新帕泰克激光粒度仪原理
- 格式:docx
- 大小:3.06 KB
- 文档页数:1
激光粒度仪的工作原理
激光粒度仪的工作原理基于光散射原理。
当光线通过不均匀介质时,它与介质中的颗粒相互作用,产生吸收、反射、折射、透射和衍射等现象,使光线偏离原先的光路。
激光粒度仪通过测量散射光的强度、能量等信号,然后依据散射原理对这些信息进行计算解读,从而获取颗粒的尺寸信息。
具体来说,激光器发出的激光经过扩束和准直后成为平行光,颗粒在平行光照射下产生散射。
在某一方向下,粒子的散射光能量的大小取决于颗粒的尺寸和形貌。
根据这种原理,可以推导出粒子的粒度及其分布信息。
激光粒度仪的测量方法主要有静态光散射法和动态光散射法。
静态光散射法获取的是一次得到的瞬时信息,而动态光散射法是通过测量光强随时间的变化来实现粒度测量的。
激光粒度仪具有广泛的应用领域,包括实验研究、食品、电子、建材、机械、化工、冶金,甚至一些军工和航空航天工程中也离不开激光粒度仪的应用。
通过颗粒衍射或散射光的空间分布分析颗粒大小的仪器被称之为激光粒度仪。
它采用Furanhofer衍射及Mie散射理论,因为不受温度、介质、密度以及表面状态等因素的影响,激光粒度仪如今正广泛的应用于各行各业。
很多人所在的工作岗位都会遇到这个仪器,但不一定每个人都了解它的作用原理和应用范围。
本文就和大家一起来做个简单的知识分享。
一、作用原理不管什么仪器,搞定它的工作原理,其它的基本就很简单了。
激光粒度仪的工作原理涉及颗粒衍射或散射光空间分布等内容。
由于激光具有很好的单色性和较强的方向性,所以一束平行的激光在没有阻碍的无限空间中将会照射到无限远的地方,并且在传播过程中很少有发散的现象。
当光束遇到颗粒阻挡时,一部分光将发生散射现象。
其中散射部分的传播方向将与主光束的传播方向形成一个夹角θ。
散射角θ的大小与颗粒的大小相关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。
利用这个原理,在不同的角度上测量散射光的强度,就可以拿到样品的粒度分布了。
二、应用范围搞清楚原理,下一步就是它的应用范围了。
什么仪器用在什么环境上,用在哪个地方都是很有讲究的,用错领域,用错环境可能都会造成仪器的损害和测量结果的误差。
激光粒度仪目前主要应用于建材、化工、冶金、能源、食品、电子、地质、军工、航空航天、机械、高校、实验室,研究机构等领域。
类似这种大型仪器,买回去一定要注意它的环境要求,小心因为湿度和温度造成仪器寿命的缩短。
激光粒度仪的温度要求大概就是10-40℃,湿度要求只要在百分之90以下就可以了。
当然,除了这些还需要找专业技术人员进行日常维护,别不小心造成工作停滞。
本期对激光粒度仪的工作原理和工作领域、工作环境做了简单介绍,其中有不尽详细的地方也可以电话咨询大昌洋行等公司,他们会给出相对专业化的答案。
下一期将会对仪器的使用以及指标分析做一个介绍,希望通过这系列文章帮助您了解更多的激光粒度仪。
激光粒度仪的检测原理是怎样的呢激光粒度仪是一种广泛用于颗粒物测量的仪器。
它通过激光的散射原理来测量颗粒的大小分布。
本文将介绍激光粒度仪的检测原理是怎样的。
激光粒度仪的基本组成部分激光粒度仪的基本组成部分包括:激光器、散射器、探测器、光学元件和计算机等组成。
其中,激光器产生一束单色的激光光束,并经过准直、扩束等光学元件处理后,通过样品中的粒子时发生光的散射。
散射光由散射器收集并透过准直光学元件射入探测器,计算机则通过内部软件处理整个试验过程中所获得的信号,计算样品颗粒物的分布情况。
激光粒度测量的原理激光粒度仪最常用的方法是基于光散射原理来进行颗粒物分布的测量。
当被测样品通过光束时,有些到达颗粒的表面,这些光被颗粒所散射的角度取决于颗粒的大小、折射率和形状等方面因素,同时颗粒也会阻挡一部分光线,导致散射光线的强度变化。
激光散射光强度与颗粒大小之间的关系可由Mie散射理论和Fraunhofer散射理论计算得出。
通常采用的是Mie理论,因为其可以用于更广泛范围的颗粒尺寸。
根据教科书的描述,如果散射样品接受的是横向偏振,激光会散射出2个不同方向的构成。
散射角度以每个检测器与样品瞄准结束,如果颗粒平均直径小于激光波长,则检测器所测得的束线强度大小与散射角度成反比。
激光粒度测量的优势和局限性激光粒度仪具有许多优点。
它不仅可以快速测量样品颗粒的粒径分布,而且可以测量几纳米到数毫米的粒径范围,且粒度分布、数量、浓度和形状等特征都可以被准确地获取。
同时,它还具有简单易操作,快速结果等优点,这些特性使其成为分析颗粒样品的最佳选择。
然而,激光粒度仪仍然存在一些局限性。
一是只能测量颗粒的尺寸分布,不能对颗粒的化学成分、物理状态等进行检测。
二是粒径分布的测量结果受到许多因素的影响,例如样品的浓度、颜色、浑浊度以及颗粒松散度等因素。
在操作激光粒度仪时,应该根据检测样品的特性,充分利用其优点,弥补其局限性。
结论激光粒度仪利用激光的散射原理,测量样品中的颗粒粒径分布,具有测量简单、快速、准确等优点,并且可以测量几纳米到数毫米的粒径范围。
激光粒度仪的工作原理分析激光粒度仪工作原理激光粒度仪是通过测量颗粒群的衍射光谱经计算机处理来分析其颗粒分布的。
它可用来测量各种固态颗粒、雾滴、气泡及任何两相悬浮颗粒状物质的粒度分布、测量运动颗粒群的粒径分布。
激光粒度仪是依据颗粒能使激光产生散射这一物理现象测试粒度分布的。
由于激光具有很好的单色性和极强的方向性,所以一束平行的激光在没有阻拦的无限空间中将会照射到无限远的地方,并且在传播过程中很少有发散的现象。
当光束碰到颗粒阻拦时,一部分光将发生散射现象。
散射光的传播方向将与主光荣的传播方向形成一个夹角。
散射理论和结果证明,散射角的大小与颗粒的大小有关,颗粒越大,产生的散射光的角就越小;颗粒越小,产生的散射光的角就越大。
激光粒度仪经典的光路由发射、接受和测量窗口等三部分构成。
发射部分由光源和光束处理器件构成,紧要是为仪器供应单色的平行光作为照明光。
接收器是仪器光学结构的关键。
测量窗口紧要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。
接收器由傅立叶选镜和光电探测器阵列构成。
所谓傅立叶选镜就是针对物方在无限远,像方在后焦面的情况除去像差的选镜。
激光粒度仪的光学结构是一个光学傅立叶变换系统,即系统的察看面为系统的后焦面。
由于焦平面上的光强分布等于物体(不论其放置在透镜前的什么位置)的光振幅分布函数的数学傅立叶变换的模的平方,即物体光振幅分布的频谱。
激光粒度仪将探测器放在透镜的后焦面上,因此相同传播方向的平行光将聚焦在探测器的同一点上。
据测器由多个中心在光轴上的同心圆环构成,每一环是一个独立的探测单元。
这样的探测器又称为环形光电探测器阵列,简称光电探测器阵列。
激光器发出的激光束经聚焦、低通滤波和准直后,变成直径为8~25 mm的平行光。
平行光束照到测量窗口内的颗粒后,发生散射。
散射光经过傅立叶透镜后,同样散射角的光被聚焦到探测器的同一半径上。
一个探测单元输出的光电信号就代表一个角度范围(大小由探测器的内、外半径之差及透镜的焦距决议)内的散射光能量,各单元输出的信号就构成了散射光能的分布。
简述激光粒度仪的基本原理激光粒度仪是一种常用的颗粒分析仪器,利用激光散射原理来测量物料的颗粒大小。
它主要由激光源、物料流动系统、检测器和数据分析系统等几个部分组成。
激光粒度仪的基本原理是利用激光照射在物料颗粒上时,光与颗粒发生散射现象。
根据散射光的强度和散射角度的变化来推测颗粒的大小和分布情况。
以下是激光粒度仪的基本原理描述:1.激光源:激光粒度仪使用的激光器通常是低功率的、单频的激光器。
激光器发射的单一波长的光束,具有良好的单色性和方向性。
2.物料流动系统:物料通常以溶液或悬浮液的形式进入物料流动系统。
物料流动系统引导物料以细流的方式通过仪器,以保证每个颗粒都能被激光照射到。
3.散射角度的检测:激光粒度仪通常会设置多个探测器,用于检测散射光的强度和散射角度的变化。
常见的探测器包括正向散射光探测器和侧向散射光探测器。
正向散射光探测器用于检测颗粒在正向散射光中的散射强度,侧向散射光探测器用于检测颗粒在侧向散射光中的散射强度。
通过测量散射光强度的变化,可以推测颗粒的大小和分布情况。
4.数据分析系统:激光粒度仪的数据分析系统会根据散射光的强度和散射角度的变化来计算颗粒的大小和分布。
通过校准曲线,可以将散射光强度和散射角度映射到颗粒大小上。
常用的数据分析方法包括多峰分析、积分法和拟合法等。
总的来说,激光粒度仪的工作原理是通过激光照射物料颗粒,测量散射光的强度和散射角度的变化来推测颗粒的大小和分布情况。
这种技术无需进行样品的预处理,非常方便快捷。
同时,由于激光具有高亮度、直线传播和单一波长等特点,激光粒度仪具有高精度和高分辨率的特点,可以测量颗粒尺寸范围广、粒径分布广的样品。
因此,激光粒度仪广泛应用于材料科学、药剂学、环境监测、地质研究和生命科学等领域。
粒度仪原理粒度仪是一种用于测量颗粒大小分布的仪器,它在颗粒物料的生产和加工过程中起着至关重要的作用。
粒度仪的原理是基于光学原理和颗粒动力学原理,通过对颗粒的光学特性和运动状态进行测量和分析,来确定颗粒的大小分布。
下面将详细介绍粒度仪的原理及其相关知识。
首先,粒度仪利用光学原理进行颗粒大小的测量。
当颗粒通过粒度仪时,它们会受到光的照射,而不同大小的颗粒会对光产生不同的散射和透射效应。
粒度仪通过接收颗粒散射和透射的光信号,并对其进行分析,从而得出颗粒的大小分布情况。
这种基于光学原理的测量方法具有高精度和高灵敏度的特点,可以准确地测量颗粒的大小分布范围。
其次,粒度仪还利用颗粒动力学原理进行颗粒大小的测量。
在颗粒通过粒度仪时,粒度仪会对颗粒进行运动轨迹的跟踪和分析。
通过对颗粒的速度、加速度、角度等运动参数的测量,粒度仪可以推断出颗粒的大小分布情况。
这种基于颗粒动力学原理的测量方法可以在不同颗粒形状和密度的情况下进行准确测量,具有较强的适用性和通用性。
除了光学原理和颗粒动力学原理,粒度仪的原理还涉及到信号处理和数据分析等方面。
粒度仪通过对颗粒散射和透射的光信号进行采集和处理,得到颗粒的大小分布数据。
然后,粒度仪会对这些数据进行统计和分析,得出颗粒的平均大小、大小分布范围、颗粒形状等信息。
这些数据对于生产和加工过程的控制和优化具有重要意义。
总的来说,粒度仪的原理是基于光学原理和颗粒动力学原理,通过对颗粒的光学特性和运动状态进行测量和分析,来确定颗粒的大小分布。
粒度仪在颗粒物料的生产和加工过程中具有重要的应用价值,可以帮助生产企业控制产品质量、提高生产效率、降低生产成本。
希望通过本文的介绍,读者对粒度仪的原理有了更深入的了解,能够更好地应用于实际生产中。
激光粒度仪及其原理介绍激光粒度分析仪仪是根据光的散射原理测量粉颗粒大小的,是一种比较通用的粒度仪。
其特点是测量的动态范围宽、测量速度快、操作方便,尤其适合测量粒度分布范围宽的粉体和液体雾滴。
对粒度均匀的粉体,比如磨料微粉,要慎重选用。
激光粒度仪集成了激光技术、现代光电技术、电子技术、精密机械和计算机技术,具有测量速度快、动态范围大、操作简便、重复性好等优点,现已成为全世界最流行的粒度测试仪器。
激光粒度仪作为一种新型的粒度测试仪器,已经在其它粉体加工与应用领域得到广泛的应用。
它的特点是测试速度快、重复性好、准确性好、操作简便。
对提高产品质量、降低能源消耗有着重要的意义。
激光粒度仪的原理:激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。
由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。
如图1所示:图1 激光束在无阻碍状态下的传播示意图米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。
即小角度(θ)的散射光是有大颗粒引起的;大角度(θ1)的散射光是由小颗粒引起的,如图2所示。
进一步研究表明,散射光的强度代表该粒径颗粒的数量。
这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。
图2 不同粒径的颗粒产生不同角度的散射光为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。
我们在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行处理,就会准确地得到粒度分布了,如图3所示。
图3 激光粒度仪原理示意图。
激光粒度仪的测试原理及量程简介光是⼀种电磁波,当光束前进过程中遇到颗粒时,将发⽣散射现象,散射光与光束初始传播⽅向形成⼀个夹⾓θ,散射⾓的⼤⼩与颗粒的粒径相关,颗粒越⼤,产⽣的散射光的θ⾓就越⼩;颗粒越⼩,产⽣的散射光的θ⾓就越⼤。
这样,测量不同⾓度上的散射光的强度,就可以得到样品的粒度分布了。
激光粒度分析仪就是利⽤光的散射原理测量粉颗粒⼤⼩的,是⼀种当前粒度测量领域应⽤最⼴泛的的粒度仪。
其特点是测量的动态范围宽、测量速度快、操作⽅便,尤其适合测量粒度分布范围宽的粉体和液体雾滴。
激光粒度仪作为⼀种测试性能优异和适⽤领域极⼴的粒度测试仪器,已经在其它粉体加⼯与应⽤领域得到⼴泛的应⽤。
激光粒度仪测量原理图备注:本⽂所提的激光粒度仪是指基于静态散射光原理的激光粒度仪,请注意与动态散射光原理的纳⽶粒度仪区分开来。
随着粉体技术的发展,对粒度分析仪的性能要求在逐步的提⾼,特别是粒度仪的量程要求越来越宽。
测量下限要求达到⼏百甚⾄⼏⼗个纳⽶,测量上限要求达到⼀千甚⾄⼏千微⽶。
这对新型激光粒度仪设计者提出了极⼤的挑战。
图⼀颗粒越细,散射光的⾓度越⼩,微⼩颗粒的散射光甚⾄在360度范围内都有分布。
为了拓展仪器的测量下限。
需要有⾮常规的光学设计。
(参考图⼀)图⼆⽆论是何种设计的激光粒度仪,都存在⼀个测量窗⼝,样品在窗⼝中充分分散,被激光照射,产⽣散射光。
如上图所⽰,传统测量窗⼝由于机械结构和光学玻璃存在全反射,总是存在⼀个散射光探测盲区。
这个盲区⼤致分布在75-105度、255-285度区域内(参考图⼆)。
图三颗粒越⼩,分布在360度空间范围的散射光光强差越⼩,当颗粒⼩到⼀定极限,光强差将⼩得⼏乎难以被分辨出来。
这时就到了激光粒度仪的测量下限了。
图三是散射光光强⽮量图。
可以看出,当颗粒⼩到⼀定程度,光强⽮量图⽆限接近圆形(颗粒⽆限接近圆⼼),这时的光强差是难以分辨的。
光学设计上的障碍和散射光本⾝的特性决定了常规激光粒度仪的测量下限⼀般在0.2微⽶左右。
激光粒度仪及其原理介绍
激光粒度仪的原理主要包括光散射原理和光束探测原理。
在光散射原理中,激光从激光源发出,并通过透镜集中成一束平行光线,然后照射到样品上。
当激光照射到颗粒物上时,光线会散射,其中一部分光线会以散射角度正比于粒子的大小而散射出去,而另一部分光线则会按照原来的方向继续传播。
激光粒度仪采用光束探测原理,通过接收散射光的光强来确定颗粒物的大小。
仪器中配备了一个光敏元件,例如光电二极管,用于接收样品散射的光线。
光电二极管能够将光信号转换为电信号,并测量光强。
通过测量光强的变化,就可以得出颗粒物的大小和粒度分布。
激光粒度仪具有高精度、快速、自动化程度高的特点。
它能够测量从几微米到数毫米的范围内的颗粒物,并且能够提供粒度分布直方图、累积曲线等多种数据形式。
除了测量颗粒物的大小和粒度分布外,激光粒度仪还可以对颗粒物进行形态特征的分析,比如颗粒的圆度、长度等。
总之,激光粒度仪是一种重要的测量仪器,通过激光散射原理和光束探测原理,它能够快速准确地测量颗粒物的大小和粒度分布。
激光粒度仪在材料科学、环境科学、生物医学等领域中具有广泛的应用前景。
激光粒度仪的原理和注意事项激光粒度仪操作规程激光粒度仪是通过颗粒的衍射或者散射光的空间分布来分析颗粒大小的仪器,接受衍射散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地呈现于激光束中,即可获得精准的测试结果。
仪器原理:激光粒度仪是依据颗粒能使激光产生散射这一物理现象测试粒度分布的。
由于激光具有很好的单色性和极强的方向性,所以一束平行的激光在没有阻拦的无限空间中将会照射到无限远的地方,并且在传播过程中很少有发散的现象。
当光束碰到颗粒阻拦时,一部分光将发生散射现象。
散射光的强度代表该粒径颗粒的数量。
这样,在不同的角度上测量散射光的强度,就可以得到样品的粒度分布了。
注意事项:1、激光粒度仪开机须预热二特别钟才可测试。
2、软件测试时禁止其他操作,假如误操作使得软件关闭,重新打开软件。
3、软件连接不上仪器,重启计算机即可。
4、样品制备后须立刻测试,不宜放置太久测试,否则结果可能不正确,团聚。
5、品质因数为零,可能是粉体的浓度太低造成的,或者是重新“超声”“循环泵”“搅拌”在测量,否则是测试玻璃污染得清理。
激光粒度仪操作方法激光粒度仪是一种新型的粒度测试仪器,紧要适用于微米级颗粒的测试,经过改进也可将测量下限扩展到几十纳米,激光粒度仪操作方法如下:1.激光粒度仪样品准备样品必需能够精准反映待测物质,确保使用的样品是具有代表性的,若样品储存在容器中,测量前样品应充分混合,确保大小颗粒都被取样。
液体样品需要选择合适的泵速确保样品充分混合,防止大颗粒沉入容器底部而没有被测量;干法测量结束后不要在样品盘上有残留样品,尽量保证全部样品颗粒都被测量。
2.激光粒度仪光学系统的干净度激光散射测量是一种高辨别的光学检测手段,样品池检测窗是测量区域的紧要构成部件,窗口的灰尘和污染物质会散射激光,杂质散射光会随分散样品的散射光一起被测量,从而影响测量的精度。
通过观测测量背景就能判定系统的光学干净程度是否达标。
激光粒度仪的工作原理是怎样的呢激光粒度仪,又称光散射粒度仪,是一种用于粒子粒径测量的仪器。
它利用激光束作为光源,通过测量散射光强度和方向来分析粒子的尺寸分布。
本文将介绍激光粒度仪的工作原理。
原理激光粒度仪工作原理基于光的散射原理。
当光线通过一个粒子时,由于粒子的存在,光线会在多个方向上发生散射。
随着粒子的尺寸增大,散射的光强度也会增加。
如果我们能够测量出不同方向上的散射光强度及其对应的散射角度,那么就能够求出粒子的尺寸分布。
另外,由于每个粒子都是独立存在的,它们在散射光强度上不会相互干扰,因此我们可以通过累加所有粒子在不同角度上的散射光强度,来得到整个样品的散射光强度分布,从而计算出粒径分布。
测量方法激光粒度仪的测量是通过不停地侦测散射光强度来完成的。
在测量前需要先调整仪器的光路和参数,例如激光功率、角度范围和采样流量等。
调整好参数后,样品会从样品池中注入到测量室中,容器中的样品受到激光的照射,激光散射光线与样品粒子发生相互作用,遵从散射原理,散射光线光子的散射角度和散射强度都与样品粒子的尺寸有关。
激光粒度仪通常采用两个硅光电二极管用来侦测样品散射光强度,这些数据通过扫描角度范围进行采样,并转换成计算数据。
最后,激光粒度仪经由电脑软件计算得出样品粒子的尺寸分布数据。
优点激光粒度仪具有高精度、粒度测量范围广、可靠性强、分析速度快等特点。
它是现代化物质科学、生物医学、食品科学、环境科学、地球化学等研究领域中用来研究材料、颗粒物及生物体系中颗粒物尺寸和形态分布的有利工具。
总结本文介绍了激光粒度仪的工作原理,主要依靠光的散射原理测量样品粒子的尺寸分布。
激光粒度仪通过测量不同方向上的散射光强度和其对应的散射角度,计算出颗粒物尺寸分布。
它具有高精度、粒度测量范围广、可靠性强、分析速度快等优点,被广泛应用于物质科学、生物医学、食品科学、环境科学、地球化学等领域中。
激光粒度仪原理
激光粒度仪是一种用于测量和分析物料颗粒大小分布的仪器。
它基于激光光源和散射原理,通过对物料中的颗粒进行激光散射和检测,来得到颗粒的大小分布信息。
激光粒度仪的工作原理可以分为以下几个步骤:
1. 激光光源发射激光:激光粒度仪使用具有窄频率分布和高单色性的激光光源,如激光二极管或激光器。
这种激光光源可以产生一束非常稳定的激光束。
2. 激光与颗粒相互作用:将物料样品注入到激光束中,激光束与颗粒进行相互作用。
当激光束与颗粒相遇时,光会被散射,散射光的强度和颗粒的大小有关。
3. 散射光信号检测:在激光与颗粒相互作用后,散射光会以不同的角度散射出来,激光粒度仪会使用光学元件,如透镜和光电传感器来收集和检测散射光信号。
散射光信号的幅度和角度分布信息可以反映颗粒的大小和分布。
4. 数据处理和分析:激光粒度仪会将收集到的散射光信号转换为颗粒大小分布的数据。
通过对信号的处理和分析,可以得到颗粒的平均粒径、粒径分布曲线等信息。
同时,激光粒度仪还可以提供一些统计数据,如颗粒的体积分数、表面积等。
总之,激光粒度仪利用激光散射原理来测量物料颗粒大小分布。
通过发射激光、与颗粒的相互作用、检测散射光信号以及进行
数据处理和分析,可以得到颗粒的粒径分布等相关信息。
这种仪器在材料科学、生物医学、环境监测等领域有着广泛的应用。
激光粒度仪的检测原理是怎样的呢激光粒度仪工作原理湿法激光粒度分析仪接受全量程米氏散射理论,充分考虑到被测颗粒和分散介质的折射率等光学性质;依据大小不同的颗粒在各角度上散射光强的变化反演出颗粒群的粒度分布数据。
激光粒度仪检测原理由激光器发出的一束激光,经滤波、扩束、准值后变成一束平行光;在该平行光束没有照射到颗粒的情况下,光束穿过富氏透镜后在焦平面上汇聚形成一个很小很亮的光点——焦点。
当通过某种特定的方式把颗粒均匀地放置到平行光束中时,激光将发生散射现象,一部分光向与光轴成确定的角度向外扩散。
理论与实践都证明,大颗粒引发的散射光的散射角小,颗粒越小,散射光的散射角越大。
这些不同角度的散射光通过富氏透镜后将在焦平面上将形成一系列的光环,由这些光环构成的明暗交替的光斑称为Airy斑。
Airy中包含着丰富的粒度信息,简单地理解就是半径大的光环对应着较小的粒径的颗粒,半径小的光环对应着较大粒径的颗粒;不同半径上光环的光能大小包含该粒径颗粒的含量信息。
这样我们就在焦平面上安装一系列光的电接收器,将这些由不同粒径颗粒散射的光信号转换成电信号;并传输到计算机中,再接受米氏散射理论通过计算机将这些信号进行数学处理,就可以得出粒度分布了。
激光粒度仪湿法测量和干法测量样品准备原则在粒度测试前样品的准备是很紧要的,测量中碰到的多数问题是由样品准备不充分引起的,比如样品结块、溶解、浮在表面或没得到典型样品,结果就会显现错误。
因此要找到有效的方法来确保样品充分准备。
一旦找到了合适的分散技术,那么就要规范程序,以便对两种样品进行比较。
本章紧要供应关于湿法测量和干法测量样品准备的信息。
典型抽样测量提取样品时,要确保使用的样品是有代表性的。
假如是从瓶子或容器中提取的样品,必需保证样品是充分混匀的,假如样品是粉状,大颗粒易浮于容器表面,小颗粒易沉于底部。
大多数样品都会有一些大颗粒,还会有一些小颗粒,但是大多数在两个极端中心,从容器表面提取样品,测量的大多是大颗粒,假如和从容器中心提取的样品来对比测量,结果会明显不同。
激光粒度仪工作原理
激光粒度仪工作原理:
利用颗粒对光的散射现象,根据散射光能的分布推算被测颗粒的粒度分布。
根据现实的各种粒度测量仪器的工作原理,不妨将“粒径”定义如下:当被测颗粒的某种物理特性或物理行为与某一直径的同质球体(或其组合)最相近时,就把该球体的直径(或其组合)作为被测颗粒的等效粒径(或粒度分布)。
该定义包含如下几层含意:
(1)粒度测量实质上是通过把被测颗粒和同一种材料构成的圆球相比较而得出的;
(2)不同原理的仪器选不同的物理特性或物理行为作为比较的参考量,例如:沉降仪选用沉降速度,激光粒度仪选用散射光能分布,筛分法选用颗粒能否通过筛孔等等;
(3)将待测颗粒的某种物理特性或物理行为与同质球体作比较时,有时能找到一个(或一组)在该特性上完全相同的球体(如库尔特计数器),有时则只能找到最相近的球体。
由于理论上可以把“相同”作为“相近”的特例,所以在定义中用“相近”一词,使定义更有一般性;将待测颗粒的某种物理特性或物理行为与同质球体作比较时,有时能找到某一个确定的直径的球与之对应,有时则需一组大小不同的球的组合于之对应,才能最相近。
激光粒度分析仪工作原理
激光粒度分析仪是一种广泛应用于颗粒物体测量的仪器,它通过激光束与颗粒物体的相互作用,从而得到颗粒物体的尺寸分布信息。
下面将介绍激光粒度分析仪的工作原理。
1. 激光源
激光粒度分析仪的核心部件是激光源,通常采用浅紫外或可见光的激光器。
激光器会发射出强烈、单色、相干性好的激光束,用于与待测颗粒相互作用。
2. 光学系统
激光束从激光源发出后,会通过一系列的光学元件,如透镜、分束器、聚焦镜等。
这些光学元件的作用是对激光束进行调整,使其形成一个合适的激光束尺寸和强度。
3. 颗粒物体的测量
在激光粒度分析仪中,待测颗粒物体通常以液体或气溶胶的形式存在。
当颗粒物体通过样品室时,激光束会照射到颗粒物体上,与颗粒物体发生散射。
4. 散射光信号的检测
散射光信号是颗粒物体与激光束相互作用后发生的现象,它包含了关于颗粒物体尺寸和形状等信息。
激光粒度分析仪通常采用不同的光学元件和光电检测器来接收和检测这些散射光信号。
5. 数据处理和尺寸分布的计算
激光粒度分析仪会将检测到的散射光信号转换为电信号,并经
过放大和滤波处理。
随后,通过一系列的算法和数学模型,将散射光信号转化为颗粒物体的尺寸分布信息。
总结:激光粒度分析仪通过激光束与颗粒物体的相互作用,利用散射光信号的检测和数据处理,可以得到颗粒物体的粒径分布情况。
这种仪器具有非常高的灵敏度和精确性,在实验室和工业生产中得到广泛应用。
新帕泰克激光粒度仪原理解析新帕泰克激光粒度仪原理解析序号:1激光粒度仪是一种常见的粒径分析仪器,用于测量物料中颗粒的粒径大小和分布。
其中,新帕泰克激光粒度仪以其高精度、高灵敏度和方便操作的特点而备受青睐。
本文将深入解析新帕泰克激光粒度仪的工作原理,帮助读者更全面、深刻地理解这一粒径分析仪器的运作过程。
序号:2新帕泰克激光粒度仪的工作原理基于光散射原理,也被称为激光光散射粒度分析。
该原理依赖于激光光束在物料颗粒上的散射现象。
当激光光束通过样品时,光束的散射会受到颗粒的尺寸、形状和折射率等因素的影响。
新帕泰克激光粒度仪利用光散射的特性,通过采集和分析散射光的强度和角度,从而确定颗粒的粒径分布情况。
序号:3新帕泰克激光粒度仪的工作过程可以分为三个主要的步骤:激光发射、光散射和光信号采集。
仪器会发射出一束单色激光光束,通常为红外激光。
这束激光光束会经过透镜和胶片系统来调整其直径和强度,以确保光源的稳定性和一致性。
该激光光束会照射到样品中的颗粒上,并产生光的散射现象。
散射光的强度和散射角度与颗粒的粒径大小有关。
较小的颗粒会使光更多地向前/正向散射,而较大的颗粒则倾向于向后/背向散射。
新帕泰克激光粒度仪会利用光散射的这些特性,通过探测散射光的角度和强度,来推断颗粒的粒径分布情况。
新帕泰克激光粒度仪会使用光散射数据,并借助散射理论和数学算法,进行粒径分布的计算和分析。
这些算法往往基于某些假设和模型,以获得最接近真实情况的粒径数据。
通过分析散射光的角度和强度变化,新帕泰克激光粒度仪可以生成颗粒的粒径分布曲线和相关统计参数,如平均粒径、中值粒径、粒径分散度等等。
序号:4对于使用新帕泰克激光粒度仪进行粒径分析的用户来说,理解仪器工作原理是非常重要的。
这种理解可以帮助用户更好地设置和操作仪器,以获得准确、可靠的粒径数据。
深入了解仪器的原理还可以帮助用户识别潜在的误差来源,并对实验设计和数据解释提供有益的指导。
序号:5总结回顾:- 新帕泰克激光粒度仪采用激光光散射原理进行粒径分析。
新帕泰克激光粒度仪原理
新帕泰克激光粒度仪是一种用于测量颗粒大小分布的仪器。
它采用激光光源和光学系统,通过散射光的强度和角度来测量颗粒的大小和分布。
其原理是基于光散射理论和多角度散射技术。
在新帕泰克激光粒度仪中,激光光源会照射到样品中的颗粒上,颗粒会散射出光线。
这些散射光线会被收集到光学系统中,然后被分成不同的角度。
在不同的角度下,散射光的强度和颗粒大小有关。
通过测量不同角度下的散射光强度,可以得到颗粒的大小分布。
新帕泰克激光粒度仪采用多角度散射技术,可以测量不同角度下的散射光强度。
这种技术可以提高测量的准确性和精度。
同时,新帕泰克激光粒度仪还可以测量颗粒的形状和透明度等参数,可以更全面地了解颗粒的特性。
新帕泰克激光粒度仪的应用范围非常广泛,可以用于研究颗粒物质的物理化学性质、制药、食品、化妆品、涂料、油漆、纸张、塑料、橡胶、水泥、陶瓷等领域。
它可以帮助人们更好地了解颗粒的特性,为相关领域的研究和生产提供重要的参考。
新帕泰克激光粒度仪是一种非常重要的颗粒大小分布测量仪器,其原理基于光散射理论和多角度散射技术。
它可以测量不同角度下的散射光强度,从而得到颗粒的大小分布。
它的应用范围非常广泛,可以为相关领域的研究和生产提供重要的参考。