水分活度对食品中主要的化学变化的影响
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
水分活度对食品中主要的化学变化的影响答:水分活度是指食品在密闭容器内测得的水蒸气压力(P)与同温度下测得的纯水蒸气压力(Po)之比.Aw = P/Po水分活度物理意义:表征生物组织和食品中能参与各种生理作用的水分含量与总含水量的定量关系。
一、水分活度对食品化学变化的影响主要由以下几个方面:(1)对脂肪氧化酸败的影响低水分活度, 氧化速度随水分增加而降低, 到水分活度接近等温线区域I、Ⅱ边界时进一步加水使氧化速度增加,直到水分活度接近区域Ⅱ与区域Ⅲ的边界,如果再进一步加水又引起氧化速度降低。
Aw=0-0.35范围,随Aw增加,反应速度降低的原因:水与脂类氧化生成以氢键结合的氢过氧化物,保护氢过氧化物的分解,阻止氧化进行。
这部分水与金属离子形成水合物,降低其催化性Aw=0.35-0.8范围,Aw增加,反应速度增加的原因:①水中溶解氧增加②大分子物质溶胀,活性位点暴露加速脂类氧化③催化剂和氧的流动性增加。
Aw>0.8时,Aw增加,反应速度增加很缓慢的原因:催化剂和反应物被稀释。
(2)对淀粉老化的影响含水量30%-60%,淀粉老化速度最快,,降低含水量,淀粉老化速度减慢,含水量10%-15%,结合水, 淀粉不发生老化。
(3)对蛋白质变性的影响水能使多孔蛋白质膨润, 暴露可能被氧化的基团, 氧就很容易转移到反应位置。
水分活度增大,加速蛋白质氧化, 破坏保持蛋白质高级结构的次级键, 导致蛋白质变性。
水分含量4%, 蛋白质变性缓慢进行水分含量4%在以下, 则不发生蛋白质变性。
(4)对酶促褐变的影响在低水分活度下(Aw 0.25-0.3),一些酶不会产生变化。
这是因为低水分活度下不允许酶和反应物重新反应。
(5)对非酶褐变的影响食品水分活度在一定范围内, 非酶褐变随水分活度的增大而加速,Aw0.6-0.7,褐变最严重。
随水分活度下降,非酶褐变受到抑制;降低到0.2以下,褐变难以发生。
如果水分活度大于褐变高峰Aw值,由于溶质浓度下降导致褐变速度减慢。
问答题1、水分活度与食品稳定性的关系。
答:一般来说,水分活度越低,食品质量越稳定。
其原因是:水分主要是化学结合水;微生物活动受到限制。
水分活度对食品品质的影响表现在以下方面:(1)、淀粉老化:淀粉发生老化后,会使食品失去松软性,同时也会影响淀粉的影响。
影响淀粉老化的主要因素是温度,但水分活度对其影响也很重要。
食品在水分活度较高的情况下,淀粉老化速度最快;降低水分活度,淀粉老化速度就下降,若含水量降至10%—15%,淀粉就不会发生老化。
(2)、脂肪酸败:食品中的水可以影响脂肪的氧化和其他自由基反应,而且影响非常复杂。
水分活度为0.3-0.4 时,脂肪氧化速度最慢。
(3)、蛋白质变性:蛋白质在湿热的情况下更易发生变性。
因此低水分活度可以抑制蛋白质的变性。
(4)、酶促褐变:酶促褐变的催化剂是酶,改变酶的作用条件,降低酶的活力就可以抑制酶促反映的进行。
低水分活度可以抑制酶促反应的进行。
(5)、非酶褐变:美拉德反应在中等至高水分活的下反应速度最快,因此,低水分活度可以抑制非酶褐变的发生(6)、水溶性色素:花青素溶于水不稳定,水分活度增加,花青素分解速度加快,从而影响食品的色泽。
2、影响脂类氧化速度的因素有哪些?答:脂肪酸的组成,游离氨基酸与相应的酰基甘油,氧浓度,温度,表面积,水分,分子定向,物理状态,乳化,分子迁移率与玻璃化转变,助氧剂,辐射能,抗氧化剂。
3、影响蛋白质水和能力的因素有哪些?答:(1)、pH 值:在等电点,蛋白质之间的相互作用增大,蛋白质与水之间作用减小,水和能力下降。
(2)、盐:低浓度时,水合盐离子与蛋白质带电基团微弱结合,水和性增强;高浓度时,盐离子与水结合,水合力下降,(3)、温度:温度升高,氢键被破坏,水合力下降。
(4)、蛋白质浓度及氨基酸组成:蛋白质浓度增大水合能力增大,带电的氨基酸数目愈多,水合能力愈大。
4、请简要回答蛋白质适当热处理的意义。
答:蛋白质适当热处理可以使蛋白质部分变性,从而改进他们的消化率和必须氨基酸的生物有效性。
食品水分活度的检测对品质的影响,与保藏稳定性的关系一、水分活度影响着食品的色、香、味和组织结构等品质。
食品中的各种化学、生物化学变化对水分活度都有一定的要求。
例如:酶促褐变反应对于食品的质量有着重要意义,它是由于酚氧化酶催化酚类物质形成黑色素所引起的。
随着水分活度的减少。
酚氧化酶的活性逐步降低;同样,食品内的绝大多数酶,如淀粉酶、过氧化物酶等,在水分活度低于0.85的环境中,催化活性便明显地减弱,但脂酶除外,它在水分活度Aw为0.3甚至0.1时还可保留活性。
非酶促褐变反应---美拉德反应也与水分活度有着密切的关系,当水分活度在0.6~0.7之间时,反应达到最大值;维生素B1的降解在中高水分活度条件下也表现出了最高的反应速度。
另外,水分活度对脂肪的非酶氧化反应也有较复杂的影响。
这些例子都说明了水分活度值对食品品质有着重要的影响。
二、水分活度影响着食品的保藏稳定性。
微生物的生长繁殖是导致食品腐败变质的重要因素。
而它们的生长繁殖与水分活度有密不可分的关系。
在各类微生物中,细菌对水分活度的要求最高,Aw0.9时才能生长;其次是酵母菌,Aw的阈值是0.87;再次是霉菌。
大多数霉菌在Aw为0.8时就开始繁殖。
在食品中,微生物赖以生存的水分主要是自由水,食品内白由水含量越高,水分活度越大,从而使食品更容易受微生物的污染,保藏稳定性也就越差。
利用食品的水分活度原理,控制其中的水分活度,就可以提高产品质量、延长食品的保藏期。
例如:为了保持饼干、爆米花和薯片的脆性,为了避免颗粒蔗糖、乳粉和速溶咖啡的结块,必须使这些产品的水分活度保持在适当低的条件下;水果软糖中的琼脂、主食面包中添加的乳化剂、糕点生产中添加的甘油等不仅调整了食品的水分活度,而且也改善了食品的质构、口感并延长了保质期。
虽然在食物冻结后不能用水分活度来预测食物的安全性,但在未冻结时,食物的安全性确实与食物的水分活度有着密切的关系。
水分活度是确定贮藏期限的一个重要因素。
食品化学-问答题问答题:一、水1、水的存在形式?☆水分为结合水和自由水。
结合水(又名:束缚水、固定水)根据结合的牢固程度分为化合水、邻近水、多层水;自由水(又名:体相水、游离水)包括:滞化水、毛细管水、自由流动水。
2、结合水与自由水之间的区别?☆①结合水的量与食品中有机大分子的极性基团的数量有比较固定的比例关系;②结合水的蒸汽压比自由水低;③结合水在食品中不能作为溶剂,在-40℃以上不能结冰;自由水在食品中可以作溶剂,在-40℃以上可以结冰;④自由水能为微生物所利用,适于微生物繁殖及进行化学反应,是发生食品腐败变质的适宜环境。
结合水则不能;⑤结合水对食品风味起重要作用。
3、结合水、自由水各有哪些特点?自由水特点:1.能结冰,但冰点略微下降;2.溶解溶质的能力强,干燥时易被除去;3.与纯水分子平均运动接近;4.很适于微生物生长和大多数化学反应,易引起食品的腐败变质,但与食品风味及功能性紧密相关。
结合水特点:1.是在样品在一个温度和相对湿度下的平衡水分含量;2.结合水的转动受限;3.在低温下不结冰;4.无溶解溶质能力;5.与纯水比较分子平均运动为0;6.不能被微生物利用;7.用一般干燥剂不能除去;8.处在溶质和其他非水物质临近位置。
4、水分活度与环境平衡相对湿度之间的关系?☆食品的水分活度在数值上等于环境相对平很湿度除以100。
5、水分活度与温度的关系?(冰点以下和冰点以上)☆在比较冰点以上和冰点以下的水分活度值时,应注意到有3个重要区别。
①在冰点以上温度时,水分活度是食品组成和温度的函数,并以食品的组成为主;在冰点以下温度时,由于冰的存在,水分活度不再受食品中非水组分的种类和数量的影响,只与温度有关。
(为此,食品中任何一个受非水组分影响的物理、化学和生物化学变化,在食品冻结后,就不能再根据水分活度的大小进行准却得预测。
于是,在冰点以下的AW值作为物理、化学和生物化学变化指标的价值远比在冰点以上的AW值来得低。
二、概念:水分活度:反应水与各种非水成分缔合的强度。
滞后现象:水分回吸等温线和解吸等温线之间的不一致。
疏水相互作用:当水与非极性基团接触时,为减少水与非极性实体的界面面积,疏水基团之间进行缔合,这种作用成为疏水相互作用。
疏水水合:向水中添加疏水性物质时,由于它们与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强,使得熵减小,此过程称为疏水水合。
美拉德反应:食品在油炸、焙烤、烘焙等加工或贮藏过程中,葡萄糖同游离氨基酸或蛋白质分子中氨基酸残基的游离氨基发生羰氨反应。
淀粉糊化:淀粉粒在适当温度下,在水中溶胀、分裂,形成均匀的糊状溶液的过程。
淀粉老化:淀粉溶液经缓慢冷却或淀粉凝胶长期放置,会变成不透明甚至沉淀的现象。
麦芽糊精:一种不甜的、有营养的、由葡萄糖α-1.4糖苷键相连接,DE<20的淀粉水解产品。
改性淀粉:天然淀粉经适当的化学处理、物理处理或酶处理,使某些加工性能得到改善,以适应特定需要的淀粉。
油脂的塑性:固体脂肪在外力的作用下,当外力超过分子间的作用力时开始流动,但当外力停止后,脂肪重新恢复原有稠度。
同质多晶:指化学组成相同但具有不同晶型的物质,在熔化时可得到相同的液相。
抗氧化剂:一种能推迟具有自动氧化能力的物质发生氧化,并能减慢氧化速率的物质。
硬化油:完全氢化,双键全部消失的油。
蛋白质构象适应性:蛋白质分子结构的细微变化并没有导致分子结构剧烈的改变,此种变化通常被称为构象适应性蛋白质乳化能力:指在乳状液相转变前每克蛋白质所能乳化的油的体积。
蛋白质的持水力:蛋白质吸收水并能将水保留在蛋白质组织中的能力。
蛋白质变性:由于外界因素的作用使天然蛋白质分子在二级、三级和四级结构上重大变化从而导致生物活性的丧失以及物理化学性质的异常变化。
蛋白质结合水能力:当干蛋白质粉与相对湿度为90~95%的水蒸气达到平衡时,每克蛋白质所结合水的克数。
泡沫稳定性:泡沫稳定性涉及到蛋白质稳定处在重力和机械力下的泡沫的能力。
水分活度名词解释食品化学
你知道啥是“水分活度”不?听我给你讲讲哈。
有一回啊,我买了包薯片。
吃着吃着,我就发现这薯片有时候很脆,有时候就有点软了。
我就好奇这是为啥呢?后来我才知道,这跟一个叫水分活度的东西有关系。
水分活度呢,就是说食品里的水分能被微生物利用的程度。
简单点说,就是食品里的水有多“自由”。
如果水分活度高,那些坏细菌、霉菌啥的就容易在食品里生长,食品就容易坏。
如果水分活度低,那些坏家伙就没法活,食品就能保存得更久。
我记得我有一次自己做面包。
一开始做出来的面包可软乎了,但是放了几天就变得硬邦邦的。
我就想,这是不是水分活度变了呢?后来我去查了资料,才知道面包放久了,里面的水分慢慢变少了,水分活度也降低了,所以就变硬了。
在生活中啊,我们经常会看到一些食品因为水分活度的问题而变质或者变味。
比如说,水果放久了会烂,就是因为水分活度高,细菌容易生长。
而那些干货,像木耳、香菇啥的,能放很久,就是因为水分活度低。
所以啊,水分活度就是一个影响食品质量和保存时间的重要因素。
嘿嘿。
水分活度对食品中主要的化学变化的影响
答:水分活度是指食品在密闭容器内测得的水蒸气压力(P)与同温度下测得的纯水蒸气压力(Po)之比.
Aw = P/Po
水分活度物理意义:表征生物组织和食品中能参与各种生理作用的水分含量与总含水量的定量关系。
一、水分活度对食品化学变化的影响主要由以下几个方面:
(1)对脂肪氧化酸败的影响
低水分活度, 氧化速度随水分增加而降低, 到水分活度接近等温线区域I、Ⅱ边界时进一步加水使氧化速度增加,直到水分活度接近区域Ⅱ与区域Ⅲ的边界,如果再进一步加水又引起氧化速度降低.
Aw=0—0.35范围,随Aw增加,反应速度降低的原因:水与脂类氧化生成以氢键结合的氢过氧化物,保护氢过氧化物的分解,阻止氧化进行。
这部分水与金属离子形成水合物,降低其催化性
Aw=0.35-0.8范围,Aw增加,反应速度增加的原因:①水中溶解氧增加②大分子物质溶胀,活性位点暴露加速脂类氧化③催化剂和氧的流动性增加。
Aw>0。
8时,Aw增加,反应速度增加很缓慢的原因:催化剂和反应物被稀释。
(2)对淀粉老化的影响
含水量30%-60%,淀粉老化速度最快,,降低含水量,淀粉老化速度减慢,含水量10%-15%,结合水,淀粉不发生老化.
(3)对蛋白质变性的影响
水能使多孔蛋白质膨润, 暴露可能被氧化的基团, 氧就很容易转移到反应位置。
水分活度增大,加速蛋白质氧化, 破坏保持蛋白质高级结构的次级键, 导致蛋白质变性。
水分含量4%, 蛋白质变性缓慢进行水分含量4%在以下,则不发生蛋白质变性。
(4)对酶促褐变的影响
在低水分活度下(Aw 0。
25-0。
3),一些酶不会产生变化.这是因为低水分活度下不允许酶和反应物重新反应。
(5)对非酶褐变的影响
食品水分活度在一定范围内, 非酶褐变随水分活度的增大而加速,Aw0.6—0。
7,褐变最严重。
随水分活度下降,非酶褐变受到抑制;降低到0。
2以下,褐变难以发生.如果水分活度大于褐变高峰Aw值,由于溶质浓度下降导致褐变速度减慢。
一般情况, 浓缩液态、中湿食品位于非酶褐变最适水分含量范围。
(6)对水溶性色素分解的影响
葡萄、杏、草莓等水果色素是水溶性花青素,溶于水不稳定的,1-2周后其特有的色泽消失。
花青素在干制品中十分稳定, 数年贮藏轻微分解一般而言, Aw 增大,水溶性色素分解速度加快.
二、低水分活度抑制食品化学变化机理:
(1)大多数化学反应必须水溶液进行,降低食品水分活度,食品中结合水比例增加, 自由水比例减少,结合水不能作为反应物溶剂, 所以降低水分活度, 使食品中许多可能发生的化学反应、酶促反应受到抑制。
(2)很多化学反应属于离子反应,反应发生条件是反应物首先必须进行离子化或水化作用, 发生离子化或水化作用的条件必须有足够的自由水才能进行。
(3)很多化学、生物化学反应、都必须有水分子参加才能进行(如水解反应)。
降低水分活度,减少参加反应自由水数量, 反应物(水)浓度下降, 化学反应速度变慢.
(4)许多以酶为催化剂的酶促反应, 水除了起一种反应物作用, 还能作为底物向酶扩散的输送介质,并且通过水化促使酶和底物活化.
综上, 降低食品的水分活度,可延缓酶促、非酶褐的进行,减少食品营养成的破坏, 防止水溶性色素的分解.水分活度过低, 则加速脂肪氧化酸败, 引起非酶褐变.食品化学反应的最大反应速度一般发生在具有中等水分含量(Aw0.7—0。
9)的食品中。
要使食品具有最高稳定性,最好将水分活度保持在结合水范围.既使化学变化难以发生, 同时又不会使食品丧失吸水性和复
原性。