量子力学习题解答-第5章
- 格式:doc
- 大小:150.50 KB
- 文档页数:3
第一章 绪论1. 在0K 附近,钠的价电子能量约为3电子伏,求其德布洛意波长。
2. 氦原子的动能是32E kT =(k 为玻耳兹曼常数),求T =1K 时,氦原子的德布洛意波长。
3. 利用玻尔-索末菲的量子化条件,求 (1) 一维谐振子的能量;(2) 在均匀磁场中作圆周运动的电子轨道的可能半径。
4. 两个光子在一定条件下可发转化为正负电子对。
如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少? 第二章 波函数和薛定谔方程1. 证明在定态中,几率密度和几率流密度与时间无关。
2. 由下列两定态波函数计算几率流密度:(1)11ikr e rψ=,(2)11ikr e rψ-=3. 求粒子在一维无限深势阱 中运动的能级和波函数。
4. 证明(2.6-14)式中的归一化常数是5. 求一维线性谐振子处于第一激发态时几率最大的位置。
6. 试求算符ˆix dFie dx=-的本征函数。
7. 如果把坐标原点取在一维无限深势阱的中心,求阱中粒子的波函数和能级的表达式。
0,2(),2a x U x a x ⎧≤⎪⎪=⎨⎪∞≥⎪⎩⎩⎨⎧≥≤∞<<=a x x ax x V 或0,0,0)(aA 1='第三章 量子力学中的力学量1. 一维线性谐振子处于基态,求: (1)势能的平均值; (2)动能的平均值; (3)动量的几率分布函数。
2. 氢原子处于基态()0,,ra r ψθϕ-=,求: (1)r 的平均值;(2)势能2e r-的平均值;(3)最可几半径; (4)动能的平均值; (5)动量的几率分布函数。
3. 一刚性转子转动惯量为I ,它的能量的经典表示式是22L H I=,L 为角动量。
求与此对应的量子体系在下列情况下的定态能量及波函数: (1)转子绕一固定轴转动; (2)转子绕一固定点转动。
4. 一维运动的粒子的状态是⎩⎨⎧=-0)(xAxe x λψ 00<≥x x 其中0>λ,求(1)粒子动量的几率分布函数; (2)粒子的平均动量。
第五章 微扰理论5.1 如果类氢原子的核不是点电荷,而是半径为0r ,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解: 这种分布只对0r r <的区域有影响, 对0r r ≥的区域无影响. 根据题意知()()0ˆHU r U r '=- 其中()0U r 是不考虑这种效应的势能分布, 即()2004ze U r rπε=-()U r 为考虑这种效应后的势能分布, 在0r r ≥的区域为()204ze U r rπε=-在0r r <的区域, ()U r 可由下式()r U r e Edr ∞=-⎰其中电场为()()30233000002014,443434Ze Ze r r r r r r r E Ze r r r ππεπεππε⎧=≤⎪⎪=⎨⎪>⎪⎩则有:()()()()22320002222222000330000001443848r rr r rr U r e Edr e EdrZe Ze rdr dr r r Ze Ze Ze r r r r r r r r r πεπεπεπεπε∞∞=--=--=---=--≤⎰⎰⎰⎰因此有微扰哈密顿量为()()()()222200300031ˆ220s s Ze r Ze r r r r r H U r U r r r ⎧⎛⎫--+≤⎪ ⎪'=-=⎨⎝⎭⎪>⎩其中s e =类氢原子基态的一级波函数为()(321001000003202exp 2Zra R Y Z a Zr a Z ea ψ-==-⎫=⎪⎭按定态微扰论公式,基态的一级能量修正值为()()()00*00111110010032222222000000ˆ131sin 4422Zrr a s s E H Hd Ze Ze Z r d d e r dr a r r r ππψψτϕθθπ-''==⎡⎤⎛⎫⎛⎫=--+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰00322222430000031422ZrZr Zr r r r a a a s Z Ze e r dr e r dr erdr a r r ---⎛⎫⎛⎫=---⎪ ⎪⎪⎝⎭⎝⎭⎰⎰⎰ 完成上面的积分,需要作作三个形如0b m y y e dy -⎰的积分,用分部积分法,得00002220002222000000022112222Zr Zr r a a y Zr Zr a a a erdr ye dyZ a Zr a a a e e r Z a Z Z Z ----⎛⎫= ⎪⎝⎭⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-=-++⎢⎥⎨⎬ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭⎰⎰00002222332200000002322000000222222222222Zr Zr Zrr a a a y Zr a a a Zr Zr er dr y e dy e Z Z a a a a a a er r Z Z Z Z ----⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎢⎥==-++-⎨⎬ ⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎩⎭⎛⎫⎛⎫⎛⎫=-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰0000225440002500000000040002222224242412422424222Zr Zrr a a y Zr a a er dr y e dyZ a Zr Zr Zr Zr e Z a a a a a a a Z Z Z ---⎛⎫= ⎪⎝⎭⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎢⎥ ⎪=+--+++ ⎪ ⎪⎨⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭⎝⎭⎣⎦⎩⎭⎛⎫⎛⎫⎛=-+ ⎪ ⎪⎝⎭⎝⎭⎰⎰0002325234000000025234432000000000023412424222233324222Zr a Zr a a a a r r r r e Z Z Z a a a a a a r r r r e Z Z Z Z Z Z --⎛⎫⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭我们可以计算11E ,0000003232122000010020025234432000000000032340203422222233312422222Zr a s Zr a Zr a a a a a Z E Ze e r r a r Z Z Z Z a a a a a a r r r r e r Z Z Z Z Z Z a e Z ---⎧⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎪=--+++⎢⎥⎨ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎪⎣⎦⎩⎡⎤⎛⎫⎛⎫⎛⎫--+++++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦⎛⎫-- ⎝00200022222000223230000022333332222Zr a ssa a r Z Z a a a Z Ze e Ze r Zr Z r r Z r a -⎫⎡⎤⎛⎫⎛⎫⎪++⎢⎥⎬⎪⎪ ⎪⎭⎝⎭⎝⎭⎢⎥⎪⎣⎦⎭⎛⎫⎛⎫=-++--- ⎪ ⎪⎝⎭⎝⎭但是既然是近似计算,我们再适当地作一次近似.氢原子的半径约为13~10r cm -, 而80~10aa cm Z -=.所以有5213510821010~110r a r e e a ------=≈≈ 于是022223222212522001003333000004314311222232525rrs s s s s a s Ze Ze Ze r Ze Ze r r E er dr r Ze r a r r r a r r a -⎡⎤⎛⎫⎡⎤=--+=-++=⎢⎥ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎰这就是基态能量的一级修正.而准确到一级近似的能量为()()222222222000011113220024411252525s s s s Ze Ze r Ze r Z e Z r E EEa a a a a a ⎛⎫⎛⎫=+=-+=--=-- ⎪ ⎪⎝⎭⎝⎭5.2 转动惯量为I ,电偶极矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰法求转子基态能量的一级修正。
第五章: 对称性及守恒定律[1]证明力学量Aˆ(不显含t )的平均值对时间的二次微商为: ]ˆ],ˆ,ˆ[[222H H A A dtd -= (H ˆ是哈密顿量) (解)根据力学量平均值的时间导数公式,若力学量Aˆ 不显含t ,有]ˆ,ˆ[1H A i dt A d= (1) 将前式对时间求导,将等号右方看成为另一力学量]ˆ,ˆ[1H A i的平均值,则有: ]ˆ],ˆ,ˆ[[1]ˆ],ˆ,ˆ[1[1222H H A H H A i i dt A d -== (2) 此式遍乘2即得待证式。
[2]证明,在不连续谱的能量本征态(束缚定态)下,不显含t 的物理量对时间t 的导数的平均值等于零。
(证明)设Aˆ是个不含t 的物理量,ψ是能量H ˆ的公立的本征态之一,求A ˆ在ψ态中的平均值,有:⎰⎰⎰=ττψψd AA ˆ* 将此平均值求时间导数,可得以下式(推导见课本§5.1)⎰⎰⎰-≡=ττψψd A H H A i H A i dt A d )ˆˆˆˆ(*1]ˆ,ˆ[1 (1) 今ψ代表Hˆ的本征态,故ψ满足本征方程式 ψψE H=ˆ (E 为本征值) (2) 又因为Hˆ是厄密算符,按定义有下式(ψ需要是束缚态,这样下述积公存在) τψψτψψτd AHd A H ⎰⎰⎰⎰⎰⎰=)ˆ(*)ˆ()~(ˆ* (3)(题中说力学量导数的平均值,与平均值的导数指同一量)(2)(3)代入(1)得:τψψτψψd A H id H A i dt A d )ˆ(*)ˆ(1)ˆ(ˆ*1⎰⎰⎰⎰⎰⎰-= ⎰⎰⎰⎰⎰⎰-=τψψτψψd A iE d A i E ˆ**ˆ* 因*E E =,而0=dtAd[3]设粒子的哈密顿量为 )(2ˆˆ2r V p H +=μ。
(1) 证明V r p p r dtd ∀⋅-=⋅μ/)(2。
(2) 证明:对于定态 V r T ∀⋅=2(证明)(1)z y x p z p y p xp r ˆˆˆˆˆˆ++=⋅,运用力学量平均值导数公式,以及对易算符的公配律: ]ˆ,ˆˆ[1)ˆˆ(H p r i p rdt d⋅=⋅)],,(ˆ21,ˆˆˆˆˆˆ[]ˆ,ˆˆ[2z y x V pp z p y p x H p r z y x +++=⋅μ)],,()ˆˆˆ(21,ˆˆˆˆˆˆ[222z y x V p p p p z p y p xz y x z y x +++++=μ)],,(,[21],ˆˆˆˆˆˆ[222z y x V zp yp xp p p p p z p y p xz y x z y x z y x +++++++=μ(2) 分动量算符仅与一个座标有关,例如xi p x ∂∂= ,而不同座标的算符相对易,因此(2)式可简化成:]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[222z z y y x x p p z p p y p p x H p rμμμ++=⋅ )],,(,ˆˆˆˆˆˆ[z y x V p z p y p xz y x +++],ˆˆ[],ˆˆ[],ˆˆ[]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21222V p z V p y V p xp p z p p y p p x z y x z z y y x x +++++=μμμ (3)前式是轮换对称式,其中对易算符可展开如下:x x x x p x pp x p p x ˆˆˆˆˆ]ˆ,ˆˆ[232-= x x x x x x p x p p x p p x p p xˆˆˆˆˆˆˆˆˆˆˆ2223-+-= x x x x x p p x p p p xˆ]ˆ,ˆ[ˆˆ]ˆ,ˆ[2+= 222ˆ2ˆˆx x x p i p i pi =+= (4) ],ˆ[ˆˆˆˆˆˆˆˆˆˆˆˆˆ],ˆˆ[V p x p V x V p x p x V V p x V p xx x x x x x =-=-= xVx i ∂∂=ˆˆ (5) 将(4)(5)代入(3),得:}{)ˆˆˆ(]ˆ,ˆˆ[222zV z y V y x V x i p p p i H p r z y x ∂∂+∂∂+∂∂+++=⋅ μ}ˆ{2V r pi ∀⋅+=μ代入(1),证得题给公式:V r pp r dt d ∀⋅-=⋅ μ2ˆ)( (6) (2)在定态ψ之下求不显含时间t 的力学量A ˆ的平均值,按前述习题2的结论,其 结果是零,令p r Aˆˆˆ ⋅= 则0)ˆˆ(*2=∀⋅-=⋅=⋅⎰⎰⎰V r p d p r p r dt d τμτψψ (7)但动能平均值 μτψμψτ22ˆ*22p d p T =≡⎰⎰⎰由前式 V r T ∀⋅⋅=21[4]设粒子的势场),,(z y x V 是z y x ,,的n 次齐次式证明维里定理(Virial theorem ) T V n 2= 式中V是势能,T是动能,并应用于特例:(1)谐振子 T V = (2)库仑场 T V 2-=(3)T V n Cr V n2,==(解)先证明维里定理:假设粒子所在的势场是直角坐标),,(z y x 的n 次齐次式,则不论n 是正、负数,势场用直角痤标表示的函数,可以表示为以下形式,式中V假定是有理函数(若是无理式,也可展开成级数):∑=ijkkj i ijk z y x C z y x V ),,( (1)此处的k j i ,,暂设是正或负的整数,它们满足:n k j i =++ (定数)ijk C 是展开式系数,该求和式可设为有限项,即多项式。
5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 rze r U 024πε-=)()(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出,⎰∞-=rE d rer U )( ⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,434410200300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr er U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H+∇-=<<'μ,可视为一种微扰,由它引起的一级修正为(基态r a Ze a Z 02/1303)0(1)(-=πψ) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∴0a r <<,故102≈-r a Ze 。
∴ ⎰⎰+--=0302404220330024)1(1)3(2r r r d ra e Z dr r r r r a e Z Eπεπε2030024505030300242)5(2r a e Z r r r a e Z πεπε+--= 23002410r a e Z πε= 2032452r a e Z s = 5.2 转动惯量为I 、电偶极矩为D 的空间转子处在均匀电场在ε中,如果电场较小,用微扰法求转子基态能量的二级修正。
量子力学课后习题详解 第五章 微扰理论5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:类氢原子如果核是点电荷,核外电子运动的哈密顿量为00ˆˆ()H T U r =+ 其中,)(0r U 为点电荷库伦势的势能,即2004ze U r rπε=-()在小球核电荷分布情况下,核外电子运动的哈密顿量为ˆˆ()HT U r =+ 球对称核电荷分布只对0r r <的区域有影响,对0r r ≥的区域无影响,即在0r r ≥区域, 200()()4Ze U r U r r πε=-=在0r r <区域,)(r U 可由下式得出,⎰∞-=r Edr e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,4344102003003303420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020022203002r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ 将哈密顿算符形式改写为 0ˆˆˆHH H '=+得 ⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε 由于通常0r 相对于电子的典型(平均)运动半径(玻尔半径)很小,所以,可以认为(0)ˆˆHH '<<,视为一种微扰。
对于基态r a Ze a Z 02/1303)0(1)(-=πψ,2422(0)1222e s s m Z e Z e E a =-=-由ˆH '引起的一级修正为 ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ 由于 00r r a ≤<<,故102≈-r a Ze 。
周世勋《量子力学教程》习题解答第一章 习题解答1.由黑体辐射公式导出维恩位移律:能量密度极大值所对应的波长m λ与温度T 成反比,即b T m =λ(常数)。
并近似计算b 的数值,准确到两位有效数字。
解:由能量密度的公式:185-⋅=λλλλπλρkT hc ed hcd则由0=λρλd d 解得m λ: 2256181185⎪⎪⎭⎫ ⎝⎛-⋅-⋅--⋅⋅-=λλλλλλπλπλρkT hc kT hckT hc e e kT hc hce hc d d 0511186=⎪⎪⎪⎪⎭⎫ ⎝⎛---⋅=λλλλλπkT hc kT hckT hc e ekT hc e hc 即 051=--λλλkT hckT hce e kT hc 令x kT hcm=λ,则 051=--x xe xe 解得 97.4=x所以 )(29.097.41038.110999.210626.6161027K cm kx hc T m ⋅=⨯⨯⨯⨯⨯==--λ 2.在K 0附近,钠的价电子能量约为eV 3,求其德布罗意波长。
解:01019303409.7)(1009.7106.131091.0210626.62A m mE h P h K=⨯=⨯⨯⨯⨯⨯⨯===----λ3.氦原子的动能是kT E 23=(k 为玻尔兹曼常数),求K T 1=时,氦原子的德布罗意波长。
解:氦原子的动能)(1007.211038.1232323J E --⨯=⨯⨯⨯=,氦原子的质量kg kg M 27271068.61067.14--⨯=⨯⨯=,所以102327346.12)(106.121007.21068.6210626.62A m mEh =⨯=⨯⨯⨯⨯⨯==----λ4.利用玻尔——索末菲量子化条件,求 (1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。
已知外磁场T H 10=,玻尔磁子T J M B /10924-⨯=,试计算动能的量子化间隔E ∆,并与K T 4=及K T 100=的热运动能量相比较。
量子力学导论第5章答案第五章力学量随时间的变化与对称性5.1)设力学量不显含,为本体系的Hamilton量,证明证.若力学量不显含,则有,令则,5.2)设力学量不显含,证明束缚定态,证:束缚定态为::。
在束缚定态,有。
其复共轭为。
5.3)表示沿方向平移距离算符.证明下列形式波函数(Bloch波函数),是的本征态,相应的本征值为证:,证毕。
5.4)设表示的本征态(本征值为),证明是角动量沿空间方向的分量的本征态。
证:算符相当于将体系绕轴转角,算符相当于将体系绕轴转角,原为的本征态,本征值为,经过两次转动,固定于体系的坐标系(即随体系一起转动的坐标系)的轴(开始时和实验室轴重合)已转到实验室坐标系的方向,即方向,变成了,即变成了的本征态。
本征值是状态的物理属性,不受坐标变换的影响,故仍为。
(还有解法二,参钱..《剖析》.P327)5.5)设Hamilton量。
证明下列求和规则。
是的一个分量,是对一切定态求和,是相应于态的能量本征值。
证:()又。
不难得出,对于分量,亦有同样的结论,证毕。
5.6)设为厄米算符,证明能量表象中求和规则为(1)证:式(1)左端(2)计算中用到了公式。
由于是厄米算符,有下列算符关系:(3)式(2)取共轭,得到(4)结合式(2)和(4),得证毕。
5.7)证明schrödinger方程变换在Galileo变换下的不变性,即设惯性参照系的速度相对于惯性参照系运动(沿轴方向),空间任何一点两个参照系中的坐标满足下列关系:。
(1)势能在两个参照系中的表示式有下列关系(2)证明schrödinger方程在参照系中表为在参照系中表为其中证:由波函数的统计解释,和的意义完全相同。
,是时刻在点找到粒子的几率密度;,是时刻在点找到粒子的几率密度。
但是在给定时刻,给定地点发现粒子的几率应与参照系的选择无关,所以相应的几率应相等,即(6)从(1)式有(6’)由此可以得出,和两个波函数彼此只应差绝对值为1的相因子,所以(7)(7)由(1)式,,(3)式变为:(8)将(7’)代入(8)式,可得(9)选择适当的,使得(9)(4)。
量子力学习题及解答第一章量子理论基础1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λT=b (常量);并近似计算b 的数值,准确到二位有效数字。
解根据普朗克的黑体辐射公式dv e chv d kThv v v 11833−⋅=πρ,(1)以及c v =λ,(2)λρρd dv v v −=,(3)有,118)()(5−⋅=⋅=⎟⎠⎞⎜⎝⎛−=−=kT hc v v e hc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⋅+−−⋅=−kT hc kThc e kT hc ehc λλλλλπρ⇒0115=−⋅+−−kThc ekThc λλ⇒kThc ekThc λλ=−−)1(5如果令x=kThcλ,则上述方程为xe x =−−)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知Km T m ⋅×=−3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e µ<<动),那么ep E µ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0×,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm mE c hc E h e e 71.01071.031051.021024.1229662=×=××××===−−µµ在这里,利用了meV hc ⋅×=−61024.1以及eVc e 621051.0×=µ最后,对Ec hc e 22µλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
第五章
全同粒子
本章主要内容概要
1. 全同粒子:质量、电荷、自旋等固有性质完全相同的微观粒子称为全同粒子。
在一个量子体系中全同粒子是不可区分的,两全同粒子相互交换不会引起物理性质的改变(全同性原理)。
所有的微观粒子可以分为两类:波色子和费米子。
所有自旋为 整数倍的粒子称为波色子,而所有自旋为/2 奇数倍的粒子称为费米子。
由费米子组成的量子体系,不能有两个或两个以上的费米子处于同一个状态(泡利不相容原理),体系的波函数在交换任意两个费米子时是反对称的。
对由波色子组成的量子体系,则不受泡利不相容原理的限制,两个或两个以上的波色子可以处于同一个状态,体系的波函数在交换任意两个波色子时是对称的。
如果体系的波函数可以由归一化的单粒子波函数()i q αφ的积表示,其中i 表示不同的单粒子态,q α表示第α个粒子的量子数(包括空间与自旋),则由N 个费米子组成体系的反对称波函数可以用N 阶行列式表示为
12121212()
()()()()()(,,...,,...,)()()()
i i i N j j j N A N k k k N q q q q q q q q q q q q q αφφφφφφΦ=
交换任何两个粒子就是交换行列式中的两列,这使行列式改变符号,即波函数A Φ在交换两粒子时是反对称的。
当任两粒子处于相同状态,即行列式中两行相同,行列式为零,表示不能有两个或两个以上的费米子处于同一个状态。
对由N 个波色子组成的体系,体系的对称波函数可以表示为 1212(,,...,,...,)()()...()A N i j k N P
q q q q C P q q q αφφφΦ=∑
其中P 表示N 个粒子在波函数中的某一种排列,P
∑表示对所有可能排列求和,由于波色
子可以处于相同的状态,,,...,i j k 可以相等,C 是归一化常数为求和的项数,,,...,i j k 完全相等时为1
,全不相等时为1/
2.交换力:以两粒子体系为例,若体系的波函数可以表示为空间部分和自旋部分之积,对称和反对称的空间波函数为
121212(,)()()()()]a b b a x x x x x x ψψψψψ±=±
这种波函数对称化的要求会使两粒子间出现一种力的作用,称为交换力。
对对称空间波函数这个力是吸引力,倾向于把两粒子拉近;对反对称空间波函数,这个力是排斥力,倾向于让两粒子相互远离。
固体中属于不同原子的两个电子组成的共价键可以由这种力解释,两电子体系的波函数是反对称的,当两个电子的自旋波函数为反对称的自旋单态时,空间波函数必是对称的,所以这种状态下的两个电子倾向于相互靠近,形成共价键。
3. 元素周期表:原子中一个单粒子态(),,n l m 称之为轨道,因为电子是费米子,受到泡利不相容原理的制约,一个轨道上只能有两个电子(一个自旋向上,一个自旋向下)。
当原子处于基态时,电子将从最低能态开始依据洪特定则依次填充。
1n =这个壳层能容纳两个电子,2n =壳层能容纳8个,3n =容纳18个,第n 个壳层可以容纳2
2n 个电子。
(洪特第一定则:在其它量都相同时,总自旋(S )取最大值的状态的能量最低。
第二定则:当
自旋给定时,总轨道角量子数(L )取最大值且同整体的反对称性一致时,将具有最低的能量。
第三定则:如果次壳层(n ,l )填充不到一半,则能量最低态满足:J=L-S ;如果填充超过一半,则J=L+S 态能量最低。
)一般以
21
S J L +表示原子电子组态,其中S 为电子总自
旋角动量,L 为总轨道角动量,J 为总角动量量子数。
习题5.7 解:(a )可分辨粒子
()()()()123123,,a b c x x x x x x ψψψψ=
(b )全同玻色子
(
)()()()()()()()()()()()()()()()()()()123123123123123123123,,a b c a c b b a c b c a c b a c a b x x x x x x x x x x x x x x x x x x x x x ψψψψψψψψψψψψψψψψψψψ=+++++⎤⎦
(c )全同费米子
()()()()
()()()()()(
)
()()()()()()()()()()()()()()()()()()111123222333123123123123123123,,a b c a b c a b c a b c a c b b a c b c a c b a c a b x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ψψψψψψψψψψψψψψψψψψψψψψψψψ=
=
--+-+⎤⎦
习题5.33 解:
(a )对于可分辨例子,三个粒子都可以处于任意一个态,所以总共会有3327=个可能三粒
子态。
列出如下:
(b )当粒子为全同玻色子时,要求波函数满足交换对称性,共10个可能态。
三个粒子处于相同粒子态:3个
123()()()a a a x x x ψψψ 123()()()b b b x x x ψψψ 123()()()
c c c x x x ψψψ 三个粒子处于两个粒子态:6个
1231231231
()()()()()()()()())a a b a b a b a a x x x x x x x x x ψψψ+ψψψ+ψψψ
123123123()()()()()()()()())a a c a c a c a a x x x x x x x x x ψψψ+ψψψ+ψψψ
1231231231
()()()()()()()()())b b a b a b a b b x x x x x x x x x ψψψ+ψψψ+ψψψ
123123123()()()()()()()()())b b c b c b c b b x x x x x x x x x ψψψ+ψψψ+ψψψ
1231231231
()()()()()()()()())c c a c a c a c c x x x x x x x x x ψψψ+ψψψ+ψψψ
123123123()()()()()()()()())c c b c b c b c c x x x x x x x x x ψψψ+ψψψ+ψψψ 三个粒子处于三个不同粒子态:1个
123123123123123123()()()()()()()()()
()()()()()()()()())
a b c a c b b a c b c a c a b c b a x x x x x x x x x x x x x x x x x x ψψψ+ψψψ+ψψψ+ψψψ+ψψψ+ψψψ
(c )当粒子为全同费米子时,要求波函数满足完全反对称性,每个费米子必须处在互不相同的态上,只有1种可能态
]111222123123333
1231231231
23
()()()()()()()()()()()()()()()()()()()()()()()()()()()a b c a b c a b c a c b a b c b a c b c a c a b c b a x x x x x x x x x x x x x x x x x x x x x x x x x x x ψψψψ=ψψψ-ψψψψψ-ψψψ+ψψψ+ψψψ-ψψψ。