,下列结论不正确的是()2A.若a=1,函数的最小值是﹣2B.若a=﹣1,当x≤﹣1 时,y 随x 的增大而增大C.不论a 为何值时,函数图象与x 轴都有两个交点D.不论a 为何值时,函数图象一定经过点(1,﹣2)和(﹣1,2)二.填空题(共4小题,满分16分,每小题4分)11.(4分)一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大内角可能是.12.(4分)袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有13.(4分)若,则=.个.14.(4分)已知,在△ABC中,∠A>∠B,分别以点A,C为圆心,大于AC长为半径画弧,两弧交于点P,点Q,作直线PQ交AB于点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧交于点M,点N,作直线MN交BC于点E,若△CDE是等边三角形,则∠A=.三.填空题(共5小题,满分20分,每小题4分)15.(4分)分解因式:16m﹣4=.216.(4分)如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为.17.(4分)世界著名的莱布尼兹三角形如图所示,其排在第8行从左边数第3个位置上的数是.18.(4分)如图,在菱形纸片ABCD中,AB=3,∠A=60°,将菱形纸片翻折,使点A落在CD 的中点E处,折痕为FG,点F,G分别在边AB,AD上,则tan∠EFG的值为.19.(4分)一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣1,m),B(n,﹣1)两点,则使kx+b的x的取值范围是.四.解答题(共6小题,满分54分)20.(12分)(1)计算:(﹣2)﹣+(+1)﹣4cos60°;22(2)化简:÷(1﹣)21.(6分)已知关于x的方程(x﹣1)(x﹣4)=k,k是实数.2(1)求证:方程有两个不相等的实数根:(2)当k的值取时,方程有整数解.(直接写出3个k的值)22.(8分)某校为了解八年级500名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组:A组:37.5~42.5,B组:42.5~47.5,C组:47.5~52.5,D组:52.5~57.5,E组:57.5~62.5,并依据统计数据绘制了如下两个不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是(2)抽取的学生体重中位数落在;在扇形统计图中D组的圆心角是度.组;(3)请你估计该校八年级体重超过52kg的学生大约有多少名?(4)取每个小组的组中值作为本组学生的平均体重(A组的组中值为估计该校八年级500名学生的平均体重.=40),请你23.(8分)如图,在一笔直的沿湖道路上有A、B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏东15°的方向,AB=4km.(1)求观光岛屿C与码头A之间的距离(即AC的长);(2)游客小明准备从观光岛屿C乘船沿甜回到码头A或沿CB回到码头B,若开往码头A、B的游船速度相同,设开往码头A、B所用的时间分别是t、t,求的值.(结果保留根号)1224.(10分)如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB ═,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;(3)求S△OEB.25.(10分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.五.解答题(共3小题,满分30分)26.(8分)如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:(1)乙车的速度是千米/时,乙车行驶的时间t=小时;(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;(3)直接写出甲车出发多长时间两车相距80千米.27.(10分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC 的下方时,若AB=2,CE=2,求线段AE的长.28.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A 和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A O B,点A、O、111B的对应点分别是点A、O、B.若△A O B的两个顶点恰好落在抛物线上,请直接写出点111111A的横坐标.12019年四川省成都市中考数学模拟试卷(四)参考答案与试题解析一.选择题(共10小题,满分27分)1.(3分)实数a在数轴上对应点的位置如图所示,把a,﹣a,a按照从小到大的顺序排列,2正确的是()A.﹣a<a<a B.a<﹣a<a C.﹣a<a<a D.a<a<﹣a2222【解答】解:由数轴可得:﹣1<a<0,则﹣a>0,则a<a<﹣a,2故选:D.2.一个正常人的心跳平均每分钟70次,一天大约跳的次数用科学记数法表示这个结果是()A.1.008×10B.100.8×10C.5.04×10D.504×102534【解答】解:∵一个正常人的平均心跳速率约为每分钟70次,∴一天24小时大约跳:24×60×70=10080=1.008×10(次).5故选:A.3.(3分)如图,在下列四个几何体中,从正面、左面、上面看不完全相同的是()A.①②B.②③C.①④D.②④【解答】解:球的三视图均为圆、正方体的三视图均为正方形,而圆柱体和圆锥的三视图不完全相同,故选:B.4.(3 分)在平面直角坐标系中,P 点关于原点的对称点为P (﹣3,﹣),P 点关于x 轴的1对称点为P (a,b),则=()2A.﹣2 B.2 C.4 D.﹣4【解答】解:∵P 点关于原点的对称点为P (﹣3,﹣),1∴P(3,),∵P 点关于x 轴的对称点为P (a,b),2∴P (3,﹣),2∴==﹣2.故选:A.5.(3 分)下列各式计算正确的是()A.(﹣3x )=9x B.(a﹣b)=a ﹣b C.a •a=a D.x +x =x326222326224【解答】解:A、(﹣3x )=9x ,正确;326B、(a﹣b)=a ﹣2ab+b ,错误;222C、a •a=a ,错误;325D、x +x =2x ,错误;222故选:A.6.(3 分)如图,AD⊥CD,AE⊥BE,垂足分别为D,E,且AB=AC,AD=AE.则下列结论①△ABE≌△ACD②AM=AN:③△ABN≌△ACM;④BO=EO.其中正确的有()A.4 个B.3 个C.2 个D.1 个【解答】解:∵AD⊥CD,AE⊥BE,∴∠D=∠E=90°,由得出Rt△ADC≌Rt△ABE,故①正确;∴∠B=∠C,由得出△ABN≌△ACM,故③正确,∴AN=AM,故②正确;但不能得出BO=EO,故选:B.7.(3 分)某学校七年级1 班统计了全班同学在1~8 月份的课外阅读数量(单位:本),绘制了折线统计图,下列说法正确的是()A.极差是47 B.中位数是58C.众数是42 D .极差大于平均数【解答】解:A、极差=83﹣28=55≠47,错误;B、中位数是(58+58)÷2=58 ,正确;C、众数是58,错误;D、平均数=,错误;故选:B.8.(3分)解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3D.2﹣(x+2)=3(x ﹣1)【解答】解:方程变形得:﹣=3,去分母得:2﹣(x+2)=3(x﹣1),故选:D.9.(3分)如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD 于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A.B.π C.30﹣12π D.π【解答】解:连接OE,OF.∵BD=12,AD:AB=1:2,∴AD=4,AB=8,∠ABD=30°,∴S△ABD==24,S=扇形=6π,S△OEB==9,∵两个阴影的面积相等,∴阴影面积=2×(24﹣6π﹣9)=30﹣12π.故选:C.10.(3分)已知y关于x的函数表达式是y=ax﹣2x﹣a,下列结论不正确的是()2A.若a=1,函数的最小值是﹣2B.若a=﹣1,当 x≤﹣1时,y随x的增大而增大C.不论a为何值时,函数图象与x轴都有两个交点D.不论a为何值时,函数图象一定经过点(1,﹣2)和(﹣1,2)【解答】解:∵y=ax﹣2x﹣a,2∴当a=1时,y=x﹣2x﹣1=(x﹣1)﹣2,则当x=1时,函数取得最小值,此时y=﹣2,故选项22A正确,当a=﹣1时,该函数图象开口向下,对称轴是直线x=﹣==﹣1,则当x≤﹣1时,y随x 的增大而增大,故选项B正确,当a=0时,y=﹣2x,此时函数与x轴有一个交点,故选项C错误,当x=1时,y=a×1﹣2×1﹣a=﹣2,当x=﹣1时,y=a×(﹣1)﹣2×(﹣1)﹣a=2,故选项22D正确,故选:C.二.填空题(共4小题,满分16分,每小题4分)11.(4分)一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大内角可能是88°,90°,99°,108°,116°.【解答】解:如图①所示,当∠BAC=48°时,那么它的最大内角是90°当∠ACB=48°时,有以下4种情况,故答案为:88°,90°,99°,108°,116°12.(4分)袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有2个.【解答】解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.13.(4分)若,则=.【解答】解:∵,∴3x+3y=5y﹣5x,∴3x+5x=5y﹣3y,∴8x=2y,∴=.故答案为:.14.(4分)已知,在△ABC中,∠A>∠B,分别以点A,C为圆心,大于AC长为半径画弧,两弧交于点P,点Q,作直线PQ交AB于点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧交于点M,点N,作直线MN交BC于点E,若△CDE是等边三角形,则∠A=45°.【解答】解:如图,由作法得PQ垂直平分AC,MN垂直平分BD,∴DA=DC,EB=ED,∴∠A=∠DCA,∠EDB=∠B,∵△CDE为等边三角形,∴∠CDE=∠DEC=60°,而∠DEC=∠EDB+∠B,∴∠EDB=×60°=30°,∴∠CDB=90°,∴△ACD为等腰直角三角形,∴∠A=45°.故答案为45°.三.填空题(共5小题,满分20分,每小题4分)15.(4分)分解因式:16m﹣4=4(2m+1)(2m﹣1).2【解答】解:原式=4(4m﹣1)=4(2m+1)(2m﹣1),2故答案为:4(2m+1)(2m﹣1)16.(4分)如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为.【解答】解:根据题意,AB=AE+BE=13,222∴S ABCD=13,正方形∵△ABE≌△BCF,∴AE=BF=3,∵BE=2,∴EF=1,∴S EFGH=1,正方形,故飞镖扎在小正方形内的概率为.故答案为.17.(4分)世界著名的莱布尼兹三角形如图所示,其排在第8行从左边数第3个位置上的数是.【解答】解:∵第8行最后一个数是,第7行最后一个数是,第6行最后一个数是,∴第7行倒数第二个数是﹣=,第8行倒数第二个数是﹣=,∴第8行倒数第三个数是﹣=故答案是:.,18.(4分)如图,在菱形纸片ABCD中,AB=3,∠A=60°,将菱形纸片翻折,使点A落在CD 的中点E处,折痕为FG,点F,G分别在边AB,AD上,则tan∠EFG的值为.【解答】解:如图,连接AE交GF于O,连接BE,BD,则△BCD为等边三角形,∵E是CD的中点,∴BE⊥CD,∴∠EBF=∠BEC=90°,Rt△BCE中,CE=cos60°×3=1.5,BE=sin60°×3=∴Rt△ABE中,AE=,,由折叠可得,AE⊥GF,EO=AE=,设AF=x=EF,则BF=3﹣x,∵Rt△BEF中,BF+BE=EF,222∴(3﹣x)+()=x,222解得x=,即EF=,∴Rt△EOF中,OF==,∴tan∠EFG==故答案为:..19.(4分)一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣1,m),B(n,﹣1)两点,则使kx+b的x的取值范围是x<﹣1或0<x<2.【解答】解:把A(﹣1,m),B(n,﹣1)分别代入y=,得﹣m=﹣2,﹣n=﹣2,解得m=2,n=2,所以A点坐标为(﹣1,2),B点坐标为(2,﹣1),把A(﹣1,2),B(2,﹣1)代入y=kx+b得,解得,所以这个一次函数的表达式为y=﹣x+1,函数图象如图所示:根据图象可知,使kx+b的x的取值范围是x<﹣1或0<x<2.四.解答题(共6小题,满分54分)20.(12分)(1)计算:(﹣2)﹣+(+1)﹣4cos60°;22(2)化简:÷(1﹣)【解答】解:(1)原式=4﹣2+2+2+1﹣4×=7﹣2=5;(2)原式=÷==.21.(6分)已知关于x的方程(x﹣1)(x﹣4)=k,k是实数.2(1)求证:方程有两个不相等的实数根:(2)当k的值取﹣2、0、2时,方程有整数解.(直接写出3个k的值)【解答】(1)证明:原方程可变形为x﹣5x+4﹣k=0.22∵△=(﹣5)﹣4×1×(4﹣k)=4k+9>0,222∴不论k为任何实数,方程总有两个不相等的实数根;(2)解:原方程可化为x﹣5x+4﹣k=0.22∵方程有整数解,∴x=为整数,∴k取0,2,﹣2时,方程有整数解.22.(8分)某校为了解八年级500名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组:A组:37.5~42.5,B组:42.5~47.5,C组:47.5~52.5,D组:52.5~57.5,E组:57.5~62.5,并依据统计数据绘制了如下两个不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50;在扇形统计图中D组的圆心角是72度.(2)抽取的学生体重中位数落在C组;(3)请你估计该校八年级体重超过52kg的学生大约有多少名?(4)取每个小组的组中值作为本组学生的平均体重(A组的组中值为估计该校八年级500名学生的平均体重.=40),请你【解答】解:(1)16÷32%=50,360°×=72°,故答案为:50,72;(2)B组的人数为50﹣4﹣16﹣10﹣8=12,4+12+16=32>25,∴抽取的学生体重中位数落在C组;故答案为:C.(3)由频数分布直方图可得,D,E两组学生的体重超过52kg,∴500×=180,即该校八年级体重超过52kg的学生大约有180名;(4)A、B、C、D、E五组的组中值分别为40,45,50,55,60,∴抽取的50名学生的平均体重为(40×4+45×12+50×16+55×10+60×8)=50.6(kg),∴该校八年级500名学生的平均体重为50.6kg.23.(8分)如图,在一笔直的沿湖道路上有A、B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏东15°的方向,AB=4km.(1)求观光岛屿C与码头A之间的距离(即AC的长);(2)游客小明准备从观光岛屿C乘船沿甜回到码头A或沿CB回到码头B,若开往码头A、B的游船速度相同,设开往码头A、B所用的时间分别是t、t,求的值.(结果保留根号)12【解答】解:(1)如图,过点B作BD⊥AC于点D.根据题意得∠CAB=30°,∠ABC=105°,∵BD⊥AC,∴∠ADB=90°,∴∠ABD=60°,∴∠CBD=45°,在Rt△ABD中,∠CAB=30°,AB=4km,∴BD=ABsin30°=2km,AD=ABcos30°=2km,在Rt△BCD中,∠CBD=45°,∴CD=BDtan45°=2km,AC=AD+CD=(2+2)km;(2)在Rt△BCD中,∠CBD=45°,∴BC=BD=2km,∵速度相同,∴===.24.(10分)如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB ═,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;(3)求S△OEB.【解答】解:(1)∵A点的坐标为(a,6),AB⊥x轴,∴AB=6,∵cos∠OAB═=,∴,∴OA=10,由勾股定理得:OB=8,∴A(8,6),∴D(8,),∵点D在反比例函数的图象上,∴k=8×=12,∴反比例函数的解析式为:y=;(2)设直线OA的解析式为:y=bx,∵A(8,6),∴8b=6,b=,∴直线OA的解析式为:y=x,则,x=±4,∴E(﹣4,﹣3),设直线BE的解式为:y=mx+n,把B(8,0),E(﹣4,﹣3)代入得:,解得:,∴直线BE的解式为:y=x﹣2;(3)S△OEB=OB|y|=×8×3=12.E25.(10分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.【解答】解:(1)∵OD⊥AC,∴=,∠AFO=90°,又∵AC=BD,∴=,即+=+,∴=,∴==,∴∠AOD=∠DOC=∠BOC=60°,∵AB=2,∴AO=BO=1,∴AF=AOsin∠AOF=1×=,则AC=2AF=;(2)如图1,连接BC,∵AB为直径,OD⊥AC,∴∠AFO=∠C=90°,∴OD∥BC,∴∠D=∠EBC,∵DE=BE、∠DEF=∠BEC,∴△DEF≌△BEC(ASA),∴BC=DF、EC=EF,又∵AO=OB,∴OF是△ABC的中位线,设OF=t,则BC=DF=2t,∵DF=DO﹣OF=1﹣t,∴1﹣t=2t,解得:t=,则DF=BC=、AC===,∴EF=FC=AC=,∵OB=OD,∴∠ABD=∠D,则cot∠ABD=cot∠D==(3)如图2,=;∵BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,∴∠BOC=、∠AOD=∠COD==180,,则+2×解得:n=4,∴∠BOC=90°、∠AOD=∠COD=45°,∴BC=AC=,∵∠AFO=90°,∴OF=AOcos∠AOF=,则DF=OD﹣OF=1﹣,∴S△ACD=ACDF=××(1﹣)=.五.解答题(共3小题,满分30分)26.(8分)如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事按原路原速返回A地.乙车从B 地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:(1)乙车的速度是80千米/时,乙车行驶的时间t=6小时;(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;(3)直接写出甲车出发多长时间两车相距80千米.【解答】解:(1)∵乙车比甲车先出发1小时,由图象可知乙行驶了80千米,∴乙车速度为:80千米/时,乙车行驶全程的时间t=480÷80=6(小时);(2)根据题意可知甲从出发到返回A地需5小时,∵甲车到达C地后因立即按原路原速返回A地,∴结合函数图象可知,当x=时,y=300;当x=5时,y=0;设甲车从C地按原路原速返回A地时,即≤x≤5,甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=kx+b,将函数关系式得:,解得:,故甲车从C地按原路原速返回A地时,甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=﹣120x+600;(3)由题意可知甲车的速度为:=120(千米/时),设甲车出发m小时两车相距80千米,有以下两种情况:①两车相向行驶时,有:120m+80(m+1)+80=480,解得:m=;②两车同向行驶时,有:600﹣120m+80(m+1)﹣80=480,解得:m=3;③两车相遇之后,甲返回前,有120m+80(m+1)﹣80=480,解得:m=;∴甲车出发小时或3小时或两车相距80千米.故答案为:(1)80,6.27.(10分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC 的下方时,若AB=2,CE=2,求线段AE的长.【解答】解:(1)如图1,∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH=∴AE=AH+EH=4.=3,28.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A 和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A O B,点A、O、111B的对应点分别是点A、O、B.若△A O B的两个顶点恰好落在抛物线上,请直接写出点111111A的横坐标.1【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x+bx+c经过点C(4,2)和点B(0,﹣1),2∴,解得,∴抛物线的解析式为y=x﹣x﹣1;2(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t﹣t﹣1),E(t,t﹣1),2∴DE=(t﹣1)﹣(t﹣t﹣1)=﹣t+2t,22∴p=×(﹣t+2t)=﹣t+t,22∵p=﹣(t﹣2)+,且﹣<0,2∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A O∥y轴时,B O∥x轴,设点A的横坐标为x,11111①如图1,点O、B在抛物线上时,点O的横坐标为x,点B的横坐标为x+1,1111∴x﹣x﹣1=(x+1)﹣(x+1)﹣1,22解得x=,②如图2,点A、B在抛物线上时,点B的横坐标为x+1,点A的纵坐标比点B的纵坐标大,11111∴x﹣x﹣1=(x+1)﹣(x+1)﹣1+,22解得x=﹣,综上所述,点A的横坐标为或﹣.1。
2019届江西省中考模拟样卷(一)数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 计算﹣5+2的结果是()A.﹣7 B.﹣3 C.3 D.72. 2015年12月26日,南昌地铁一号线正式开通试运营.据统计,开通首日全天客流量累积近25万人次,数据25万可用科学记数法表示为()A.0.25×105 B.2.5×104 C.25×104 D.2.5×1053. 下列各运算中,计算正确的是()A.=±3 B.2a+3b=5abC.(﹣3ab2)2=9a2b4 D.(a﹣b)2=a2﹣b24. 如图,将一只青花碗放在水平桌面上,它的左视图是()A. B. C. D.5. 如图,在Rt△ABC中,∠C=90°,∠BAC=40°,AD是△ABC的一条角平分线,点E,F,G分别在AD,AC,BC上,且四边形CGEF是正方形,则∠DEB的度数为()A.40° B.45° C.50° D.55°6. 如图,点E是菱形ABCD边上一动点,它沿A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,下列图象中能反映y与x函数关系的是()A.B.C.D.二、填空题7. 因式分【解析】 2m2﹣8n2= .8. 在庆元旦文体活动中,小东参加了飞镖比赛,共投飞镖五次,投中的环数分别为:5,10,6,x,9.若这组数据的平均数为8,则这组数据的中位数是.9. 若关于x的一元二次方程x2﹣(2m+1)x+m2+2m=0有实数根,则m的取值范围是.10. 如图,在△ABC中,AB=4,将△ABC沿射线AB方向平移得到△A′B′C′,连接CC′,若A′C′恰好经过BC边的中点D,则AB′的长度为.11. 如图,这是一组由围棋子摆放而成的有规律的图案,则摆第(n)个图案需要围棋子的枚数是.12. 在平面直角坐标系中,已知点A(0,2),B(3,0),点C在x轴上,且在点B的左侧,若△ABC是等腰三角形,则点C的坐标为.三、解答题13. 化简:14. 如图,AB是圆的直径,弦CD∥AB,AD,BC相交于点E,若AB=6,CD=2,∠AEC=α,求cosα的值.四、计算题15. 计算: +(﹣)﹣1+(2016﹣π)0+|﹣2|五、解答题16. 解不等式组,并将它的解集在数轴上表示出来.17. 一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球.(1)“其中有1个球是黑球”是事件;(2)求2个球颜色相同的概率.18. 如图,在菱形ABCD中,点E为AB的中点,请只用无刻度的直尺作图(1)如图1,在CD上找点F,使点F是CD的中点;(2)如图2,在AD上找点G,使点G是AD的中点.六、计算题19. 某校开展阳光体育活动,要求每名学生从以下球类活动中选择一项参加体育锻炼:A ﹣乒乓球;B﹣足球;C﹣篮球;D﹣羽毛球.学校王老师对八年级某班同学的活动选择情况进行调查统计,绘制了两幅不完整的统计图,如图所示.(1)请你求出该班学生的人数并补全条形统计图;(2)已知该校八年级学生共有500人,学校根据统计调查结果进行预估,按参加项目人数每10人购买一个训练用球的标准,为B,C两个项目统一购买训练用球.经了解,某商场销售的足球比篮球的单价少30元,此时学校共需花费2700元购买足球和篮球.求该商场销售的足球和篮球的单价.七、解答题20. 小华在“科技创新大赛”中制作了一个创意台灯作品,现忽略支管的粗细,得到它的侧面简化结构图如图所示.已知台灯底部支架CD平行于水平面,FE⊥OE,GF⊥EF,台灯上部可绕点O旋转,OE=20cm,EF=20cm.(1)如图1,若将台灯上部绕点O逆时针转动,当点G落在直线CD上时,测量得∠EOG=65°,求FG的长度(结果精确到0.1cm);(2)将台灯由图1位置旋转到图2的位置,若此时F,O两点所在的直线恰好与CD垂直,求点F在旋转过程中所形成的弧的长度.(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,≈1.73,可使用科学计算器)21. 如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当∠ACD=45°时,求证:DE是⊙O的切线;(2)如图2,当点F是CD的中点时,求△CDE的面积.22. 一次函数y=kx+b的图象与反比例函数y=的图象相交于A,B两点,且交y轴于点C.已知点A(1,4),点B在第三象限,且点B的横坐标为t(t<﹣1).(1)求反比例函数的解析式;(2)用含t的式子表示k,b;(3)若△AOB的面积为3,求点B的坐标.23. 如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C(0,﹣3).(1)求此二次函数的解析式.(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由.(3)若点M在x轴上,点P在抛物线上,是否存在以A,E,M,P为顶点且以AE为一边的平行四边形?若存在,请直接写出所有满足要求的点P的坐标;若不存在,请说明理由.八、判断题24. 如图,在矩形ABCD中,BC=1,∠CBD=60°,点E是AB边上一动点(不与点A,B重合),连接DE,过点D作DF⊥DE交BC的延长线于点F,连接EF交CD于点G.(1)求证:△ADE∽△CDF;(2)求∠DEF的度数;(3)设BE的长为x,△BEF的面积为y.①求y关于x的函数关系式,并求出当x为何值时,y有最大值;②当y为最大值时,连接BG,请判断此时四边形BGDE的形状,并说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
九年级(上)第二次模拟数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)在﹣2,﹣1,0,2这四个数中,最大的数是()A.﹣2 B.﹣1 C.0 D.22.(3分)如图所示的几何体的俯视图是()A.B.C.D.3.(3分)今年某市约有102 000名应届初中毕业生参加中考,102 000用科学记数法表示为()A.0.102×106B.1.02×105C.10.2×104D.102×1034.(3分)下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.5.(3分)下列长度的三条线段不能组成直角三角形的是()A.5,12,13 B.1,2,C.6,8,12 D.3a,4a,5a(a>0)6.(3分)已知正六边形的边长为6,则它的边心距()A.3 B.6 C.3 D.7.(3分)若x1,x2是方程x2=4的两根,则x1+x2的值是()A.8 B.4 C.2 D.08.(3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm9.(3分)如图所示的图象中所反映的过程是:王强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示王强离家的距离.以下四个说法错误的是()A.体育场离王强家2.5千米B.王强在体育场锻炼了15分钟C.体育场离早餐店4千米D.王强从早餐店回家的平均速度是3千米/小时10.(3分)已知A(3,1)、B两点都在双曲线y=上,O为坐标原点,若△AOB为等腰三角形,则点B的个数为()A.3 个B.4个 C.5个 D.6个二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)在函数y=中,自变量x的取值范围是.12.(3分)计算2﹣的结果是.13.(3分)把多项式3m2﹣6mn+3n2分解因式的结果是.14.(3分)在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则x=.15.(3分)一个扇形的弧长是20π,圆心角是150度,则此扇形的半径是.16.(3分)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是度.17.(3分)如图,△ABC中,AB=AC=2,BC=8,AB的垂直平分线交AB于点D,交BC于点E,设△BDE的面积为S1,四边形ADEC的面积为S2,则的值等于.18.(3分)已知点A(m,m+1)和抛物线y=x2﹣2mx+m2+m﹣1上的动点P,其中m是常数,则线段AP的最小值是.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+﹣(﹣2)0+(﹣0.5)﹣2(2)化简:÷(﹣1)20.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计年该城市有多少天不适宜开展户外活动.(年共365天)21.(8分)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.求改直的公路AB的长.(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)22.(8分)如图,⊙O的直径CD垂直于弦AB,垂足为E,∠ACD=22.5°,CD=4.(1)求AB的长;(2)求∠BAC的正切值.23.(8分)如图,点A(a,a+5)和点B(6,a+1)都在双曲线y=(k<0)上.(1)求k的值;(2)求△AOB的面积.24.(8分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.25.(10分)小明参加某个智力竞答节目,最后两道单选题全部答对就顺利通关.第一道单选题有A、B、C三个选项,第二道单选题有A、B、C、D四个选项,这两道题小明都完全不会,不过小明还有一次“求助”的机会没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项),假设两道题的正确答案均为A.(1)如果小明“求助”第一题,那么小明答对第一道题的概率是.(2)请用树状图或者列表来帮小明分析,他应该在第几题使用“求助”,顺利通关的概率才更大.26.(10分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x米,矩形区域ABCD的面积为y米2.(1)求证:AE=2BE;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)x为何值时,y有最大值?最大值是多少?27.(13分)如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E运动的速度为每秒1个单位,运动的时间为x 秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.28.(13分)如图,抛物线y=ax2+bx+5与x轴交于A(﹣1,0)、B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是抛物线上一动点,过点P作直线PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若点P在x轴上方的抛物线上,当PE=5EF时,求点F的坐标;(3)若点E’是点E关于直线PC的对称点,当点E’落在y轴上时,请直接写出m的值.-学年江苏省南通市通州区九年级(上)第二次模拟数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(•成都)在﹣2,﹣1,0,2这四个数中,最大的数是()A.﹣2 B.﹣1 C.0 D.2【解答】解:﹣2<﹣1<0<2,故选:D.2.(3分)(•吉林一模)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.3.(3分)(2009•武汉)今年某市约有102 000名应届初中毕业生参加中考,102 000用科学记数法表示为()A.0.102×106B.1.02×105C.10.2×104D.102×103【解答】解:102 000=1.02×105.故选B.4.(3分)(•德州)下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不合题意;C、是轴对称图形,也是中心对称图形.故C选项不合题意;D、不是轴对称图形,也不是中心对称图形,故D选项符合题意;故选:D.5.(3分)(秋•南通月考)下列长度的三条线段不能组成直角三角形的是()A.5,12,13 B.1,2,C.6,8,12 D.3a,4a,5a(a>0)【解答】解:A、∵52+122=132,∴能构成直角三角形,故本选项不符合题意;B、∵12+22=()2,∴能构成直角三角形,故本选项不符合题意;C、∵62+82≠122,∴不能构成直角三角形,故本选项符合题意;D、∵(3a)2+(4a)2=(5a)2,∴能构成直角三角形,故本选项不符合题意.故选C.6.(3分)(秋•南通月考)已知正六边形的边长为6,则它的边心距()A.3 B.6 C.3 D.【解答】解:如图所示,此正六边形中AB=6,则∠AOB=60°;∵OA=OB,∴△OAB是等边三角形,∵OG⊥AB,∴∠AOG=30°,∴OG=OA•cos30°=6×=3,故选A.7.(3分)(2010•武汉)若x1,x2是方程x2=4的两根,则x1+x2的值是()A.8 B.4 C.2 D.0【解答】解:原方程可化为:x2﹣4=0;∴x1+x2=﹣=0;故选D.8.(3分)(•防城港)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm【解答】解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=x cm,则BC=(20﹣2x)cm,∴,解得5cm<x<10cm.故选:B.9.(3分)(秋•南通月考)如图所示的图象中所反映的过程是:王强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示王强离家的距离.以下四个说法错误的是()A.体育场离王强家2.5千米B.王强在体育场锻炼了15分钟C.体育场离早餐店4千米D.王强从早餐店回家的平均速度是3千米/小时【解答】解:A、∵函数图象中y值的最大值为2.5,∴体育场离王强家2.5千米,该结论符合题意;B、∵30﹣15=15(分钟),∴王强在体育场锻炼了15分钟,该结论符合题意;C、∵2.5﹣1.5=1(千米),∴体育场离早餐店1千米,该结论不符合题意;D、∵1.5÷=3(千米/小时),∴王强从早餐店回家的平均速度是3千米/小时,该结论符合题意.故选C.10.(3分)(秋•南通月考)已知A(3,1)、B两点都在双曲线y=上,O为坐标原点,若△AOB为等腰三角形,则点B的个数为()A.3 个B.4个 C.5个 D.6个【解答】解:设OA的解析式为y=kx,则3k=1,解得k=,则OA的解析式为y=x,∵A(3,1),∴C点坐标为(1.5,0.5),设CD的解析式为y=﹣3x+b,则﹣3×1.5+b=0.5,解得b=5,则CD的解析式为y=﹣3x+5,则=1,解得k=3,则双曲线为y=,联立双曲线与CD的解析式可得﹣3x+5=,∴3x2﹣5x+3=0,△=(﹣5)2﹣4×3×3=﹣11<0,∴方程无解,根据反比例函数的对称性可得:若△AOB为等腰三角形,则点B为(1,3),(﹣1,﹣3)(﹣3,﹣1),一共3个.故选:A.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)(秋•南通月考)在函数y=中,自变量x的取值范围是x≠1.【解答】解:由题意,得x+1≠0,解得x≠1,故答案为:x≠﹣1.12.(3分)(•高淳县一模)计算2﹣的结果是﹣.【解答】解:原式=﹣2=﹣.故答案为:﹣.13.(3分)(•哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是3(m﹣n)2.【解答】解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.14.(3分)(•哈尔滨模拟)在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则x=3.【解答】解:由题意知:=,解得x=3.故答案为3.15.(3分)(秋•南通月考)一个扇形的弧长是20π,圆心角是150度,则此扇形的半径是24.【解答】解:∵l=,∴r===24.故答案为:24.16.(3分)(秋•南通月考)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是150度.【解答】解法1:∵OA=OB=OC,∴∠OAB=∠OBA,∠OBC=∠OCB,∵∠ABC=∠OBA+∠OBC=70°,∴∠OAB+∠OBA+∠OBC+∠OCB=140°,即∠OAB+∠ABC+∠OCB=140°,又∵∠ABC+∠BCD+∠ADC+∠BAD=360°,即∠ABC+∠OCB+∠OCD+∠ADC+∠DAO+∠OAB=360°,∵∠ADC=70°,∠OAB+∠ABC+∠OCB=140°,∴∠DAO+∠DCO=360°﹣140°﹣70°=150°.解法2:由AO=BO=CO,可知O是三角形ABC的外心,∠ABC是圆周角,∠AOC是圆心角,所以∠AOC=2∠ABC=140°,又∠D=70°,所以∠DAO+∠DCO=360°﹣140°﹣70°=150°.故答案为:150.17.(3分)(秋•南通月考)如图,△ABC中,AB=AC=2,BC=8,AB的垂直平分线交AB于点D,交BC于点E,设△BDE的面积为S1,四边形ADEC的面积为S2,则的值等于.【解答】解:过A作AE⊥BC于E,∵AB=AC=2,BC=8,∴BE=CE=4,∵DE垂直平分AB,∴BD=AB=,∵∠BDE=∠AEB=90°,∠B=∠B,∴△BED∽△ABE,∴=()2=,∵S△ABC=2S△ABE,∴=,∴=.故答案为:.18.(3分)(秋•南通月考)已知点A(m,m+1)和抛物线y=x2﹣2mx+m2+m﹣1上的动点P,其中m是常数,则线段AP的最小值是.【解答】解:设P点坐标为P(a,a2﹣2ma+m2+m﹣1),AP2=(m﹣a)2+[a2﹣2ma+m2+m﹣1﹣(m+1)]2=(m﹣a)2+[(m﹣a)2﹣2]2令(m﹣a)2=t(t≥0)则有AP2=t+(t﹣2)2=t2﹣3t+4=(t﹣)2+,所以,当t=时,AP2有最小值,所以AP=,故答案为.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(秋•南通月考)(1)计算:|﹣2|+﹣(﹣2)0+(﹣0.5)﹣2(2)化简:÷(﹣1)【解答】解:(1)原式=2﹣2﹣1+4=3;(2)原式=•=﹣x﹣1.20.(8分)(•河南模拟)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计年该城市有多少天不适宜开展户外活动.(年共365天)【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:年该城市有219天不适宜开展户外活动.21.(8分)(秋•南通月考)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.求改直的公路AB 的长.(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【解答】解:如图,作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2,AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1,在Rt△BCH中,BH==≈=5.6,∴AB=AH+BH=9.1+5.6=14.7,答:改直的公路AB的长14.7千米.22.(8分)(秋•南通月考)如图,⊙O的直径CD垂直于弦AB,垂足为E,∠ACD=22.5°,CD=4.(1)求AB的长;(2)求∠BAC的正切值.【解答】解:(1)连结OA.∵∠ACD=22.5°,∴∠AOD=45°,∵CD⊥AB,∴∠AEO=90°,∴AE=OE,在Rt△AOE中,OA=2,∴AE=OE=,由垂径定理,得AB=2AE=2;(2)∵CE=2+,AE=,∴tan∠BAC===+1.23.(8分)(秋•南通月考)如图,点A(a,a+5)和点B(6,a+1)都在双曲线y=(k<0)上.(1)求k的值;(2)求△AOB的面积.【解答】解:(1)∵点A(a,a+5)和点B(6,a+1)都在双曲线y=(k<0)上,∴k=a(a+5)=6(a+1),整理得:a2﹣a﹣6=(a+2)(a﹣3)=0,解得:a=﹣2或a=3(舍去),∴k=a(a+5)=﹣2×(﹣2+5)=﹣6.(2)∵a=﹣2,∴A(﹣2,3),B(6,﹣1).设直线AB的解析式为y=kx+b(k≠0),将A(﹣2,3)、B(6,﹣1)代入y=kx+b中,,解得:,∴直线AB的解析式为y=﹣x+2.设直线AB与y轴交于点C,则点C的坐标为(0,2),∴OC=2,∴S△AOB=OC•(x B﹣x A)=×2×[6﹣(﹣2)]=8.24.(8分)(•朝阳区一模)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.【解答】(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.25.(10分)(秋•南通月考)小明参加某个智力竞答节目,最后两道单选题全部答对就顺利通关.第一道单选题有A、B、C三个选项,第二道单选题有A、B、C、D四个选项,这两道题小明都完全不会,不过小明还有一次“求助”的机会没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项),假设两道题的正确答案均为A.(1)如果小明“求助”第一题,那么小明答对第一道题的概率是.(2)请用树状图或者列表来帮小明分析,他应该在第几题使用“求助”,顺利通关的概率才更大.【解答】解:(1)小明答对第一道题的概率=;故答案为;(2)若小明“求助”第一题(假设去掉错误选项C)画树状图为:共有8种等可能的结果数,其中两题全答对的结果数为1,所以他顺利通关的概率=,若小明“求助”第二题(假设去掉错误选项D)画树状图为:共有9种等可能的结果数,其中两题全答对的结果数为1,所以他顺利通关的概率=,而>,所以他应该在第一题使用“求助”,顺利通关的概率才更大.26.(10分)(秋•南通月考)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x米,矩形区域ABCD的面积为y米2.(1)求证:AE=2BE;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)x为何值时,y有最大值?最大值是多少?【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,又∵EF是公共边,∴AE=2BE;(2)设BE=a,则AE=2a,∴8a+2x=80,∴a=﹣x+10,AB=3a=﹣x+30∴y=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,∴0<x<40(3)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,y有最大值,最大值为300平方米.27.(13分)(秋•南通月考)如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB ﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E 运动的速度为每秒1个单位,运动的时间为x 秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.【解答】(1)证明:∵四边形ABCD与四边形DEFG都是正方形,∴AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG (SAS),∴∠DCG=∠DAE=90°,∵∠DCB=90°,∴∠DCG+∠DCB=180°,∴点G在直线BC上;(2)解:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,如图1所示:则AC∥EK∥AD,∴∠HEK=∠EHB,∠DEK=∠EDA,∵∠EHB+∠BEH=90°,∠EDA+∠AED=90°,∠HEK+∠DEK=90°,∴∠EDA=∠BEH,∠AED=∠EHB,∴△ADE∽△BEH,∴=,即=,∴BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积=2×2﹣×2×x﹣×(2﹣x)×=;②当点E在BC边上时,S=△DEC的面积=×2×(4﹣x)=4﹣x;(3)解:由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;∵BD===2,∴BF+FG=2BD=4,∴点F运动的路径长为4.28.(13分)(秋•南通月考)如图,抛物线y=ax2+bx+5与x轴交于A(﹣1,0)、B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是抛物线上一动点,过点P作直线PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若点P在x轴上方的抛物线上,当PE=5EF时,求点F的坐标;(3)若点E’是点E关于直线PC的对称点,当点E’落在y轴上时,请直接写出m的值.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于A (﹣1,0),B(5,0)两点,∴,解得,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|﹣m+15|①若﹣m2+m+2=﹣m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;②若﹣m2+m+2=﹣(﹣m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.∴点F的坐标为(2,0)或(,0).(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,∴=,即=,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|∴|﹣m2+m+2|=|m|.①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m1=3+,m2=3﹣.由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时,此时P点横坐标为0,E,C,E'三点重合与y轴上,也符合题意,∴P(0,5)综上所述,存在满足条件的m的值为0或﹣或4或3+.中考数学模拟试卷好题精选(河北一模)12.(2分)数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径(河北一模)19.(4分)如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于,第n个三角形的面积等于.(河北一模)20.(8分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.(河北一模)26.(14分)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x 轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.(江苏南通通州二模)8.(3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm(江苏南通通州二模)10.(3分)已知A(3,1)、B两点都在双曲线y=上,O为坐标原点,若△AOB为等腰三角形,则点B的个数为()A.3 个B.4个 C.5个 D.6个(江苏南通通州二模)16.(3分)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是度.(江苏南通通州二模)18.(3分)已知点A(m,m+1)和抛物线y=x2﹣2mx+m2+m﹣1上的动点P,其中m是常数,则线段AP的最小值是.(安徽宿州灵璧磬乡协作校一模)18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.(安徽宿州埇桥一模)15.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.(安徽宿州埇桥一模)22.(12分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的矩形ABEF,现将小矩形CEFD绕点C顺时针旋转,得到矩形CE′F′D′,旋转角为α.(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图2,G为BC的中点,且0°<α<90°,求证:GD′=E′D;(3)小矩形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.(安徽宿州埇桥一模)23.(14分)如图,已知抛物线l1经过原点与A点,其顶点是P(﹣2,3),平行于y轴的直线m与x轴交于点B(b,0),与抛物线l1交于点M.(1)点A的坐标是;抛物线l1的解析式是;(2)当BM=3时,求b的值;(3)把抛物线l1绕点(0,1)旋转180°,得到抛物线l2.①直接写出当两条抛物线对应的函数值y都随着x的增大而减小时,x的取值范围;②直线m与抛物线l2交于点N,设线段MN的长为n,求n与b的关系式,并求出线段MN 的最小值与此时b的值.(广东韶关南雄二中一模)19.(6分)如图,△ABC中,AB=AC,∠A=40°(1)作边AB的垂直平分线MN(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连结BD,求∠DBC的度数.(广东韶关南雄二中四模)14.(4分)在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C 的度数为.(广东韶关南雄二中四模)19.(6分)已知:如图,在△ABC中,AD平分∠ABC.(1)作线段AD的垂直平分线MN,MN与AB边交于点E,AC边交于点F.(2)若AB=AC,请直接写出EF和BC的关系.(广东韶关南雄二中五模)18.(6分)如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.(广东深圳龙岗一模)15.(3分)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于.(河北保定涿州一模)11.(2分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a﹣b=1 C.2a+b=﹣1 D.2a+b=1(河北保定涿州一模)12.(2分)如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为()A.35°B.45°C.55°D.65°(河北数学模拟三)9.(3分)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=0(河北数学模拟三)15.(2分)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0) B.(1,)C.(,)D.(,)(河北数学模拟三)26.(12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;(4)请你参照以上操作,将图1中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.(河南南阳新野新航中学模拟)5.(3分)两个不等的实数a、b满足a2+a﹣1=0,b2+b﹣1=0,则ab的值为()A.1 B.﹣1 C.D.(河南南阳新野新航中学模拟)9.(3分)对于一次函数y=kx+b,当自变量x的取值为﹣2≤x≤5时,相应的函数值的范围为﹣6≤y≤﹣3,则该函数的解析式为.(河南濮阳一模)7.(3分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数y的最小值为5,则h的值是()A.﹣1 B.﹣1或5 C.5 D.﹣5(河南濮阳一模)9.(3分)从﹣3,﹣1,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣2 B.﹣3 C.D.(河南濮阳一模)16.(8分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.(河南濮阳一模)21.(10分)阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:①当x=﹣3或1时,y1=y2;②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>的解集.有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.下面是他的探究过程,请将(2)、(3)、(4)补充完整:(1)将不等式按条件进行转化:当x=0时,原不等式不成立;当x>0时,原不等式可以转化为x2+4x﹣1>;当x<0时,原不等式可以转化为x2+4x﹣1<;(2)构造函数,画出图象设y3=x2+4x﹣1,y4=,在同一坐标系中分别画出这两个函数的图象.双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为;(4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为.(河南濮阳一模)22.(10分)(1)【问题发现】。
2019年山西省百校联考中考数学模拟试卷(一)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算1﹣|﹣4|的结果是()A.﹣5B.﹣3C.3D.52.已知a<b,下列四个不等式中,正确的是()A.﹣a<﹣b B.﹣2a<﹣2b C.a﹣2>b﹣2D.2﹣a>2﹣b3.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.92°B.98°C.102°D.122°4.张老师家1月至12月的用电量统计如图所示,这组数据的众数和中位数分别是()A.25和17.5B.30和20C.30和22.5D.30和255.据2018年10月山西统计局“改革开放40年山西经济社会发展成就系列报告”显示:1978年,我省地区生产总值88亿元,2017年达到15528.5亿元.数据15528.5亿元用科学记数法表示为()A.15528.5×108元B.1.55285×1012元C.1.55285×1011元D.0.155285×1013元6.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x个人,则可列方程是()A.3(x+2)=2x﹣9B.3(x﹣2)=2x+9C.D.7.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最多有()A.12个B.10个C.8个D.6个8.如图,活动课小明利用一个锐角是30°的三角板测量一棵树的高度,已知他与树之间的水平距离BE为9m,AB为1.5m(即小明的眼睛距地面的距离),那么这棵树高是()A.3m B.27m C.(3+)m D.(27+)m9.如图所示,把一张矩形的纸片按图示对折两次,然后剪下一部分,若得到一个钝角为120°的菱形,则剪口与第二次折痕所成角的度数应为()A.30°或50°B.40°或50°C.30°或60°D.40°或60°10.如图所示,已知点A坐标为(6,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.2B.3C.3D.6二、填空题(本大题共5个小题,每小题3分,共15分)11.分式方程﹣=0的根是.12.如图所示是轰炸机机群的一个飞行队形,如果其中两架轰炸机的平面坐标分别表示为A(﹣2,3)和B(2,1),那么轰炸机C的平面坐标是.13.如图是一次射击训练中某士兵甲的10次射击成绩(均是整数)的分布情况,则射击成绩的方差是.14.小明用火柴棒按如图所示的规律摆放下列图形,则摆放第n个图形共需要火柴棒根.15.如图,在△ABC中,AC=BC,∠ACB=100°,点D在线段AB上运动(D不与A,B重合),连接CD,作∠CDE=40°,DE交BC于点E.若△CDE是等腰三角形,则∠ADC的度数是.三、解答题(本大题共8个小题,共75分。
2019年陕西省西安交大附中分校中考数学三模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.计算:(﹣)﹣1+1=()A.﹣B.C.D.2.如图所示几何体是由五个相同的小正方体搭成的,它的俯视图是()A.B.C.D.3.下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b24.如图,已知AB∥CD,直线EF分别交AB,CD于点E、F,EG平分∠AEF,若∠2=40°,则∠1的度数是()A.70°B.65°C.60°D.50°5.已知P(x,y)是直线y=上的点,则4y﹣2x+3的值为()A.3B.﹣3C.1D.06.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=3,则BF的长为()A.4B.2C.3D.47.直线y=﹣x+1与y=2x+a的交点在第一象限,则a的取值不可能是()A.B.﹣C.﹣D.﹣8.如图:在平行四边形ABCD中,AB≠BC,AE、CF分别为∠BAD、∠BCD的平分线,连接BD,分别交AE、CF于点G、H,则图中的全等三角形共有()A.3对B.4对C.5对D.6对9.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD =2,则EC的长为()A.2B.8C.2D.210.抛物线y=ax2+bx+c(a≠0)的图象如图所示,抛物线经过点(﹣1,0),则下列说法中①abc <0;②2a﹣b=0;③b2>4ac;④3a+c=0;⑤a+b>am2+bm(m为一切实数),正确的个数有()A.1个B.2个C.3个D.4个二.填空题(本大题共4小题,每小题3分,共12分)11.不等式组的解集是.12.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC=度.13.如图,直线AB经过原点O,与双曲线y═(k≠0)交于A、B两点,AC⊥y轴于点C,且△ABC的面积是3,则k的值是.14.如图,在平面直角坐标系中,正方形OABC和正方形ADEF的边OA、AD分别在x轴上,OA =2,AD=3,则正方形OABC和正方形ADEF位似中心的坐标是.三.解答题(本大题共11小题,共78分,解答应写出过程)15.(5分)计算:+(﹣)﹣1+(π﹣3.14)0﹣|1﹣tan60°|.16.(5分)化简:÷().17.(5分)尺规作图(只保留作图痕迹,不要求写出作法):如图,在△ABC中,D是AC边上一定点,请在AB上找出使得△ABC和△ADE相似的点E.18.(5分)如图,△ABC和△EBD均为等腰直角三角形,点E是边AB上一点,∠ABC=∠EBD =90°,连接AD,CE.求证:AD⊥CE.19.(7分)某校为了解该校学生参加体育晨跑情况,随机抽查了部分学生最近两周参加跑步活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)补全条形统计图;(2)本次抽样调查的众数为,中位数为;(3)如果该校约有4500名学生,请你估计全校可能有多少名学生参加体育晨跑天数不少于7天?20.(7分)如图,小明想测量电线杆AB的高度,但在太阳光下,电线杆的影子恰好落在地面和土坡的坡面上,量得坡面上的影长CD=4m,地面上的影长BC=10m,土坡坡面与地面成30°的角,此时测得1m长的木杆的影长为2m,求电线杆的高度.(结果保留根号)21.(7分)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?22.(7分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同.从中任意摸出1个球,取出白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不再放回,再摸出1个球,求两次摸到的球都是白球的概率.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cos A=,求CG的长.24.(10分)如图,点A(﹣2,4)和点B(1,0)在抛物线y=ax2+bx+4上.(1)求抛物线的表达式;(2)向右平移上述抛物线,记平移后点A的对应点为A1,点B的对应点为B1,若四边形AA1B1B 为菱形,求平移后抛物线的对称轴;(3)在(2)的条件下,记平移后抛物线的对称轴与直线A1B的交点为点C,试在平面内找一点D,使得以点A1、B1、C、D为顶点的四边形是平行四边形,求D点的坐标.25.(12分)问题提出(1)如图,点M、N是直线1外两点,在直线1上找一点K,使得MK+NK最小.问题探究(2)在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数的大小.问题解决(3)如图,矩形ABCD是某公园的平面图,AB=30米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A、B,C的距离之和最小.问:是否存在这样的点E?若存在,请画出点E的位置,并求出EA+EB+EC的和的最小值;若不存在,请说明理由.2019年陕西省西安交大附中分校中考数学三模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【分析】直接利用负指数幂的性质化简得出答案.【解答】解:原式=+1=﹣+1=.故选:C.【点评】此题主要考查了负整数指数幂的性质,正确化简负指数幂是解题关键.2.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:该几何体的三视图如下:故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6b3,不符合题意;B、原式=27a6,符合题意;C、原式=x4,不符合题意;D、原式=a2+2ab+b2,不符合题意,故选:B.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.【分析】利用平行线的性质得出∠AEG=∠1,∠AEF=140°,再利用角平分线的性质得出∠AEG =∠GEF=70°,即可得出答案.【解答】解:∵直线AB∥CD,∠2=40°,∴∠AEG=∠1,∠AEF=140°,∵EG平分∠AEF交CD于点G,∴∠AEG=∠GEF=70°,∴∠1=70°.故选:A.【点评】本题考查了平行线的性质.根据角平分线的定义,求得∠AEG的度数是解题的关键.5.【分析】根据点P(x,y)是直线y=上的点,可以得到y与x的关系,然后变形即可求得所求式子的值.【解答】解:∵点P(x,y)是直线y=上的点,∴y=,∴4y=2x﹣6,∴4y﹣2x=﹣6,∴4y﹣2x+3=﹣3,故选:B.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.6.【分析】先利用直角三角形斜边中线性质求出AB,再在RT△ABF中,利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.【解答】解:在RT△ABF中,∵∠AFB=90°,AD=DB,DF=3,∴AB=2DF=6,∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠ABF=30°,∴AF=AB=3,∴BF===3.故选:C.【点评】本题考查三角形中位线性质、含30度角的直角三角形性质、直角三角形斜边中线性质、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.7.【分析】联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.【解答】解:解方程组,可得,∵直线y=﹣x+1与y=2x+a的交点在第一象限,∴,即,解得﹣2<a<1,∴a的取值不可能是,故选:D.【点评】本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键.8.【分析】此题不妨大胆一点,先把所有可能全等的三角形都找出来,再根据已知条件一个个分析全等的依据,得出正确结论.【解答】解:先从平行四边形的性质入手,得到AD=CB,AB=CD,∠BAD=∠DCB,∠ABC =∠CDA,再由角平分线的性质得到∠BAE=∠DAE=∠DCF=∠BCF,从而先得到:△ABD≌△CDB,△ABE≌△CDF,进而得到△ABG≌△CDH,△ADG≌△CBH,△BGE≌△DHF.所以全等三角形共5对,分别是:△ABD≌△CDB(SSS),△ABE≌△CDF(ASA),△ABG≌△CDH(ASA),△ADG≌△CBH(ASA),△BGE≌△DHF(AAS).故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.此类题目做题时要由易到难慢慢找寻,做到不重不漏.9.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.【解答】解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选:D.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①图象开口向上,与y轴交于负半轴,对称轴在y轴右侧,能得到:a>0,c>0,﹣>0,b<0,则abc<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0,故错误;③抛物线与x轴有2个交点,则b2﹣4ac>0,即b2>4ac.故正确;④∵对称轴x=﹣=1,∴b=﹣2a,∵当x=﹣1时,y=0,即a﹣b+c=0,∴3a+c=0.故正确;⑤x=1函数有最大值,故a+b+c≥am2+bm+c,则a+b≥am2+bm(m为一切实数),故错误.综上所述,正确的结论有3个.故选:C.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二.填空题(本大题共4小题,每小题3分,共12分)11.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:解不等式x﹣1>1,得:x>2,解不等式3+2x≥4x﹣3,得:x≤3,所以不等式组的解集为2<x≤3,故答案为:2<x≤3.【点评】本题考查了不等式组的解法,求不等式组中每个不等式的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.【分析】根据正五边形的内角和和正六边形的内角和公式求得正五边形的内角108°和正六边形的内角120°,然后根据周角的定义和等腰三角形性质可得结论.【解答】解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108° ∴∠BAC =360°﹣120°﹣108°=132°∵AB =AC∴∠ACB =∠ABC ==24°故答案为:24.【点评】本题考查了正多边形的内角与外角、等腰三角形的性质,熟练正五边形的内角,正六边形的内角是解题的关键.13.【分析】由题意得:S △ABC =2S △AOC ,又|k |,则k 的值即可求出. 【解答】解:设A (x ,y ),∵直线与双曲线y =交于A 、B 两点,∴B (﹣x ,﹣y ),∴S △BOC =|xy |,S △AOC =|xy |,∴S △BOC =S △AOC ,∴S △ABC =S △AOC +S △BOC =2S △AOC =3,S △AOC =|k |=,则k =±3.又由于反比例函数位于二四象限,k <0,故k =﹣3.故答案为:﹣3.【点评】本题主要考查了反比例函数y =中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点.14.【分析】直接利用位似图形的性质结合比例式得出位似中心的坐标即可.【解答】解:连接FC 并延长交x 轴于点M ,由题意可得:△MOC ∽△MAF , 则==, ∴=,解得:MO=4,故M点的坐标为:(﹣4,0).故答案为:(﹣4,0).【点评】此题主要考查了位似变换,正确得出位似中心的位置是解题关键.三.解答题(本大题共11小题,共78分,解答应写出过程)15.【分析】直接利用零指数幂的性质以及二次根式的性质、特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2+1﹣(﹣1)=2﹣2+1﹣+1=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.【分析】先计算括号内分式的减法,再将除法转化为乘法,继而约分即可得.【解答】解:原式=÷[﹣]=÷[﹣]=÷=•=﹣a2.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.17.【分析】作∠ADE=∠B或∠ADE=∠C可得到确定满足的E点.【解答】解:如图1,如图2,点E为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.相似图形的作图在没有明确规定的情况下,我们可以利用相似的基本图形“A”型和“X”型进行简单的相似变换作图.18.【分析】延长CE交AD于点F,根据SAS证明△EBC与△DBA全等,利用全等三角形的性质和垂直的定义证明即可.【解答】证明:延长CE交AD于点F,∵△ABC和△EBD均为等腰直角三角形,∴EB=DB,AB=BC,∠ABD=∠EBC=90°,在△EBC与△DBA中,∴△EBC≌△DBA(SAS),∴∠DAB=∠ECB,∵∠DAB+∠ADB=90°,∴∠ECB+∠ADB=90°,∴∠DFC=90°,∴AD⊥CE.【点评】此题考查全等三角形的判定和性质,关键是根据等腰直角三角形的性质和SAS证明△EBC 与△DBA全等.19.【分析】(1)根据各部分所占的百分比的和等于1列式计算即可求出a,后用被抽查的学生人数乘以8天所占百分比求出8天的人数,补全条形统计图即可;(2)用众数和中位数的定义解答;(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.【解答】解:(1)∵被抽查的学生人数:240÷40%=600人,a=1﹣(40%+20%+25%+5%)=1﹣90%=10%,∴8天的人数:600×10%=60人,补全统计图如图所示:(2)参加社会实践活动5天的人数最多,所以众数是5天,600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,所以中位数是6天;故答案为:5天,6天;(3)4500×(25%+10%+5%)=4500×40%=1800人.答:估计全校可能有1800名学生参加体育晨跑天数不少于7天.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了中位数、众数的定义以及用样本估计总体的思想.20.【分析】过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可.【解答】解解:如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,∵CD=4米,CD与地面成30°角,∴DE=CD=×4=2米,根据勾股定理得,CE=米,∵1米杆的影长为2米,∴,∴EF=2DE=2×2=4米,∴BF=BC+CE+EF=10+2+4=(14+2)米,∵,∴AB=(14+2)=(7+)米.答:电线杆的高度为(7+)m.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB的影长若全在水平地面上的长BF是解题的关键.21.【分析】(1)首先根据总价=单价×数量,求出太阳花的付款金额y(元)关于购买量x(盆)的函数解析式;然后分两种情况:①一次购买的绣球花不超过20盆;②一次购买的绣球花超过20盆;根据总价=单价×数量,求出绣球花的付款金额y(元)关于购买量x(盆)的函数解析式即可.(2)首先太阳花数量不超过绣球花数量的一半,可得太阳花数量不超过两种花数量的,即太阳花数量不超过30盆,所以绣球花的数量不少于60盆;然后设太阳花的数量是x盆,则绣球花的数量是90﹣x盆,根据总价=单价×数量,求出购买两种花的总费用是多少,进而判断出两种花卉各买多少盆时,总费用最少,最少费用是多少元即可.【解答】解:(1)太阳花的付款金额y(元)关于购买量x(盆)的函数解析式是:y=6x;①一次购买的绣球花不超过20盆时,付款金额y(元)关于购买量x(盆)的函数解析式是:y=10x(x≤20);②一次购买的绣球花超过20盆时,付款金额y(元)关于购买量x(盆)的函数解析式是:y=10×20+10×0.8×(x﹣20)=200+8x﹣160=8x+40综上,可得绣球花的付款金额y(元)关于购买量x(盆)的函数解析式是:y=(2)根据题意,可得太阳花数量不超过:90×,所以绣球花的数量不少于:90﹣30=60(盆),设太阳花的数量是x盆,则绣球花的数量是90﹣x盆,购买两种花的总费用是y元,则x≤30,则y=6x+[8(90﹣x)+40]=6x+[760﹣8x]=760﹣2x因为x≤30,所以当x=30时,y min=760﹣2×30=700(元),即太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元.答:太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元.【点评】(1)此题主要考查了一次函数解析式的求法,以及一次函数的最值的求法,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)此题还考查了单价、总价、数量的关系:总价=单价×数量,单价=总价÷数量,数量=总价÷单价,要熟练掌握.22.【分析】(1)设布袋里红球有x个,根据白球的概率列方程求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)设布袋里红球有x个.由题意可得:,解得x=1,经检验x=1是原方程的解.∴布袋里红球有1个.(2)记两个白球分别为白1,白2画树状图如下:由图可得,两次摸球共有12种等可能结果,其中,两次摸到的球都是白球的情况有2种,∴P(两次摸到的球都是白球)=.【点评】本题考查了列表法或树状图法求概率.注意列表法与树状图法可以不重不漏的表示出所有可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)首先判断出OD∥AC,推得∠ODG=∠DGC,然后根据DG⊥AC,可得∠DGC =90°,∠ODG=90°,推得OD⊥FG,即可判断出直线FG是⊙O的切线.(2)首先根据相似三角形判定的方法,判断出△ODF∽△AGF,再根据cos A=,可得cos∠DOF=;然后求出OF、AF的值,即可求出AG、CG的值各是多少.【解答】(1)证明:如图1,连接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半径,∴直线FG是⊙O的切线.(2)解:如图2,∵AB=AC=10,AB是⊙O的直径,∴OA=OD=10÷2=5,由(1),可得OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∴△ODF∽△AGF,∴,∵cos A=,∴cos∠DOF=,∴=,∴AF=AO+OF=5,∴,解得AG=7,∴CG=AC﹣AG=10﹣7=3,即CG的长是3.【点评】(1)此题主要考查了切线的判定和性质的应用,要熟练掌握,解答此题的关键是要明确切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(2)此题还考查了三角形相似的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.24.【分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的表达式;(2)由点A,B的坐标利用两点间的距离(勾股定理)可求出AB的长度,利用菱形的性质可得出AA1的长度,再结合原抛物线的对称轴可求出平移后抛物线的对称轴;(3)由AA1的长度可得出点A1,B1的坐标,根据点A1,B的坐标,利用待定系数法可求出直线A1B的表达式,利用一次函数图象上点的坐标特征可得出点C的坐标,分B1C为对角线、A1B1为对角线和A1C为对角线三种情况考虑,由A1,B1,C的坐标,利用平行四边形的对角线互相平分可求出点D的坐标,此题得解.【解答】解:(1)将A(﹣2,4),B(1,0)代入y=ax2+bx+4,得:,解得:,∴抛物线的表达式为y=﹣x2﹣x+4.(2)∵点A的坐标为(﹣2,4),点B的坐标为(1,0),∴AB==5.∵四边形AA1B1B为菱形,∴AA1=AB=5,∴抛物线向右平移5个单位.∵原抛物线的对称轴为直线x=﹣=﹣1,∴平移后抛物线的对称轴为直线x=﹣1+5=4.(3)∵AA1=5,∴点A1的坐标为(3,4),点B1的坐标为(6,0).设直线A1B的表达式为y=mx+n(m≠0),将A1(3,4),B(1,0)代入y=mx+n,得:,解得:,∴直线A1B的表达式为y=2x﹣2.当x=4时,y=2x﹣2=6,∴点C的坐标为(4,6).分三种情况考虑(如图所示):①当B1C为对角线时,∵A1(3,4),B1(6,0),C(4,6),∴点D的坐标为(6+4﹣3,0+6﹣4),即(7,2);②当A1B1为对角线时,∵A1(3,4),B1(6,0),C(4,6),∴点D的坐标为(3+6﹣4,4+0﹣6),即(5,﹣2);③当A1C为对角线时,∵A1(3,4),B1(6,0),C(4,6),∴点D的坐标为(3+4﹣6,4+6﹣0),即(1,10).综上所述:以点A1、B1、C、D为顶点的四边形是平行四边形时,D点的坐标为(7,2),(5,﹣2)或(1,10).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、坐标的平移、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、菱形的性质以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数关系式;(2)利用菱形的性质求出抛物线平移的距离;(3)分B1C为对角线、A1B1为对角线和A1C为对角线三种情况,利用平行四边形的性质求出点D的坐标.25.【分析】(1)根据两点间线段距离最短,连接点M、N是,与执行l交于点K,点K即为所求;(2)把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质可知APP′是等边三角形,所以∠AP′P=60°,由勾股定理逆定理可知∠PP′C=为直角,从而求得∠AP′C为150°,所以∠APB为150°;(3)把△ABE绕点B逆时针旋转60°得到△A'BE′,由旋转的性质,A′B=AB=30,BE′=BE,A'E′=AE,∠E′BE=60°,A'BA=60°,所以△E′BE是等边三角形,根据两点间线段距离最短,可知当EA+EB+EC=A'C时最短,连接A'C,与BD的交点时,点E 即为所求,此时EA+EB+EC最短,最短距离为A'C的长度,然后过点A'作A'G⊥BC,利用勾股定理求出A'C的长度,即求得EA+EB+EC的和的最小值.【解答】解:(1)如图1,连接点M、N是,与执行l交于点K,点K即为所求;(2)如图2,把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′C=PB=4,∠PAP′=60°,∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(3)如图3,把△ABE绕点B逆时针旋转60°得到△A'BE′,由旋转的性质,A′B=AB=30,BE′=BE,A'E′=AE,∠E′BE=60°,A'BA=60°,∴△E′BE是等边三角形,∴BE=EE',∴EA+EB+EC=A'E′+EE'+EC,根据两点间线段距离最短,可知当EA+EB+EC=A'C时最短,连接A'C,与BD的交点时,点E 即为所求,此时EA+EB+EC最短,最短距离为A'C的长度.过点A'作A'G⊥BC交CB的延长线于点G,则A'BG=90°﹣A'BA=90°﹣60°=30°.A'G=A'B=AB=×30=15,GB=A'G=×15=45,GC=GB+BC=45+60=105,在Rt△A'GC中,A'C==,因此EA+EB+EC的和的最小值.【点评】本题是四边形综合题,主要考查了旋转知识、三角形全等、特殊角直角三角形、等边三角形的性质和勾股定理,熟练掌握旋转知识构建全等三角形是解题的关键.。
中考数学模拟试卷及答案解析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如果分式-23x -的值为负,则x 的取值范围是( ) A .x>2 B .x>3 C .x<3 D .x<22.一个几何体的三视图如图所示,则这个几何体是( )A .长方体B .六棱锥C .六棱柱D .圆柱3.下列方程属于二元一次方程的是( )A .2360x y z -+=B .73x y -=C .150xy +=D .111x y+= 4. 方程231x y -=的解可以是( )A .11x y =⎧⎨=-⎩B .11x y =⎧⎨=⎩C . 11x y =-⎧⎨=⎩D . 11x y =-⎧⎨=-⎩ 5.下列几对数中,既是方程230x y +=的解,又是方程2x y =-+的解的是( ) A .82x y =⎧⎨=⎩ B . 64x y =⎧⎨=-⎩ C . 42x y =⎧⎨=⎩ D . 28x y =⎧⎨=⎩ 6.在①(2)(2)a b b a -+;②(34)(43)a b b a -+--;③2(2)(22)x y x y +-;④()()a b b a --的计算中,能利用平方差公式计算的有( )A .1 个B .2 个C .3 个D . 4 个7.下列运算正确的是( )A .235a a a +=B .336a a a ⋅=C .236()ab ab =D .1028a a a ÷= 8.当2x =-时,分式11x +的值为( ) A .1 B .-1 C .2 D .-29.下列各式运算正确的是( )A .0c d c d a a -+-= B .0a b a b b a -=-- C .33110()()a b b a +=-- D .22110()()a b b a +=-- 10. 表示人面部表情的四幅图案,其中不是轴对称图形的是( )11.下列生活现象中,属于相似变换的是( )A .抽屉的拉开B .荡秋千C .汽车刮雨器的运动D .投影片的文字经投影变换到屏幕12.下列长度的三条线段能首尾相接构成三角形的是( )A .4,2,2B .1,2,3,C .2,3,6D .3,6,613.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( )A .B .C .D .14.如图所示,△ABC 中,AB=AC ,BE=CE ,则由“SSS”可直接判定( )A .△ABD ≌△ACDB .△ABE ≌△ACEC .△BED ≌△CED D .以上答案都不对15.已知2,1x y =⎧⎨=⎩是方程ax+by=5的一个解,且a 与b 互为相反数,则a-b 为( ) A .10 B .-10 C .0 D .31316.如图所示的图形都是轴对称图形,其中对称轴条数最少的是( )17.用放大镜将图形放大,应该属于( ) )A .相似变换B .平移变换C .对称变换D .旋转变换18. 如图所示,1ABC S ∆=,若BDE DEC ACE S s S ∆∆∆==,则ADE S ∆等于( )A .16B .17C .18D .19。
2019年中考数学模拟试题及答案分析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.下列说法中正确的是( )A .两个全等三角形一定成轴对称B .两个成轴对称的三角形一定是全等的C .三角形的一条中线把三角形分成以中线为对称轴的两个图形D .三角形的一条高把三角形分成以高线为对称轴的两个图形2.下列说法中正确的个数有( )①全等i 角形对应角所对的边是对应边,对应边所夹的角是对应角②全等三角形对应边所对的角是对应角,对应边所夹的角是对应角③全等三角形中的公共边是对应边,公共角是对应角,对顶角是对应角④两个全等三角形中,相等的边是对应边,相等的角是对应角A .1个B 2个C .3个D .4个3.如图所示,△ABC 中,AB=AC ,BE=CE ,则由“SSS”可直接判定( )A .△ABD ≌△ACDB .△ABE ≌△ACEC .△BED ≌△CED D .以上答案都不对4.如图所示,A ,B 是数轴上的两点,C 是AB 的中点,则0C 等于( )A .34OB B .1()2OB OA -C .1()2OA OB +D .以上都不对5.如图所示,△ABC 平移后得到△DEF ,若∠BNF=100°,则∠DEF 的度数是( )A .120°B .100°C .80°D .50°6.某园林占地面积约为800000 m 2,若按比例尺1:2000缩小后,其面积大约相当于( )A .一个篮球的面积B .一张乒乓球台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积7.在多项式①2263a ab b ++;②221449m mn n -++;③21025a a -+;④2221ab a b +-;④6321y y -+中,不能用完全平方公式分解因式的有( )A .①②⑤B .③④C .①②④D .②④⑤8.下列计算中,正确的是( )A .9338(4)2x x x ÷=B .23234(4)0a b a b ÷=C .2m 2m a a a ÷=D .2212()4c 2ab c ab ÷-=- 9.下面三种说法:①两个能够重合的三角形是全等三角形;②全等三角形的形状和大小相同;③全等三角形的面积相等.其中正确的个数有 ( )A .3个B .2个C .1个D .0个10. 一个三角形的三个内角中,至少有( )A . 一个锐角B . 两个锐角C . 一个钝角D .一个直角11.下列成语所描述的事件是必然发生的是( )A .水中捞月B .拔苗助长C .守株待免D .瓮中捉鳖 12.如图1所示是一张画有小白兔的卡片,卡片正对一面镜子,这张卡片在镜子里的影像是下列各图中的( )图1 A . B . C . D .13.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( )A .3:4B .2:3C .3:5D .1:2 14.若关于x 的方程1011--=--m x x x 有增根,则m 的值是( )。
广东省深圳市2019年中考数学模拟试卷(解析版)一、选择题1.﹣2019的相反数是()A.﹣B.C.﹣2019 D.20192.由七个大小相同的正方体组成的几何体如图所示,则它的左视图是()A.B.C.D.3.“提高节能,倡导低碳”,2019年3月30日“地球一小时”,深圳市民中心附近几座地标性建筑物都相继熄灭.据深圳供电局统计,在短短一小时里,深圳耗电量比上周六同时段相比减少了33900千瓦时,将33900用科学记数法表示为(结果保留2个有效数字)()A.3.3×104B.3.4×103C.33×103D.3.4×1044.(2019•深圳模拟)下列运算正确的是()A.3a3+4a3=7a6B.3a2﹣4a2=﹣a2C.3a2•4a3=12a3D.(3a3)2÷4a3=a25.某商场试销一种新款衬衫,一周内销信情况如表所示:型号(厘米)38 39 40 41 42 43数量(件)25 30 36 50 28 8商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最具有意义的是()A.平均数B.众数 C.中位数D.方差6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°8.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是()A.B.C.D.9.下列不等式变形正确的是()A.由a>b,得ac>bcB.由a>b,得﹣2a<﹣2bC.由a>b,得﹣a>﹣b D.由a>b,得a﹣2<b﹣210.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列四个结论:①b<0;②c >0;③b2﹣4ac>0;④a﹣b+c<0,其中正确的个数有()A.1个B.2个C.3个D.4个11.已知下列命题:()①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有.A.1 个 B.2个C.3个D.4个12.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF 与DE相交于点G,连接CG与BD相交于点H.下列结论:=CG2;③若AF=2DF,则BG=6GF.①△AED≌△DFB;②S四边形BCDG其中正确的结论()A.只有①②B.只有①③C.只有②③D.①②③二、填空题:13.分解因式:2a2﹣8=.14.如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=°.15.填在如图各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.16.如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为.三、解答题17.计算:.18.解方程:19.某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其它四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了尚不完整的频数分布表:类别频数(人数)频率文学m 0.42艺术22 0.11科普66 n其他28合计 1(1)表中m=,n=;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最少?(4)根据以上调查,试估计该校1200名学生中最喜爱阅读科普读物的学生有多少人?20.如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A,与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由.(3)若AB=8,BC=10,求大圆与小圆围成的圆环的面积.21.如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长.22.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利情况如表所示:销售方式粗加工后销售精加工后销售每吨获利(元)1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?23.如图,已知知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)如图(1),己知点H(0,﹣1).问在抛物线上是否存在点G (点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.2019年广东省深圳市中考数学模拟试卷参考答案与试题解析一、选择题1.﹣2019的相反数是()A.﹣B.C.﹣2019 D.2019【考点】相反数.【分析】根据相反数的定义,只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2019的相反数是2019.故选D.【点评】本题考查了相反数的定义,根据相反数的定义:a的相反数是﹣a即可得出正确答案,是基础题,比较简单.2.由七个大小相同的正方体组成的几何体如图所示,则它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面看可得到第一列为3个正方形,第二列有一个正方形.故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.“提高节能,倡导低碳”,2019年3月30日“地球一小时”,深圳市民中心附近几座地标性建筑物都相继熄灭.据深圳供电局统计,在短短一小时里,深圳耗电量比上周六同时段相比减少了33900千瓦时,将33900用科学记数法表示为(结果保留2个有效数字)()A.3.3×104B.3.4×103C.33×103D.3.4×104【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于33900有5位,所以可以确定n=5﹣1=4.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:33900=3.39×104≈3.4×104.故选D.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.4.下列运算正确的是()A.3a3+4a3=7a6B.3a2﹣4a2=﹣a2C.3a2•4a3=12a3D.(3a3)2÷4a3=a2【考点】整式的混合运算.【分析】A、原式合并同类项得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;D、原式先计算乘方运算,再计算除法运算得到结果,即可作出判断.【解答】解:A、原式=7a3,错误;B、原式=﹣a2,正确;C、原式=12a5,错误;D、原式=9a6÷4a3=a3,错误,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.某商场试销一种新款衬衫,一周内销信情况如表所示:型号(厘米)38 39 40 41 42 43数量(件)25 30 36 50 28 8商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最具有意义的是()A.平均数B.众数 C.中位数D.方差【考点】统计量的选择.【分析】根据题意可知最畅销的应为众数,本题得以解决.【解答】解:由题意可知,最畅销的型号应该是销售量最多的型号,故对商场经理来说最具有意义的是众数,故选B.【点评】本题考查统计量的选择,解题的关键是明确题意,找出满足所求问题的条件.6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【考点】一元一次不等式的应用.【分析】本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200×﹣800≥800×5%,解出x的值即可得出打的折数.【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.【点评】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【考点】平行线的性质.【分析】本题主要利用两直线平行,内错角相等作答.【解答】解:根据题意可知,两直线平行,内错角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.【点评】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.8.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是()A.B.C.D.【考点】几何概率.【分析】根据几何概率的定义,分别求出两圆中2所占的面积,即可求出针头扎在阴影区域内的概率.【解答】解:指针指向(1)中2的概率是,指针指向(2)中2的概率是,指针所指区域内的数字之和为4的概率是×=.故选B.【点评】此题考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.两步完成的事件的概率=第一步事件的概率与第二步事件的概率的积.9.下列不等式变形正确的是()A.由a>b,得ac>bcB.由a>b,得﹣2a<﹣2bC.由a>b,得﹣a>﹣b D.由a>b,得a﹣2<b﹣2【考点】不等式的性质.【分析】根据不等式的基本性质分别进行判定即可得出答案.【解答】解:A.由a>b,得ac>bc,当c<0,不等号的方向改变.故A选项错误;B.由a>b,得﹣2a<﹣2b,不等式两边乘以同一个负数,不等号的方向改变,故B选项正确;C.由a>b,得﹣a>﹣b,不等式两边乘(或除以)同一个负数,不等号的方向改变;故C 选项错误;D.由a>b,得a﹣2<b﹣2,不等式两边同时减去一个数,不等号方向不改变,故D选项错误.故选B.【点评】此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列四个结论:①b<0;②c >0;③b2﹣4ac>0;④a﹣b+c<0,其中正确的个数有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线开口向下知道a<0,而对称轴在y轴左侧,即b<0,因此判断①正确;由抛物线与y轴的交点在正半轴得到c>0,因此可以判断②正确;由图象与x轴有两个交点得到以b2﹣4ac>0,因此可以判断③正确;由图象可知当x=﹣1时,对应的函数值y=a﹣b+c>0,所以判断④错.【解答】解:①∵抛物线开口向下,∴a<0,而对称轴在y轴左侧,∴a、b同号,即b<0,正确;②∵抛物线与y轴的交点在正半轴,∴c>0,正确;③∵图象与x轴有两个交点,∴b2﹣4ac>0,正确;④∵由图象可知当x=﹣1时,对应的函数值y=a﹣b+c>0,错误.故选C.【点评】本题考查二次函数的字母系数与图象位置之间的关系.11.已知下列命题:()①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有.A.1 个 B.2个C.3个D.4个【考点】命题与定理.【分析】利用平行四边形的判定、菱形的判定、等腰梯形的性质及平行线的性质分别判断后即可确定正确的选项.【解答】解:①对角线互相平分的四边形是平行四边形,正确,是真命题;②等腰梯形的对角线相等,正确,是真命题;③对角线互相垂直的平行四边形是菱形,错误,为假命题;④两直线平行,内错角相等故错误,是假命题.其中假命题有2个,故选B .【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形的判定、菱形的判定、等腰梯形的性质及平行线的性质,难度不大.12.如图,在菱形ABCD 中,AB=BD .点E 、F 分别在AB 、AD 上,且AE=DF .连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .下列结论:①△AED ≌△DFB ;②S 四边形BCDG =CG 2;③若AF=2DF ,则BG=6GF .其中正确的结论( )A .只有①②B .只有①③C .只有②③D .①②③【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;平行线分线段成比例.【分析】①易证△ABD 为等边三角形,根据“SAS ”证明△AED ≌△DFB ;②证明∠BGE=60°=∠BCD ,从而得点B 、C 、D 、G 四点共圆,因此∠BGC=∠DGC=60°.过点C 作CM ⊥GB 于M ,CN ⊥GD 于N .证明△CBM ≌△CDN ,所以S 四边形BCDG =S 四边形CMGN ,易求后者的面积.③过点F 作FP ∥AE 于P 点.根据题意有FP :AE=DF :DA=1:3,则FP :BE=1:6=FG :BG ,即BG=6GF .【解答】解:①∵ABCD 为菱形,∴AB=AD .∵AB=BD ,∴△ABD 为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF ,AD=BD ,∴△AED ≌△DFB ;②∵∠BGE=∠BDG +∠DBF=∠BDG +∠GDF=60°=∠BCD ,即∠BGD +∠BCD=180°,∴点B 、C 、D 、G 四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C 作CM ⊥GB 于M ,CN ⊥GD 于N .∴CM=CN ,∵,∴△CBM ≌△CDN ,(HL )∴S 四边形BCDG =S 四边形CMGN .S 四边形CMGN =2S △CMG ,∵∠CGM=60°,∴GM=CG ,CM=CG ,∴S 四边形CMGN =2S △CMG =2××CG ×CG=CG 2. ③过点F 作FP ∥AE 于P 点.∵AF=2FD ,∴FP :AE=DF :DA=1:3,∵AE=DF ,AB=AD ,∴BE=2AE ,∴FP :BE=1:6=FG :BG ,即 BG=6GF .故选D .【点评】此题综合考查了全等三角形的判定和性质、平行线分线段成比例、不规则图形的面积计算方法等知识点,综合性较强,难度较大.二、填空题:13.分解因式:2a2﹣8=2(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【解答】解:2a2﹣8=2(a2﹣4),=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=65°.【考点】圆周角定理;坐标与图形性质.【分析】根据∠DAB=20°,得出∠DOB的度数,再利用等腰三角形的性质得出∠OCD=∠CDO,进而求出答案.【解答】解:连接DO,∵∠DAB=20°,∴∠DOB=40°,∴∠COD=90°﹣40°=50°,∵CO=DO,∴∠OCD=∠CDO,∴∠OCD=(180°﹣50°)÷2=65°.故答案为:65.【点评】此题主要考查了圆周角定理以及等腰三角形的性质,得出∠OCD=∠CDO是解决问题的关键.15.填在如图各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【分析】设第n个正方形中的四个数(从左上角开始按逆时针排列)为a n、b n、c n、d n,根据给定的数据找出c n的变化规律“c n=4n2+2n+2”,依此规律即可解决问题.【解答】解:设第n个正方形中的四个数(从左上角开始按逆时针排列)为a n、b n、c n、d n,观察,发现规律:∵a1=0,a2=2,a3=4,…,∴a n=2(n﹣1);∵b1=2,b2=4,b3=6,…,∴b n=2n;∵d1=4,d2=6,d3=8,…,∴d n=2(n+1);∵c1=8═2×4﹣0=b1•d1﹣a1,c2=22=4×6﹣2=b2•d2﹣c2,c3=44=6×8﹣4=b3•d3﹣a3,…,∴c n=b n•d n﹣a n=4n2+2n+2.令a n=2(n﹣1)=10,解得:n=6.∴c6=4×62+2×6+2=158.故答案为:158.【点评】本题考查了规律型中的数字的变化类,解题的关键是求出正方形中右下角数的变化的规律“c n=4n2+2n+2”.本题属于中档题,难度不大,解题的关键是根据给定的数据,找出变化规律是关键.16.如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为4.【考点】三角形的内切圆与内心;待定系数法求反比例函数解析式;正方形的性质.【分析】根据正方形的性质得出AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,进而根据半径为(4﹣2)的圆内切于△ABC,得出CD的长,从而得出DO的长,再利用勾股定理得出DN的长进而得出k的值.【解答】解:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数经过正方形AOBC对角线的交点,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(4﹣2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(4﹣2)2,∴QC2=48﹣32=(4﹣4)2,∴QC=4﹣4,∴CD=4﹣4+(4﹣2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=4,∴DN×NO=4,即:xy=k=4.故答案为:4.【点评】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=4是解决问题的关键.三、解答题17.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题需先根据实数运算的步骤和法则分别进行计算,再把所得结果合并即可.【解答】解:原式=,=.【点评】本题主要考查了实数的运算,在解题时要注意运算顺序和公式的综合应用以及结果的符号是本题的关键.18.解方程:【考点】解分式方程.【分析】观察方程可得最简公分母是:(x﹣2)(x+2),两边同时乘最简公分母可把分式方程化为整式方程来解答.【解答】解:方程两边同乘以(x﹣2)(x+2),得(x﹣2)2+4=(x﹣2)(x+2),解得x=3.经检验:x=3是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其它四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了尚不完整的频数分布表:类别频数(人数)频率文学m 0.42艺术22 0.11科普66 n其他28合计 1(1)表中m=84,n=0.33;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最少?(4)根据以上调查,试估计该校1200名学生中最喜爱阅读科普读物的学生有多少人?【考点】频数(率)分布表;用样本估计总体.【分析】(1)首先求出总人数,利用艺术类的频数与频率进而求出答案;(2)利用(1)中所求,即可得出答案;(3)利用(1)中所求,利用总数乘以0.33即可得出答案.【解答】解:(1)由题意可得:22÷0.11=200,则m=200×0.42=84,n==0.33,故答案为:84,0.33;(2)由题意可得:最喜爱阅读艺术类读物的学生最少;(3)1200名学生中最喜爱阅读科普读物的学生有:1200×0.33=396(人).【点评】此题主要考查了频数与频率,正确得出m,n的值是解题关键.20.如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A,与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由.(3)若AB=8,BC=10,求大圆与小圆围成的圆环的面积.【考点】直线与圆的位置关系;扇形面积的计算.【分析】(1)只要证明OE垂直BC即可得出BC是小圆的切线,即与小圆的关系是相切.(2)利用全等三角形的判定得出Rt△OAD≌Rt△OEB,从而得出EB=AD,从而得到三者的关系是前两者的和等于第三者.(3)根据大圆的面积减去小圆的面积即可得到圆环的面积.【解答】解:(1)BC所在直线与小圆相切.理由如下:过圆心O作OE⊥BC,垂足为E;∵AC是小圆的切线,AB经过圆心O,∴OA⊥AC;又∵CO平分∠ACB,OE⊥BC,∴OE=OA,∴BC所在直线是小圆的切线.(2)AC+AD=BC.理由如下:连接OD.∵AC切小圆O于点A,BC切小圆O于点E,∴CE=CA;∵在Rt△OAD与Rt△OEB中,,∴Rt△OAD≌Rt△OEB(HL),∴EB=AD;∵BC=CE+EB,∴BC=AC+AD.(3)∵∠BAC=90°,AB=8cm,BC=10cm,∴AC=6cm;∵BC=AC+AD,∴AD=BC﹣AC=4cm,∵圆环的面积为:S=π(OD)2﹣π(OA)2=π(OD2﹣OA2),又∵OD2﹣OA2=AD2,∴S=42π=16π(cm2).【点评】本题考查了切线的判定,全等三角形的判定等知识点.要证某线是圆的切线,①已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可,②所证切线与圆的交点不明确,可以过圆心作该直线的垂线段,证明垂线段的长等于半径.21.如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长.【考点】相似三角形的判定与性质;矩形的判定与性质;梯形.【分析】(1)根据题意画出图形,得出矩形ABEC求出BE,即可求出CE;(2)过D作DM⊥BC于M,得出四边形ABMD是矩形,推出AD=BM=9,AB=DM=7,CM=12﹣9=3,设AF=CE=a,则BF=7﹣a,EM=a﹣3,BE=12﹣a,求出∠BFE=∠DEM,∠B=∠DME,证△FBE∽△EMD,得出比例式=,求出a即可.【解答】解:(1)当F和B重合时,∵EF⊥DE,∵DE⊥BC,∵∠B=90°,∴AB⊥BC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形,∴AD=EF=9,∴CE=BC﹣EF=12﹣9=3;(2)过D作DM⊥BC于M,∵∠B=90°,∴AB⊥BC,∴DM∥AB,∵AD∥BC,∴四边形ABMD是矩形,∴AD=BM=9,AB=DM=7,CM=12﹣9=3,设AF=CE=a,则BF=7﹣a,EM=a﹣3,BE=12﹣a,∵∠FEC=∠B=∠DMB=90°,∴∠FEB+∠DEM=90°,∠BFE+∠FEB=90°,∴∠BFE=∠DEM,∵∠B=∠DME,∴△FBE∽△EMD,∴=,∴=,a=5,a=17,∵点F在线段AB上,AB=7,∴AF=CE=17(舍去),即CE=5.【点评】本题考查了直角梯形性质,矩形的性质和判定,相似三角形的性质和判定等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较典型,是一道比较好的题目.22.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利情况如表所示:销售方式粗加工后销售精加工后销售每吨获利(元)1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?【考点】一次函数的应用.【分析】(1)本题等量关系为:精加工天数+粗加工天数=12,精加工吨数+粗加工吨数=140,列出方程组求解即可.(2)①根据精加工吨数和粗加工吨数的等量关系,用精加工吨数m来表示粗加工吨数,在列出W与m之间的关系,②根据题意要求先确定m的取值范围,然后表示W并求出W最大值.【解答】解:(1)设应安排x天进行精加工,y天进行粗加工,根据题意得,解得,答:应安排4天进行精加工,8天进行粗加工.(2)①精加工m吨,则粗加工(140﹣m)吨,根据题意得:W=2000m+1000(140﹣m)=1000m+140000;②∵要求在不超过10天的时间内将所有蔬菜加工完,∴+≤10,解得:m≤5∴0≤m≤5,又∵在一次函数W=1000m+140000中,k=1000>0,∴W随m的增大而增大,=1000×5+140000=145000.∴当m=5时,W最大∴精加工天数为5÷5=1,粗加工天数为(140﹣5)÷15=9.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用和一次函数的应用,解题关键在于看清题意,找到正确的等量关系,列出方程式,最后解出答案.23.如图,已知知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)如图(1),己知点H(0,﹣1).问在抛物线上是否存在点G (点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.【考点】二次函数综合题.【分析】(1)由抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,﹣3),利用待定系数法即可求得二次函数的解析式;(2)分别从GH∥AC与GH与AC不平行去分析,注意先求得直线GH的解析式,根据交点问题即可求得答案,小心不要漏解;(3)利用待定系数法求得直线DF的解析式,即可证得△PBE∽△FDP,由相似三角形的对应边成比例,即可求得答案.【解答】解:(1)由题意得:,解得:,∴抛物线的解析式为:y=x2+2x﹣3;(2)解法一:假设在抛物线上存在点G,设G(m,n),显然,当n=﹣3时,△HGC不存在.①当n>﹣3时,可得S△GHA=﹣++,S△GHC=﹣m,∵S△GHC=S△GHA,∴m+n+1=0,由,解得:或,∵点G在y轴的左侧,∴G(﹣,);②当﹣4≤n<﹣3时,可得S△GHA=﹣﹣,S△GHC=﹣m,∵S△GHC=S△GHA,∴3m﹣n﹣1=0,由,解得:或,∵点G在y轴的左侧,∴G(﹣1,﹣4).∴存在点G(﹣,)或G(﹣1,﹣4).解法二:①如图①,当GH∥AC时,点A,点C到GH的距离相等,∴S△GHC=S△GHA,可得AC的解析式为y=3x﹣3,∵GH∥AC,得GH的解析式为y=3x﹣1,∴G(﹣1,﹣4);②如图②,当GH与AC不平行时,∵点A,C到直线GH的距离相等,∴直线GH过线段AC的中点M(,﹣).∴直线GH的解析式为y=﹣x﹣1,∴G(﹣,),∴存在点G(﹣,)或G(﹣1,﹣4).(3)解法一:如图③,∵E(﹣2,0),∴D的横坐标为﹣2,∵点D在抛物线上,∴D(﹣2,﹣3),∵F是OC中点,∴F(0,﹣),∴直线DF的解析式为:y=x﹣,则它与x轴交于点Q(2,0),则QB=QD,得∠QBD=∠QDB,∠BPE+∠EPF+∠FPD=∠DFP+∠PDF+∠FPD=180°,∵∠EPF=∠PDF,∴∠BPE=∠DFP,∴△PBE∽△FDP,∴,得:PB•DP=,∵PB+DP=BD=,∴PB=,即P是BD的中点,连接DE,∴在Rt△DBE中,PE=BD=.解法二:可知四边形ABDC为等腰梯形,取BD的中点P′,P′F=(OB+CD)=,P′F∥CD∥AB,连接EF,可知EF=DF=,即EF=FP′=FD,即△FEP′相似△FP′D,即∠EP′F=∠FP′D=∠FDP′,即∠EP′F和∠EPF重合,即P和P′重合,P为BC中点,PE=BD=(△BDE为直角三角形).【点评】此题考查了待定系数法求二次函数的解析式,直线与二次函数的交点问题以及三角形面积问题的求解等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想、分类讨论思想与方程思想的应用。
黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)一.选择题(满分30分,每小题3分)1.我市有一天的最高气温为5℃,最低气温为﹣4℃,则这天的最高气温比最低气温高()A.9℃B.4℃C.﹣4℃D.﹣9℃2.下列运算中,计算正确的是()A.(3a2)3=27a6B.(a2b)3=a5b3C.x6+x2=x3D.(a+b)2=a2+b23.下列图形中,可以看作是中心对称图形的是()A.B.C.D.4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣15.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.6.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3 B.k<3 C.k≥3 D.k>37.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8 B.10 C.13 D.148.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A. +=t B. +=tC.•+•=t D. +=t9.如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2B.4 C.8 D.410.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为()A.购买A类会员卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二.填空题(满分30分,每小题3分)11.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.因式分解:4x2y﹣9y3=.14.若关于x的不等式组有且只有两个整数解,则m的取值范围是.15.计算结果为.16.如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为.17.扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为cm.18.已知盒子里有4个黄色球和n个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是,则n的值是.19.如图,P是边长为3的等边△ABC边AB上一动点,沿过点P的直线折叠∠B,使点B落在AC上,对应点为D,折痕交BC于E,点D是AC的一个三等分点,PB的长为.20.如图,边长为4正方形ABCD中,E为边AD的中点,连接线段EC交BD于点F,点M是线段CE延长线上的一点,且∠MAF为直角,则DM的长为.三.解答题(共7小题,满分60分)21.(7分)先化简,再求代数式÷(﹣2)的值,其中x=2sin60°+tan45°.22.(7分)在如图所示的方格纸中,将等腰△ABC绕底边BC的中点O旋转180°.(1)画出旋转后的图形;(2)观察:旋转后得到的三角形与原三角形拼成什么图形?(3)若要使拼成的图形为正方形,那么△ABC应满足什么条件?23.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.24.(8分)已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为;(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.25.(10分)某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(进价、售价均保持不变,利润=销售总收入﹣进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?26.(10分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.(1)如图1,求证:OE=AD;(2)如图2,连接CE,求证:∠OCE=∠ABD;(3)如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.27.(10分)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.参考答案一.选择题1.解:5﹣(﹣4)=5+4=9℃.故选:A.2.解:A、(3a2)3=27a6,故A正确;B、(a2b)3=a6b3,故B错误;C、x6与x2不是同类项,不能合并,故C错误;D、(a+b)2=a2+2ab+b2,故D错误;故选:A.3.解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意;故选:C.4.解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.5.解:几何体的俯视图是:故选:C.6.解:∵双曲线y=在每一个象限内,y随x的增大而减小,∴k﹣3>0∴k>3故选:D.7.解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC +AB +CE +BE =AC +AB +CF +BG =AF +AG =2AG =13, 故选:C .8.解:设小水管的注水速度为x 立方米/分钟,可得:,故选:C .9.解:∵四边形ABCD 是平行四边形, ∴BC =AD =6,OA =OC , ∵AC ⊥BC ,AB =10, ∴==8,∴AO =CO =AC =4, ∴OB ===2;故选:A.10.解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当40≤x≤50时,1050≤y A≤1300;1000≤y B≤1200;1000≤y C≤1150;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.二.填空题11.解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.12.解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.解:原式=y(4x2﹣9y2)=y(2x+3y)(2x﹣3y),故答案为:y(2x+3y)(2x﹣3y)14.解:解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,∵不等式组只有两个整数解,∴0≤<1,解得:﹣2≤m<1,故答案为﹣2≤m<1.15.解:原式===x.故答案为:x.16.解:∵∠BOC=2∠BAC=60°,又OB=OC,∴△BOC是等边三角形∴OB=BC=6,故答案为6.=lr17.解:∵S扇形∴120π=•10π•r∴r=24;故答案为24.18.解:由题意得:=解得:n=16;故答案为:16.19.解:两种情形:①如图1中,当AD=AC=1时,设PB=x,∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∵∠PDE=∠B=60°,∠PDC=∠PDE+∠EDC=∠A+∠APD,∴60°+∠EDC=60°+∠APD,∴∠EDC=∠APD,∴△APD∽△CDE,∴==,∴==,∴BE=DE=,EC=,∵BE+EC=3,∴+=3,∴x=.②如图2中,当AD=AC=2时,由△APD∽△CDE,可得==,∴==,∴DE=,EC=,∵BE+EC=3,∴=3,∴x=,综上所述,PB的长为或.20.解:作MN⊥AD垂足为N.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABF=∠CBF,BC∥AD,∠BAD=∠CDA=90°,∵BF=BF,∴△BFA≌△BFC,∴∠BAF=∠BCF=∠CED=∠AEM,∵∠MAF=∠BAD=90°,∴∠BAF=∠MAE,∴∠MAE=∠AEM,∴MA=ME∵AE=ED=AD=2,∴AN=NE==1,∵∠MNE=∠CDE=90°,∴MN∥CD,∴=,∵CD=4,∴MN=2,在RT△MND中,∵MN=2,DN=3,∴DM===,故答案为.三.解答题21.解:原式=÷=÷=•=,当x=2sin60°+tan45°=2×+1=+1时,原式==.22.解:(1)旋转后的图形如图所示.(2)旋转后得到的三角形与原三角形拼成菱形.理由:设△ABC绕0旋转180°后得到△A′B′C′,则△ABC≌△A′B′C′,∵O是BC的中点,∴B点的对应点B′与C重合,C点的对应点C′与B重合,∴A′B=AC,A′C=AB,∵AB=AC,∴A′B=AB=AC=A′C,∴四边形ABA’C是菱形.(3)当△ABC是等腰直角三角形时,拼成的图形是正方形.理由:由(2)知,四边形ABA,C是菱形,又因为∠BAC=90°,所以四边形ABA’C是正方形.23.解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×=560(人),答:该校对在线阅读最感兴趣的学生有560人.24.解:(1)如图1,在BC上截取AE=AD得点E,作AF垂直DE交CD于点F(或作∠AED 的平分线AF交CD于点F,或作EF垂直AE交CD于点F等等),∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=90°,在Rt△ABE中,BE==6,∴EC=10﹣6=4,设EF=DF=x,在Rt△EFC中,则有x2=(8﹣x)2+42,解得x=5,∴EF=5.故答案为:5;(2)证明:如图2,作DH垂直AC于点H,延长DH至点E,使HE=DH.方法1:∵△ADC≌△AEC,∴AD=AE=BC,AB=DC=EC,在△ABE与△CEB中,,∴△ABE≌△CEB(SSS),∴∠AEB=∠CBE,∴BF=EF,∴△BEF是等腰三角形.方法2:∵△ADC≌△AEC,∴AD=AE=BC,∠DAC=∠EAC,又∴AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴FA=FC,∴FE=FB,∴△BEF是等腰三角形.25.解:(1)设A、B两种型号的空调的销售单价分别为x元,y元,根据题意,得:,解得:,答:A、B两种型号的空调的销售单价分别为2500元,2100元;(2)设采购A种型号的空调a台,则采购B型号空调(30﹣a)元,根据题意,得:2000a+1700(30﹣a)≤54000,解得:a≤10,答:A种型号的空调最多能采购10台.26.解:(1)如图1所示,连接OB,∵∠A=60°,OA=OB,∴△AOB为等边三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE为等边三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD.(2)如图2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∵∠BOA=60°,∴∠EOC=60°,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD.(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四边形MQOG为平行四边形,设AD为x,则OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.27.解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)∵OB=OC=3,∴∠OBC=∠OCB=45°,AM=MB=AB sin45°==AD=BD,则四边形ADBM为菱形,而∠AMB=90°,∴四边形ADBM为正方形;(3)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),△PBC∵﹣<0,故S有最大值,此时x=,△PBC故点P(,﹣);(4)存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,AQ+Q C最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+QC的最小值为.。
名校中考模拟考试数学卷班级: 姓名: 成绩: 一.选择题(本大题10小题,每小题3分,共30分) 1. 16的算术平方根是( )A. ±4B.4C.-4D.±22. 2018年广东省经济保持平稳健康发展,国家统计局核定,其实现地区生产总值(CDP)973000000元将数据973000000000用科学记数法表示为( ) A.9.73×1011 B.97.3×1011 C.9.73×1012 D.0.973×1033. 下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B C D 4. 下列计算中,正确的是( )A. 0(5)0-=B. 347x x x +=C. 23246()a b a b -=- D. 1222a a a -∙=5. 若一个多边形的内角和是1080°,则这个多边形的边数为( ) A.6 B.7 C.8 D.106. 在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球摸到绿球的概率为( )A.1B. 14C. 12D. 347. 如图,在△ABC 中,点D,E 分别在边AB,AC 上,下列条件中不能判断△ABC △AED 的是( )A .∠AED=∠B B .∠ADE=∠C C .D .8. 下列一元二次方程中,没有实数根的是( )A.x 2-2x=0B.x 2+4x-1=0C.2x 2-4x+3=0D.3x 2=5x-2 9. 等腰三角形的周长为11cm,一边长为3cm,则另两边长为( )A. 3cm,5cmB. 4cm,4cmC.3cm,5cm 或4cm,4cmD.以上都不对 10.如图,过点A(4、5)分别作x 轴、y 轴的平行线,交直线y=-x+6于B,C 两点,若函数(0)ky x x=>的图象与△ABC 的边有公共点,则A 的取值范围是( ) A. 5≤k ≤20 B. 8≤k ≤20 C. 5≤k ≤8 D. 9≤k ≤20二.填空题(本大題6小题,每小题4分,共24分)11.一组数据-3、2、2、0、2、1的众数是 。
12.不等式2x+3≥x+1,的解集是 。
13. 因式分解:a 3-9b 2= 。
14. 如图,四边形ABCD 为⊙O 的内接四边形,∠BOD=120°,则∠BCD 为 。
15.如图,在矩形ABCD 中,点E,F 分别在边D,BC 上,且DC=3DE=3a.将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP= 。
16.如图,点O 是 DABCD 的对称中心,ADAB,点E,F 在边AB 上,且AB=2EF,点G,H 在边BC 边上,且BC=3GH,则△EOF 和△GOH 的面积比为 三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算: 0011(2019)2sin 3033π--+--+18.先化简,再求值: 21(1)211a a a a ÷+-++,其中119.某商店欲购进一批跳绳,若同时购进A 种跳绳10根和B 种跳绳7根,则共需395元;若同时购进A 种跳绳5根和B 种跳绳3根,则共需185元A,B 两种跳绳的单价各是多少?四、解答题(二)(本大题3小题,每小题7分,共21分) 20. 如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC=AC .(1) 利用直尺与圆规先作∠ACB 的平分线交AD 于F 点, 再作线段AB 的垂直平分线,交AB 于点E,最后连接EF(2) 若线段BD 的长为6,求线段EF 的长21. 中华文化源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中抽取n 名学生进行调查.根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题: (1)求n 的值;(2)请将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校四大古典名著均已读完的人数.22.如图,九年级学生在一次社会实践活动中参观了具有深厚文化底蕴的观音山后感概万千,这座观音多高呢?为了测量这座观音像的高度AB,数学兴趣小组在C 处用高为1.5米的测角仪CE,测得塔顶A 角为42°,再向观音像方向前进12米,又测得观音像的顶端A 的仰角为61°,求这座观音像的高度AB 。
(参考数据:sin 042≈0.67,tan 042≈0.90,sin 061≈0.87,tn 061≈1.80,结果保留整数)五、解答题(三)(本大题3小题,每小题9分,共27分)23.在直角坐标平面内,直线y=12x+2分别与x轴、y轴交于点A、C.抛物线y=-12x2+bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.(1)求上述抛物线的表达式;(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D 的坐标.24. 如图,⊙O是等腰直角△ABC的外接圆,点D是BC上一动点,BD,AC的延长线交于点K 连接,CD(1)求证:∠AKB-∠BCD=45°(2)如图2,若DC=DB时,求证:BC=2CK(3)如图3,在(2)的条件下,连接AD交BC于点E,过点C作CF⊥AD于点F,延长CF交AB于点G连接GE,若GE=5,求CD的长25.已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.答案分析参考答案及评分标准数学一、选择题(本大题10小题,每小题3分,共30分)1.B2.A3.B4.D5.C6.B7. A8.C9. C 10.A二、填空题(本大题6小题,每小题4分,共24分)11.2 12.﹣2<x≤1 13.a(a+3b)(a﹣3b)14.120°15.2 a 16.3:2三、解答题(一)(本大题3小题,每小题6分,共18分)17.解:原式1﹣2……………………………………3分.……………………………………6分18.解:原式……………………………………1分……………………………………3分,……………………………………4分当a1时,原式.……………………………………6分19.解:设A种跳绳的单价为x元,B种跳绳的单价为y元.…………………1分根据题意得,……………………………………3分解得.……………………………………5分答:A种跳绳的单价为22元,B种跳绳的单价为25元.…………………6分四、解答题(二)(本大题3小题,每小题7分,共21分)20.解:(1)所作图形如下:……………………………………3分(2)∵CF平分∠ACB,∴∠ACF=∠BCF.……………………………………4分又∵DC=AC,∴CF是△ACD的中线,∴点F是AD的中点. ……………………………………5分∵点E是AB的垂直平分线与AB的交点,∴点E是AB的中点,……………………………………6分∴EF是△ABD的中位线,∴EF BD=3. ……………………………………7分21.解:(1)根据题意得30÷30%=100(人),则n的值为100. ……………2分(2)四大古典名著读完了2部的人数为100﹣(5+15+30+25)=25(人),补全条形统计图如图:…………………………………5分(3)根据题意得25%×2 000=500(人),…………………………………6分答:该校四大古典名著均已读完的人数为500人.…………………………………7分22.解:设AE=x,在Rt△ACE中,CE,…………………………2分在Rt△AFE中,FE,…………………………3分由题意得CF=CE﹣FE ,即﹣=12,解得x=21.6,…………………………5分故AB=AE+BE=21.6+1.5≈23(米).…………………………6分答:这座观音像的高度AB约为23米.…………………………7分五、解答题(三)(本大题3小题,每小题9分,共27分)23.解:(1)当y=0时,x+2=0,解得x=﹣4,则A(﹣4,0);当x=0时,y x+2=2,则C(0,2),……………………………………1分把A(﹣4,0),C(0,2)代入y bx+c得,解得,……………………………………2分∴抛物线的表达式为y x+2. ……………………………………3分(2)如图1,过点E作EH⊥AB于点H,图1当y=0时,x+2=0,解得x1=﹣4,x2=1,则B(1,0). 设E(x ,x+2),∵S△ABC×(1+4)×2=5,而△ABE的面积与△ABC的面积之比为4:5,∴S△AEB=4,…………………4分∴×(1+4)•(x+2)=4,解得x,∴E (,),∴BH=1,……………………………………5分在Rt△BHE中,tan∠EBH,即∠DBA 的正切值为. ……………………………………6分(3)∠AOC=∠DFC=90°,①如图2,当∠DCF=∠CAO时,△CFD∽△AOC,则CD∥AO,图2∴点D的纵坐标为2,把y=2代入y x+2得x+2=2,解得x1=﹣3,x2=0(舍去),∴D(﹣3,2). ……………………………………7分②如图3,当∠DCF=∠ACO时,△DCF∽△ACO,过点D作DG⊥y轴于点G,过点C作CQ⊥DC交x轴于点Q,图3∵∠DCQ=∠AOC,∴∠DCF+∠ACQ=90°,即∠ACO+∠ACQ=90°,而∠ACO+∠CAO=90°,∴∠ACQ=∠CAO,∴QA=QC,设Q(m,0),则m +4,解得m,∴Q (,0),∵∠QCO+∠DCG=90°,∠QCO+∠CQO=90°,∴∠DCG=∠CQO,∴Rt△DCG∽Rt△CQO,∴,即,设DG=4t,CG=3t,则D(﹣4t,3t+2),把D(﹣4t,3t+2)代入y x+2得﹣8t2+6t+2=3t+2,整理得8t2﹣3t=0,解得t1=0(舍去),t 2,∴D (,).综上所述,点D的坐标为(﹣3,2)或(,).…………………………9分24.(1)证明:如图1,连接AD,∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,AC=BC,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,…………………………………1分设∠CBK=∠DAC=α,则∠DAB=∠BCD=45°﹣α,∠AKB=90°﹣α,……………………………2分∴∠AKB﹣∠BCD=45°. ……………………………………3分(2)证明:如图1,过点C作CH⊥AD,∵∠CDH=∠CBA=45°,∴CD CH,∵CD DB,∴CH=DB,……………………………………4分∵∠CEH=∠BED,∠CHE=∠BDE=90°,∴△EHC≌△EDB(AAS),∴CE=BE BC,……………………………………5分∵∠CAE=∠CBK,AC=BC,∠ACE=∠BCK,∴△ACE≌△BCK(ASA),∴CK=CE=BE BC,即BC=2CK. ……………………………………6分(3)解:如图2,过点G作GH⊥BC于点H,则∠GHC=90°,∵AB是直径,∴∠ADB=90°,∵CG⊥AD于点F,∴∠CFE=∠ADB=90°,∴CG∥BD,∴∠GCB=∠CBD=∠CAD,……………………………………7分∵∠ACE=90°,CE=BE BC AC,∴tan∠GCB=tan∠CAD ,∴,∵∠ABC=45°,∠GHB=90°,∴GH=BH,设GH=BH=a,则CH=2a,BC=3a,∴BE a,EH a,在Rt△EGH中,(a)2+a2=52,解得a=2(负值舍去),∴CE=3,……………………………………8分∵tan∠GCB ,∴,设EF=x,CF=2x,∴x2+(2x)2=(3)2,解得x=3(负值舍去),∴CF=6,∵∠CDA=∠CBA=45°,∴CD=6.……………………………………9分25.解:(1)如图,作DH⊥AB于H,则四边形DHBC是矩形,∴CD=BH=8,DH=BC=6,∴AH=AB﹣BH=8,AD10,BD10,由题意AP=AD﹣DP=10﹣2t.……………………………………2分(2)如图,作PN⊥AB于N,连接PB.在Rt△APN中,P A=10﹣2t,∴PN=P A•sin∠DAH(10﹣2t),AN=P A•cos∠DAH(10﹣2t),∴BN=16﹣AN=16(10﹣2t),……………………………………3分∴S四边形CPQB=S△PQB+S△BCP(16﹣2t)•(10﹣2t )6×[16(10﹣2t)]t 2t+72. ……………………………………5分(3)存在.……………………………………6分理由:如图,连接BE交DH于K,作KM⊥BD于M.当BE平分∠ABD时,△KBH≌△KBM,∴KH=KM,BH=BM=8,∴DM=2,设KH=KM=x,在Rt△DKM中,(6﹣x)2=22+x2,解得x,……………………………………7分作EF⊥AB于F,则△AEF≌△QPN,∴EF=PN(10﹣2t),AF=QN(10﹣2t)﹣2t,∴BF=16﹣[(10﹣2t)﹣2t],……………………………………8分∵KH∥EF,∴,∴,解得t,经检验,t是分式方程的解,∴当t s时,点E在∠ABD的平分线上.……………………………。