基本不等式
- 格式:docx
- 大小:388.53 KB
- 文档页数:8
基本不等式全部公式1.三角不等式:对于任意实数a和b,有,a+b,≤,a,+,b2. Cauchy-Schwarz 不等式:对于任意实数 a1, a2,...,an 和 b1, b2,...,bn,有(a1b1 + a2b2 + ... + anbn)² ≤ (a₁² + a₂² + ... + an²)(b₁² + b₂² + ... + bn²)3. 二次平均不等式:对于任意非负实数 x1, x2,...,xn,有√((x₁² + x₂² + ... + xn²)/n) ≥ ((x₁ + x₂ + ... + xn)/n)4. 广义平均不等式:对于任意非负实数 x1, x2,...,xn 和实数 p ≠ 0,有(x₁ᵖ + x₂ᵖ + ... + xnᵖ)/n ≥ ((x₁ + x₂ + ... + xn)/n)ᵖ5. AM-GM 不等式:对于任意非负实数 x₁, x₂,...,xn,有(x₁x₂...xn)^(1/n) ≤ (x₁ + x₂ + ... + xn)/n6. Jensen 不等式:设 f 是凸函数,则对于非负实数 x₁, x₂, (x)和非负实数权重 w₁, w₂,...,wn,有f(w₁x₁ + w₂x₂ + ... + wnxn) ≥ w₁f(x₁) + w₂f(x₂) + ... +wnfn(xn)7. Hessemberg 不等式:对于非负实数 x₁, x₂,...,xn,有(x₁ + t)ⁿ ≤ x₁ⁿ + nx₁ⁿ⁻¹t + n(n-1)x₁ⁿ⁻²t²/2 + ... + tⁿ8. Bernoulli 不等式:对于实数x ≥ -1 和正整数 n,有(1+x)ⁿ ≥ 1 + nx9. Muirhead 不等式:对于非负实数 a₁, a₂,...,an 和 b₁,b₂,...,bn 满足 a₁ + a₂ + ... + an = b₁ + b₂ + ... + bn,有a₁ᵖ₁a₂ᵖ₂...anᵖₙ + permutations ≥ b₁ᵖ₁b₂ᵖ₂...bnᵖₙ + permutations10. 反柯西不等式:对于任意非负实数 a₁, a₂,...,an,有(a₁/a₂ + a₂/a₃ + ... + an-₁/an + an/a₁) ≥ n以上是一些常见的基本不等式公式。
基本不等式的所有公式及常用解法1.加减法不等式公式:若a>b,则a+/-c>b+/-c,其中c为任意实数。
2.乘法不等式公式:若a>b且c>0,则a*c>b*c;若a>b且c<0,则a*c<b*c。
3.幂次不等式公式:对任意非零实数a和b若a>b且n>0且n为正整数,则a^n>b^n;若a>b且0<n<1,则a^n<b^n。
4.倒数不等式公式:若a>b>0,则1/a<1/b。
5.奇偶性不等式公式:若a>0且n为正整数,则a^n>0。
若a<0且n为奇数整数,则a^n<0。
常用的解基本不等式的方法有:1.用数轴法解:将不等式绘制在数轴上,根据不等式的性质找出符合条件的x的取值范围。
2.用代数方法解:针对不等式上的加减法、乘法、幂次或倒数等,利用基本不等式公式进行运算,化简不等式,最终得到x的取值范围。
3.用平方差、立方差或更高次差法解:对于特定形式的不等式,如二次函数不等式(即含有二次项的不等式),可使用平方差公式将其转化为不等式的标准形式;同样,对于三次函数不等式(即含有三次项的不等式),可使用立方差公式将其转化为不等式的标准形式。
通常,对高次不等式的解法需要更高级的数学知识,此处不再详细介绍。
4.用函数图像解:对于一些特定函数,如一次函数、二次函数等,可通过绘制函数图像来判断不等式的解集。
5.用不等式链解:若能将一个不等式化为多个简单的不等式,即不等式的解集满足一系列条件,可通过每个条件对应的不等式求解解集。
以上是基本不等式的一些公式和常用解法。
对于不同的不等式,我们需要根据具体情况选择合适的解法。
希望以上内容对您有所帮助。
基本不等式一、 基本不等式的依据由于无论x ,y 取何值,都有()20x y -≥成立,则必有222x y xy +≥,显然当x y =时()2x y -有最小值0,于是我们得到:”成立时,“当且仅当==≥+∈∀y x xy y x R y x ,2,,22同样的,当x y ==”成立时,“当且仅当==≥+>>∀b a ab b a b a ,2,0,0,我们称之为基本不等式基本不等式的公示变形:()()210,0,20,0,22a b a b a b a b ab ++⎛⎫>>≥>>≤ ⎪⎝⎭变形变形, ※ 其中2ba +叫做a ,b 的算术平均数,ab 称作a ,b 的几何平均数二、 几何意义如右图所示:显然2a b +DE 的一半DC由于ADC ∆∽DBC,∆则2DC AC BC =⋅,即DC =.即,任意圆的半径都不小于圆内的任何一条弦长的一半三、 例题1.10,x x x>+已知求的最小值110,0,2x x x x >>+≥=因为则,则当11x x x==±时,即,而0x >, 所以当11x x x=+时,有最小值2 2.已知01x <<,求函数()1y x x =-的最大值因为01x <<,则0,10x x >->,则()211124x x y x x +-⎛⎫=-≤= ⎪⎝⎭ 即当()1x x =-时,12x =时,y 有最大值14总结:基本不等式的作用可以用来求函数的最值以及式子的范围,但基本不等式的应用需要条件注意:先要验证是否满足基本不等式的前提条件:,x y 均大于零然后,验证式子是否存在,x y xy +其中一个是固定的值,则另一个必有最值 最后,则要求出取得最值时的x ,y 的值,x ,y 的值必须满足第一个条件我们称利用基本不等式时,要满足:一正,二定,三相等,缺一不可,依次递推四、 基本不等式的常见题型1. 积时定值,和有最值例1:已知1x >,求11y x x =+-的最值 分析:显然第一个条件满足,而第二个积不是定值,不能使用,可以进行变形为1111y x x =-++-,即可求出例2:已知0x <,求1y x x=+的最值 分析:第一个条件10,0x x<<不成立,所以无法直接利用基本不等式,需要进行简单变形:()1y x x ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦,这时10,0x x ->->,12x x ⎛⎫-+-≥= ⎪⎝⎭ 即1[]2y x x ⎛⎫=--+-≤- ⎪⎝⎭,当且仅当1x x -=-时, 1x =±,又因为0x <, 则1x =-时,函数y 有最大值-2练习:112,33y x x x =+>-求时的最小值512,42445x y x x <=-+-求函数的最大值2313,0x x y x x++=>求时的最小值24)y x R =∈求的最小值2. 和是定值,积有最值例:当302x <<,求()32y x x =⋅-的最值 分析:第一个条件满足.而和不是定值,故需要适当变形: ()()1322322y x x x x =⋅-=⋅⋅- 这样就可以求出函数的最值了()()2112329322322228x x y x x x x +-⎛⎫=⋅-=⋅⋅-≤= ⎪⎝⎭, 当且仅当()232x x =-时,即34x =时,函数y 有最大值98练习: 104(82)x y x x <<=-当时,求的最大值22111x y x -≤≤=-,求函数的最大值33.利用条件化为1,借助1进行代换810,0,1,2x y x y x y>>+=+例:已知且求的最小值 分析: ()()811621282x yx y x y x y y x ⎛⎫+⋅=+⋅+=+++ ⎪⎝⎭,显然就可以求出最值了练习:141,,2,x y R x y x y+∈+=+已知求的最小值<2>已知0,0,a b >>a+b=2,则14y a b=+的最小值<3>若正数x ,y 满足35x y xy +=,求3x+4y 的最小值4.利用基本不等式转化成不等式求解,,3,xy x y x y R xy x y +∈=+++例:已知求,的范围练习:10,0,80,xy x y x y xy >>++-=已知求的最大值20,0,228,2x y x y xy x y >>++=+求的最小值<3>若对于任意的正数x ,231x a x x ≤++恒成立,则a 的取值范围5.扩展21,112a b a b x y a b +≤≤≤=+若都是正数,则时成立33332,,,3,,,,,3a b c R a b c abc a b c a b c R a b c a b c a b c abc a b c ++∈++≥==∈++≥==++⎛⎫≤== ⎪⎝⎭当且仅当时,等号成立当且仅当时,等号成立当且仅当时,等号成立例题:29104x y x x>=+当时,求的最小值2320(32)2x y x x <<=-当时,求的最大值22233332019,,1,1111(2)()()()24a b c abc a b c a b ca b b c a c =⎡⎤⎣⎦++≤+++++++≥全国均为正数,且证明:()6.实际应用:<1>某工厂要建造一个长方体的无盖存水池,其容积为4800立方米,深为3米,如果池底造价为每平方米150元,池壁每平方造价为120元,怎么设计水池能使总造价最低?最低造价是多少?<2>十九大提出中国的电动汽车革命早已展开,通过新能源汽车替代汽油车,中国正大力实施一项计划,某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,当生产量为x(百辆)时,需另外投入成本C(x)万元,且210100,040()10000501,40x x xC xx xx⎧+<<⎪=⎨+≥⎪⎩,由市场调研可知,每辆车的售价为5万元,且全年内生产的车辆当年能全部销售完.(1)求今年的利润()L x(万元)关于生产量x(百辆)的函数关系式(2)今年生产量为多少百辆时,该企业获得的利润最大?并求出最大利润.。
基本不等式完整版一、知识点总结1.基本不等式原始形式:若 $a,b\in\mathbb{R}$,则 $a^2+b^2\geq 2ab$。
2.基本不等式一般形式(均值不等式):若 $a,b\in\mathbb{R^*}$,则 $a+b\geq 2\sqrt{ab}$。
3.基本不等式的两个重要变形:1)若 $a,b\in\mathbb{R^*}$,则 $\frac{a+b}{2}\geq \sqrt{ab}$。
2)若 $a,b\in\mathbb{R^*}$,则 $ab\leq\left(\frac{a+b}{2}\right)^2$。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
4.求最值的条件:“一正,二定,三相等”。
5.常用结论:1)若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)。
2)若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)。
3)若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)。
4)若 $a,b>0$,则 $ab\leq \left(\frac{a+b}{2}\right)^2\leq \frac{a^2+b^2}{2}$。
5)若 $a,b\in\mathbb{R^*}$,则 $\frac{1}{a+b}\leq\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\leq\frac{1}{2}\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}$。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
6.柯西不等式:1)若 $a,b,c,d\in\mathbb{R}$,则$(a^2+b^2)(c^2+d^2)\geq (ac+bd)^2$。
基本不等式基本不等式是数学中一个重要的概念。
其中,重要不等式指的是a²+b²≥2ab,当且仅当a=b时等号成立。
而基本不等式则是指a+b≥2√(ab),当且仅当a=b时等号成立。
此外,还有一条基本不等式是任意两个正数的算术平均数不小于它们的几何平均数。
在利用基本不等式求函数的最大值、最小值时,需要注意函数式中各项必须都是正数,含变数的各项的积或者必须是常数,等号成立条件必须存在。
举例来说,如果0<a<b且a+b=1,则a²+b²>2ab,a+b≥2√(ab),2ab<2(1/2-a)²,a²+b²>(1/2-a)²+(1/2-b)²,因此b 最大。
又如,如果a、b、c都是正数,则(a+b+c)(1/a+1/b+1/c)≥9,即a/b+b/a+b/c+c/b+c/a+a/c≥6,证明过程中利用了基本不等式。
例3、已知$a,b,c$为不等正实数,且$abc=1$。
求证:$a+b+c<\sqrt{a}+\sqrt{b}+\sqrt{c}$。
证明:根据柯西不等式,$(1+1+1)(a+b+c)\geq(\sqrt{a}+\sqrt{b}+\sqrt{c})^2$,即$3(a+b+c)\geq(a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca})$。
因为$abc=1$,所以$2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}=2\sqrt{abc}(1/\sqrt{a}+1/\sqrt {b}+1/\sqrt{c})\leq3\sqrt[3]{abc}\cdot3=9$。
所以$3(a+b+c)\geq(a+b+c+9)$,即$2(a+b+c)\geq9$,即$a+b+c\geq\frac{9}{2}$。
又因为$a,b,c$不全相等,所以$a+b+c>\frac{9}{2}$。
基本不等式大全基本不等式是数学中的一个重要概念,有许多种不同的形式和用途。
以下是一些常见的基本不等式:1.均值不等式:a+b≥2\sqrt{ab} ,当且仅当a=b 时等号成立。
2.柯西不等式:如果a_i > 0, i=1,2,...,n, 则\sum_{i=1}^{n} a_i * b_i≥(\sum_{i=1}^{n} a_i)(\sum_{i=1}^{n} b_i)。
3.伯努利不等式:如果x > 0, n > 0, 则(1 + x)^n ≥1 + nx。
4.赫尔德不等式:如果f(x) 是[a, b] 上的非负连续函数,则对于所有满足a ≤x ≤b 的x,有\int_{a}^{b} f(x) dx ≤(b-a) * f(a) + f(b)。
5.琴声不等式:如果a_i > 0, i=1,2,...,n, 则\sum_{i=1}^{n} a_i^n ≥(\sum_{i=1}^{n} a_i)^n。
6.杨氏不等式:对于任意的实数a, b,都有a^2+b^2≥2ab,当且仅当a=b时等号成立。
7.三角不等式:对于任意的实数x, y,都有|x+y|≤|x|+|y|,当且仅当x与y同号时等号成立。
8.绝对值不等式:对于任意的实数x, y,都有|x-y|≤|x|+|y|,当且仅当x与y异号时等号成立。
9.权方和不等式:如果a_i > 0, i=1,2,...,n, 则\sum_{i=1}^{n} a_i *\frac{b_i}{a_i} ≥(\sum_{i=1}^{n} b_i)(\sum_{i=1}^{n} \frac{1}{a_i})。
以上这些基本不等式在数学学习和应用中都非常重要,希望能帮助到你。
基本不等式公式五个1. 基本不等式原始形式。
- 对于任意实数a,b,有a^2+b^2≥slant2ab,当且仅当a = b时等号成立。
- 证明:(a - b)^2=a^2-2ab + b^2≥slant0,移项可得a^2+b^2≥slant2ab。
2. 基本不等式的变形一(均值不等式)- 对于正实数a,b,有(a + b)/(2)≥slant√(ab),当且仅当a = b时等号成立。
- 证明:由a^2+b^2≥slant2ab,令A=√(a),B=√(b)(a,b>0),则A^2+B^2≥slant2AB,即a + b≥slant2√(ab),所以(a + b)/(2)≥slant√(ab)。
3. 基本不等式的变形二(推广到三个正数)- 对于正实数a,b,c,有a^3+b^3+c^3≥slant3abc,当且仅当a = b = c时等号成立。
- 证明:a^3+b^3+c^3-3abc=(a + b + c)(a^2+b^2+c^2-ab - bc - ca)- 而a^2+b^2+c^2-ab - bc - ca=(1)/(2)[(a - b)^2+(b - c)^2+(c - a)^2]≥slant0,当且仅当a = b = c时等号成立。
- 又因为a,b,c>0,所以a^3+b^3+c^3≥slant3abc。
4. 基本不等式的变形三(三个正数的均值不等式)- 对于正实数a,b,c,有(a + b + c)/(3)≥slantsqrt[3]{abc},当且仅当a = b = c时等号成立。
- 证明:由a^3+b^3+c^3≥slant3abc,令A=sqrt[3]{a},B=sqrt[3]{b},C=sqrt[3]{c},则A^3+B^3+C^3≥slant3ABC,即a + b + c≥slant3sqrt[3]{abc},所以(a + b + c)/(3)≥slantsqrt[3]{abc}。
基本不等式公式大全基本不等式是数学中非常重要的概念,它在数学推导和解题过程中起着至关重要的作用。
本文将对基本不等式的相关公式进行全面的介绍和总结,希望能够对读者有所帮助。
1. 一元一次不等式。
一元一次不等式是最简单的不等式形式,一般表示为ax+b>0或ax+b<0,其中a和b为实数,且a≠0。
解一元一次不等式的关键在于求出不等式的解集,常用的方法有图解法和代入法。
2. 一元二次不等式。
一元二次不等式是一元二次方程不等式,一般表示为ax^2+bx+c>0或ax^2+bx+c<0,其中a、b和c为实数,且a≠0。
解一元二次不等式的关键在于求出不等式的解集,常用的方法有配方法、图解法和代入法。
3. 绝对值不等式。
绝对值不等式是含有绝对值符号的不等式,一般表示为|ax+b|>c或|ax+b|<c,其中a、b和c为实数,且a≠0。
解绝对值不等式的关键在于将绝对值不等式转化为对应的复合不等式,并求出不等式的解集。
4. 分式不等式。
分式不等式是含有分式的不等式,一般表示为f(x)>0或f(x)<0,其中f(x)为有理函数。
解分式不等式的关键在于求出不等式的定义域和分子分母的符号,然后根据符号表确定不等式的解集。
5. 复合不等式。
复合不等式是由多个不等式组合而成的不等式,一般表示为f(g(x))>0或f(g(x))<0,其中f(x)和g(x)为函数。
解复合不等式的关键在于将复合不等式转化为对应的简单不等式,并求出不等式的解集。
以上是关于基本不等式的相关公式和解题方法的介绍,希望能够对读者有所帮助。
在实际应用中,不等式是数学建模和优化问题中的重要工具,掌握不等式的相关知识对于解决实际问题具有重要意义。
希望读者能够通过学习和实践,更加熟练地运用不等式解决实际问题,提高数学解题能力。
基本不等式八个公式基本不等式是初中数学中的重要概念,它是解决不等式问题的基础。
基本不等式有八个公式,分别是:1. 两个正数的和的平方大于等于它们的平方和。
即:(a+b)²≥a²+b²这个公式可以用来证明勾股定理。
2. 两个正数的积的平方大于等于它们的平方积。
即:(ab)²≥a²b²这个公式可以用来证明算术平均数和几何平均数之间的关系。
3. 两个正数的平均数大于等于它们的几何平均数。
即:(a+b)/2≥√(ab)这个公式可以用来证明算术平均数大于等于几何平均数。
4. 两个正数的平均数大于等于它们的调和平均数。
即:(a+b)/2≥2ab/(a+b)这个公式可以用来证明算术平均数大于等于调和平均数。
5. 三个正数的和的平方大于等于它们的平方和的三倍。
即:(a+b+c)²≥3(a²+b²+c²)这个公式可以用来证明均值不等式。
6. 三个正数的积大于等于它们的平方和的三分之一次方。
即:abc≥(a²+b²+c²)/3这个公式可以用来证明几何平均数大于等于算术平均数。
7. 任意多个正数的平均数大于等于它们的几何平均数。
即:(a1+a2+...+an)/n≥√(a1a2...an)这个公式可以用来证明算术平均数大于等于几何平均数。
8. 任意多个正数的平均数大于等于它们的调和平均数。
即:(a1+a2+...+an)/n≥n/(1/a1+1/a2+...+1/an)这个公式可以用来证明算术平均数大于等于调和平均数。
以上就是基本不等式的八个公式,它们在解决不等式问题时非常有用。
我们可以根据不同的问题选择不同的公式来解决,从而更加高效地解决问题。
基本不等式(很全面)基本不等式基本不等式原始形式:对于任意实数a和b,有a+b≥2ab/(a^2+b^2)。
基本不等式一般形式(均值不等式):对于任意实数a和b,有a+b≥2ab/2.基本不等式的两个重要变形:1)对于任意实数a和b,有(a+b)/2≥√(ab)。
2)对于任意实数a和b,有ab≤(a^2+b^2)/2.求最值的条件:“一正,二定,三相等”。
常用结论:1)对于任意正实数x,有x+1/x≥2(当且仅当x=1时取“=”)。
2)对于任意负实数x,有x+1/x≤-2(当且仅当x=-1时取“=”)。
3)对于任意正实数a和b,有(a/b+b/a)≥2(当且仅当a=b 时取“=”)。
4)对于任意实数a和b,有ab≤(a^2+b^2)/2≤(a+b)^2/4.5)对于任意实数a和b,有1/(a+b)≤1/2√(ab)≤(1/a+1/b)/(a+b/2)。
特别说明:以上不等式中,当且仅当a=b时取“=”。
柯西不等式:1)对于任意实数a、b、c和d,有(a+b)(c+d)≥(ac+bd)^2.2)对于任意实数a1、a2、a3、b1、b2和b3,有(a1^2+a2^2+a3^2)(b1^2+b2^2+b3^2)≥(a1b1+a2b2+a3b3)^2.3)对于任意实数a1、a2、…、an和b1、b2、…、bn,有(a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)≥(a1b1+a2b2+…+an bn)^2.题型归纳:题型一:利用基本不等式证明不等式。
题目1:设a、b均为正数,证明不等式ab≥2/(1/a+1/b)。
题目2:已知a、b、c为两两不相等的实数,求证:a/(b-c)^2+b/(c-a)^2+c/(a-b)^2≥2/(a-b+b-c+c-a)。
题目3:已知a+b+c=1,求证:a^2+b^2+c^2+9abc≥2(ab+bc+ca)。
题目4:已知a、b、c为正实数,且abc=1,求证:a/b+b/c+c/a≥a+b+c。
一、知识点总结1、基本不等式原始形式(1)若a,b R,则a2 b2 2abc2 h2(2)若a,b R,则ab a L22、基本不等式一般形式(均值不等式)若a,b R*,则a b 2 . ab3、基本不等式的两个重要变形(1)若a,b R*,则ab22(2)若a,b R*,则ab 口2总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当a b时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论(1) 若x 0,则x 1 2 (当且仅当x 1时取“=”)x(2)若x 0,则x 1 2 (当且仅当x 1时取x(3)若ab 0,则a b2(当且仅当 a b时取“=”)b a(4)若a, b R,则ab(a b)2 a2b22 2(5)若a, b R*,则1vab b l a2b2112\ 2a b特别说明:以上不等式中,当且仅当 a b时取“=”6、柯西不等式(1)若a,b,c,d R,则(a2 b2)(c2 d2) (ac bd)2(2)若a1,a2,a3,bi,b2,b3 R,则有:(印2a22 a32)4bj b22 b32) (a^ a?b2 a s b s)2(3)设a1,a2, ,a n与6也,,b n是两组实数,则有2 2 2 2 2 2 2 (a1 a2 a n )(b1 b2 b n) gb’ a2b2a n b n)二、题型分析题型一:利用基本不等式证明不等式.—91、设a,b均为正数,证明不等式:ab >1 1a b2、已知a,b,c为两两不相等的实数,求证:2 2 2a b c ab bc ca3、已知a b c 1,求证:a2 b2 c2 134、已知a,b,c R ,且a b c 1 ,求证:(1 a )(1 b)(1 c) 8abc5、已知a,b,c R 且a b c 1 , 求证6、(2013年新课标H卷数学(理)选修4—5:不等式选讲设均为正数,且,证明:(I );(H).7、(2013年江苏卷(数学)选修4—5:不等式选讲已知a b 0,求证:2a3 b3 2ab2 a2b 题型二:利用不等式求函数值域1、求下列函数的值域(1) y 3x22x(2) y x(4 x)1(3) y x —(X 0)X (4) y1x (x 0)x题型三:利用不等式求最值(一)(凑项)1、已知x 2,求函数y 2x42x 4的最小值;变式1 :已知x 2,求函数2x2x 4的最小值;变式2:已知x 2,求函数y 2x 4的最大值;2x 4变式2:设0 x ,求函数y 4x(3 2x)的最大值。
基本不等式(以下√表示根号,^表示指数)如果a、b都为实数,那么a平方+b平方≥2ab,当且仅当a=b时等号成立证明如下:∵(a-b)^2≥0∴a^2+b^2-2ab≥0∴a^2+b^2≥2ab如果a、b、c都是正数,那么a+b+c≥3*3√abc,当且仅当a=b=c 时等号成立如果a、b都是正数,那么(a+b)/2 ≥√ab ,当且仅当a=b时等号成立。
(这个不等式也可理解为两个正数的算数平均数大于或等于它们的几何平均数,当且仅当a=b时等号成立。
)和定积最大:当a+b=S时,ab≤S^2/4(a=b取等)积定和最小:当ab=P是,a+b≥2√P(a=b取等)均值不等式:如果a,b 都为正数,那么√(( a平方+b平方)/2)≥(a+b)/2 ≥√ab≥2/(1/a+1/b)(当且仅当a=b时等号成立。
)( 其中√(( a平方+b平方)/2)叫正数a,b的平方平均数也叫正数a,b 的加权平均数;(a+b)/2叫正数a,b的算数平均数;√ab正数a,b的几何平均数;2/(1/a+1/b)叫正数a,b的调和平均数。
)同向不等式:不等号相同的两个或几个不等式叫同向不等式,例:2x+5>3与3x-2>5是同向不等式异向不等式:不等号相反的两个不等式叫异向不等式。
绝对不等式:不等式中对于字母所能取的一切允许值不等式都成立,这样的不等式叫绝对不等式,例:X^2+3>0,√X+1>-1等都是绝对不等式矛盾不等式:不等式中,对于字母所能取的一切允许值不等式都不成立,这样的不等式叫矛盾不等式x条件不等式:不等式中对于字母所能取的某些允许值不等式能成立面对字母所能取的另外一些允许值不等式不能成立,这样的不等式叫条件不等式。
例:3X+5>0 lg-<1等都是条件不等式23个因式的基本不等式a^2+x/a^3≥3*三次跟√a^2/2*a^2/2*x/a^3例子:x+432/x^2≥3三次跟√x/2乘以x/2乘以432/x^2。
基本不等式:ab ≤a +b 21.基本不等式设a ,b ∈R ,则①a 2≥0;②a 2+b 2≥2ab ,a ,b ∈R ,要认识到a 和b 代表的实数既可以是具体数字,也可以是比较复杂的变量式,应用广泛.2.均值不等式设a ,b ∈(0,+∞),则a +b 2≥ab ,当且仅当a =b 时,不等式取等号.它的证明要能从基本不等式中得出,既是对基本不等式中a ,b 的灵活变式,又具有自身特点,a ,b ∈(0,+∞).对勾函数()k f x x x =+,扩展:3a b c ++≥ 3.灵活变式(2112a b a b +≥≥≥+)①a 2+b 2≥(a +b )22;②ab ≤a 2+b 22;③ab ≤(a +b 2)2;④(a +b 2)2≤a 2+b 22;⑤(a +b )2≥4ab . 当且仅当a =b 时,各式中等号成立.四个平均数4.利用均值不等式求最大、最小值问题(一正,二定,三相等,用了二次,条件要统一)(1)如果x ,y ∈(0,+∞),且xy =p (定值),那么当x =y 时,x +y 有最小值2p .(2)如果x ,y ∈(0,+∞),且x +y =s (定值),那么当x =y 时,xy 有最大值s 24.一 利用基本不等式证明不等式1.利用基本不等式证明不等式是综合法证明不等式的一种情况,其实质就是从已知的不等式入手,借助不等式性质和基本不等式,经过逐步的逻辑推理,最后推得所证问题,其特征是“由因导果”.2.证明不等式时要注意灵活变形,多次利用基本不等式时,注意每次等号是否都成立.同时也要注意应用基本不等式的变形形式.[例1] 设a ,b 均为正实数,求证:1a 2+1b 2+ab ≥2 2训练 已知x >0,y >0,z >0.求证:(y x +z x )(x y +z y )(x z +y z )≥8二 利用基本不等式求最值1.在利用均值不等式求最值时要注意三点:一是各项为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理发现拆分项或配凑因式、分离常数法是常用的解题技巧);三是考虑等号成立的条件.如果用了二个或二个以上,条件一定要统一2.在应用基本不等式求最值时,分以下三步进行:(1)首先,看式子能否出现和(或积)的定值,若不具备,需对式子变形,凑出需要的定值;(2)其次,看所用的两项是否同正,若不满足,通过分类解决,同负时,可提取(-1)变为同正;(3)利用已知条件对取等号的情况进行验证.若满足,则可取最值,若不满足,则可通过函数单调性或导数解决.[例2] (1)设0<x <2,求函数y =3x (8-3x )的最大值;(2)求3a -4+a 的取值范围; (3)已知x >0,y >0,且x +y =1,求8x +2y 的最小值.训练 (1)设x >0,则函数y =x -1+22x +1的最小值等于________. (2)a ,b >0,a +b =1 求1()f x ab ab=+的值域。
基本不等式一、基础知识☐基本不等式:在不等式的应用中,有一些很基本而十分重要的不等式,如平均值不等式和三角不等式等,我们将其统称为基本不等式.☐平均值不等式:两个正数的算术平均值大于等于它们的几何平均值,即对于任意的正数a 、b ,有2a b ab ,且等号当且仅当a b 时成立.证明:对于正数a 、b ,要证明定理所述之平均值不等式,只要证明2a bab ,即20a b ab.由22a b aba b.上式显然成立,且只有当ab 时,原不等式两边才相等.☐常用不等式:对于任意的正数a 、b ,有22a bab ,且等号当且仅当a b 时成立.☐三角不等式:对于任意的实数a 、b ,有a b a b ,且等号当且仅当0ab 时成立.证明:为证明a ba b ,只需证明22a ba b,即222222aab b a ab b ,也即22ab ab ,这是显然的,且等号当且仅当a 、b 同号,即0ab时成立.二、拓展知识☐基本不等式:如果a ,b ,c R ,那么3333a b c abc (当且仅当a b c 时取“”)证明:33333223333a b c abca bc a b ab abc223a b ca ba b c c ab a b c22223a b c a ab b ac bc c ab 222a b c a b c ab bc ac 22212a bc a ba cbca ,b ,cR ,222102a b c a b a cb c从而3333ab c abc☐推论:如果a ,b ,c R ,那么33a b c abc (当且仅当a b c 时取“”)☐基本不等式:1212nn a a a a a a n,*n N ,ia R ,1in .证明可用数学归纳法,二项式定理证明,这里证明省略; ☐柯西不等式:222222211221212n nn n a b a b a b a a a b b b,1,2,,i i a b R i n ,等号当且仅当120na a a 或i ib ka 时成立(k 为常数,1,2,,i n )证明:构造二次函数2221122n nf xa xb a x b a x b2222222121122122n n n n a a a xa b a b a b xb b b222120n aa a又0f x 恒成立222222211221212440n nn n a b a b a b a a a b b b即222222211221212n nn n a b a b a b a a a b b b当且仅当0i i a x b x(1,2,,i n )即1212nna a ab bb 时等号成立. ☑一个重要的不等式链:2112a b a b+≤≤≤+. ☑函数()()0,0bf x ax a b x =+>>图象及性质 (1)函数()0)(>+=b a xb ax x f 、图象大致如下图(xx x f 1)(+=)所示:(2)函数()0)(>+=b a xb ax x f 、性质:①值域:()2,ab,⎡-∞-+∞⎣;②单调递增区间:,,⎛⎫-∞+∞ ⎪ ⎪⎝⎭;单调递减区间:0,,0⎛⎡⎫ ⎪⎢ ⎪⎝⎣⎭.三、最值常见类型注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”; (2)求最值的条件“一正,二定,三相等”;(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 类型一:积定和最小;重点:利用好“一正,二定,三相等”,凑积为定值; 例1、已知1->x ,求221xx 的最小值【解析】求和的最小值,去找积的定值,这里面发现2x 与21x 的积没有关系,但是能够注意到题目中有1->x ,从而01>+x ,且可以将2x 出来1x 让分母抵消,故有222221222122111xx x x x x ,当且仅当2211x x 即0x 时取等号;注意:在使用积定和最小时,第一要注意两个式子是正还是负(一正);第二要注意两个式子乘起来是不是定值,如果是定值,结束,如果不是定值要注意进行变形,凑成乘起来是定值的式子(二定);第三是要注意进行验证,是否可以取等(三取等);注意:三取等一定要关注,一个是为了验证等号,第二个是因为有的不等式是会进行多次应用基本不等式(多次放缩),如果多次应用中等号不一致,是不可以进行取等的; 例2、已知0xy ,1xy ,求yx y x -+22的最小值及相应的y x ,的值。
【解析】()22222x y xy x y x y x y x y x y-++==-+≥---1x y xy -==即y x == 类型二:和定积最大;重点:利用好“一正,二定,三相等”,凑和为定值; 例3、已知,x y 均为正数,且满足21xy ,求xy 的最大值【解析】求积的最大值,去找和的定值,这里面发现x 与y 的和没有定值,但是能够注意到21xy ,发现2xy 是定值,所以可以2112122222x y xyx y ,当且仅当2x y ,21x y 即14x,12y时取等号; 例4、已知,x y 均为正数,且满足21xy ,求2x y 的最大值【解析】求积的最大值,去找和的定值,这里面发现x 与y 之间有21xy ,即1x x y 发现x x y是定值,所以可以321327x x yx y ,当且仅当x x y ,21x y 即13x,13y 时取等号; 类型三:倒数的和与和;重点:“1”的灵活运用,代换 例5、已知,x y 均为正数,且满足191x y,求x y 的最小值. 【解析】利用“1的代换”,191x y, 且,x y 均为正数∴19991010216y x y xx y x yx yx y x y,当且仅当y x x y 9=,191x y即4,12x y 时等号.类型四:平方的和与和;例6、已知,x y均为正数,且满足1xy ,求22x y 的最小值【解析】应用一个重要的不等式链:2112a b a b+≤≤≤+,有222122x y x y 注意:或者采用函数的思想来进行,换元法之后利用二次函数找最值 类型五:和与积同时出现;重点:看题目中需要求的是谁,保留谁,另一个使用基本不等式例7、已知,x y 均为正数,且满足且满足3xy y x +=-+,求x y +的最小值【解析】实数x ,y 均为正数,且满足3xy y x +=-+,2()3()4x y x y xy +∴-+=,化为:(6)(2)0x y x y +++-,0x >,301x y x -∴=>+,461481x y x x ∴++=++++.解得2x y +,当且仅当1x y ==时取等号.x y ∴+的最小值是2.类型六:不等式恒成立;例8、(1)若不等式2(1)(1)3(1)0m x m x m +--+-<对任意实数x 恒成立,求实数m 的取值范围.【解析】二次函数的图像联立,由于对任意实数x 恒成立,所以100m +<⎧⎨∆<⎩或10m +=,验证10m +=时不成立,所以解10m +<⎧⎨∆<⎩可得结果;【重点】不等式的恒成立问题和不等式的有解问题,往往放在一起考察,要注意之间的关系和应用 (2)若不等式2(1)(1)3(1)0m x m x m +--+-<对任意实数m 恒成立,求实数x 的取值范围. 【解析】主元,此时是对任意实数m 的恒成立,是一次函数,所以让k=0,b<0恒成立例9、设2()22f x x ax =-+,当1,2x ⎡⎫∈-+∞⎪⎢⎣⎭时,恒有()f x a >,求实数a 的取值范围. 【解析】恒成立问题,此时是区间段,所以要求出()f x 的最小值,代入四、最值常用技巧技巧一:凑项 例题1、已知54x <,求函数14245y x x =-+-的最大值. 解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=,当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
技巧二:凑系数例题2、当04x <<时,求()82y x x =-的最大值. 解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。
技巧三: 分离例题3、求2710(1)1x x y x x ++=>-+的值域. 解:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。
当,即时,421)591y x x ≥+⨯+=+((当且仅当x =1时取“=”号)。
技巧四:换元上述例题3也可以用换元法求解.解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。
22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t =时,4259y t t≥⨯+=(当t =2即x =1时取“=”号)。
技巧五:整体代换多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错. 例题5、已知已知,x y 均为正数,122x y,求x y 的最小值.技巧六:取平方例题6、已知,x y 为正实数,3210x y ,求函数32w x y 的最值.【变式】求函数15()22y x =<<的最大值.技巧七:构造要求一个目标函数()f x 的最值,我们利用基本不等式构造一个以(),f x y 为主元的不等式(一般为二次不等式),解之即可得(),f x y 的最值.例题7、已知0,0>>y x ,822=++xy y x ,求y x 2+的最小值 例题8、设,x y 为实数,若2241x y xy ++=,求2x y +的最大值 【变式1】若实数x,y 满足221x y xy ++=,求x y +的最大值 【变式2】若正数,a b 满足(3)(2)6a b --=,求ab 的最小值 技巧八:添加参数例题9、若已知0,,>c b a ,则bcab c b a 2222+++的最小值为多少?【变式1】设w z y x ,,,是不全为零的实数,求22222wz y x zwyz xy +++++的最大值. 【变式2】设,,x y z 是正实数,求2221010x y z xy yz zx++++的最小值.五、自主复习1.设24,,=∈xy N y x ,则221y x +的最大值为________.2. 若正实数a b ,满足32ab =则2a b +的最小值为___________3. 已知正实数,x y 满足24xy x y ++=,则x y +的最小值为___________4.已知0,0,2,2x y xy x y xy m 若>>=+≥-恒成立,则实数m 的最大值为__________5. 定义在R 上的奇函数)(x f y =是增函数,且函数)2(-=x f y 的图象关于)0,2(成中心对称,设s ,t 满足不等式)4()4(22t t f s s f --≥-,若22≤≤-s 时,则s t +3的范围是______. 6. 32(x)3a f x bx cx d =+++,(x)f 在定义域上为单调增函数,,a b cb a b a求++>-的最小值为______. 7. 已知2220,0,0,3a b c a b c ab bc则++>>>+的最小值为________.8. 若110,0,1,221a b a b a b b 且则的最小值>>+=+++________. 9. 已知:0xy ,且1xy ,若22x y a x y 恒成立,则实数a 的取值范围是________.10. 已知,22x yx y x y x y为正数,则+++的最大值为________.。