食品化学 第二章 水 知识点总结
- 格式:docx
- 大小:22.91 KB
- 文档页数:15
食品化学第二章水知识点总结第二章水分2.1食品中的水分含量和功能2.1.1水分含量?普通生物和食物中的水分含量为3 ~ 97%?生物体中水的含量约为70-80%。
动物体内的水分含量为256±199,随着动物年龄的增长而减少,而成年动物体内的水分含量为58-67%不同部位水分含量不同:皮肤60 ~ 70%;肌肉和器官脏70 ~ 80%;骨骼12-15%植物中水分的含量特征?营养器官组织(根、茎和叶的薄壁组织)的含量高达70-90%?生殖器官和组织(种子、微生物孢子)的含量至少为12-15%表2-1某些食物的含水量食物的含水量(%)卷心菜,菠菜90-95猪肉53-60新鲜鸡蛋74牛奶88冰淇淋65大米12面包35饼干3-8奶油15-20 2.2水的功能2.2.1水在生物体中的功能1。
稳定生物大分子的构象,使它们表现出特定的生物活性2。
体内化学介质使生化反应顺利进行。
营养物质,代谢载体4。
热容量大,体温调节5。
润滑。
此外,水还具有镇静和强有力的作用。
护眼、降血脂、减肥、美容2.2.2水的食物功能1。
食品成分2。
展示颜色、香气、味道、形状和质地特征3。
分散蛋白质、淀粉并形成溶胶4。
影响新鲜度和硬度5。
影响加工。
它起着饱和和膨胀的作用。
它影响2.3水的物理性质2.3.1水的三态1,具有水-蒸汽(100℃/1个大气压)2、水-冰(0℃/1个大气压)3、蒸汽-冰(> 0℃/611帕以下)的特征:水、蒸汽、冰三相共存(0.0098℃/611帕)* * 2.3.2水的重要物理性质256水的许多物理性质,如熔点、沸点、比热容、熔化热、汽化热、表面张力和束缚常数数,都明显较高。
*原因:水分子具有三维氢键缔合,1水的密度在4℃时最高,为1;水结冰时,0℃时冰密度为0.917,体积膨胀约为9%(1.62毫升/升)。
实际应用:是一种容易对冷冻食品的结构造成机械损伤的性质,是冷冻食品工业中应注意的问题。
水的沸点与气压成正比。
食品化学水知识点水是食品化学中一项重要的研究内容,它在食品加工和储存过程中起着至关重要的作用。
本文将介绍食品化学中与水相关的知识点,并解释其在食品加工中的作用。
1.水的化学性质水的化学式为H2O,是由一个氧原子和两个氢原子组成的化合物。
水是一种无色、无味、无臭的液体,它在室温下是液态存在的。
水是一种极性分子,具有良好的溶剂能力,可以溶解许多食品成分。
2.水的物理性质水的物理性质对于食品加工具有重要意义。
水的沸点为100摄氏度,冰点为0摄氏度。
水的密度随温度而变化,通常在4摄氏度时具有最大密度。
此外,水还具有热容量大、热传导性能好等特点,使其成为食品加工中常用的冷却、加热介质。
3.水在食品加工中的作用(1)溶剂:水是一种理想的溶剂,可以溶解许多食品成分,如糖、盐、酸等。
在食品加工过程中,水的溶解能力可以促进食品的溶解、混合和反应。
(2)稀释:水可以用来稀释食品中过高的浓度,使其达到适宜的口感和味道。
例如,酱油、醋等浓缩的调味品常常需要用水稀释后才能使用。
(3)调节温度:水作为一种热传导介质,在食品加工过程中可以用来调节温度。
例如,在烹饪中加入适量的水可以控制食物的温度,使其煮熟或煮烂。
(4)调节酸碱度:水的pH值为中性,当食品过酸或过碱时,可以用水来调节酸碱度,使其达到适宜的口感和保质期。
(5)保湿:水具有良好的保湿性能,可以防止食品失去水分,延长食品的保质期。
在面包、蛋糕等糕点制作中,水的添加可以增加面团的柔软度和保湿性。
4.水质对食品加工的影响水质对食品加工具有重要的影响。
水中的杂质和微生物会对食品的质量和安全性产生影响。
例如,硬水中的钙和镁离子会与食品中的某些成分发生反应,导致沉淀和不良的口感。
此外,水中的微生物可能导致食品腐败和变质。
为了确保食品的质量和安全性,食品加工过程中需要选择适宜的水源,并对水进行必要的处理和消毒。
总结:食品化学中的水知识点包括水的化学性质、物理性质以及在食品加工中的作用。
第二章水2.1 食品中的水分含量及功能2.1.1 水分含量▪一般生物体及食品中水分含量为3~97%•水在生物体内的含量约70~80%水在动物体内的含量特点随动物年龄的增加而减少,成人含水量为58~67%。
不同部位水分含量不同:皮肤60~70%;肌肉及器脏70~80%;骨骼12~15%。
水在植物体内的含量特点•营养器官组织(根、茎、叶的薄壁组织)含量最高70~90%。
•繁殖器官组织(种子、微生物的孢子)含量最低12~15%。
某些食品的水分含量表2—1食品水分含量( % )白菜,菠菜90—95猪肉53—60新鲜蛋74奶88冰淇淋65大米12面包35饼干3—8奶油15--202.2 水的功能2.2.1 水在生物体内的功能1.稳定生物大分子的构象,使其表现特异的生物活性2.体内化学介质,使生物化学反应顺利进行3.营养物质,代谢载体4.热容量大,调节体温5.润滑作用此外,水还具有镇静、强壮效果;保护眼睛,降脂减肥和美容作用。
2.2.2 水的食品功能1.食品的组成成分2.显示色、香、味、形、质构特征3.分散蛋白质、淀粉、形成溶胶4.影响鲜度、硬度5.影响加工,起浸透、膨胀作用6.影响储藏性2.3 水的物理性质2.3.1 水的三态1、以水—汽(100℃/1个大气压)2、水—冰(0℃/1个大气压)3、汽—冰(>0℃/611Pa以下)特点: 具有水、汽、冰三相共存(0.0098℃/611Pa)* * 2.3.2 水的重要物理性质•水的许多物理性质:如熔点、沸点、比热容、熔化热、蒸发热、表面张力和界电常数都明显偏高.* *原因:水分子间存在着三维氢键缔合的缘故1水的密度在4℃最大,为1;0℃时冰密度为0.917,水结冰时,体积膨胀约9%(1.62ml/L). 实际应用:这种性质易对冷冻食品的结构造成机械损伤,是冷冻食品行业中应关注的问题2.水的沸点与气压呈正相关关系.当气压升高时,则其沸电升高;当气压下降,则沸点降低。
第二章,水水-溶质相互作用一、 与离子和离子基团的相互作用(P15)当食品中存在离子或可解离成离子或离子基团的盐类物质时,产生偶极-离子相互作用,可以固定相当数量的水。
随着离子种类及所带电荷的不同,与水之间的相互作用也有所差别。
大致可以分作两类:1、有助于水分子网状结构的形成,水溶液的流动性小于水,如:Li +、Na +、H 3O +、Ca 2+、Ba 2+、Mg 2+、Al 3+、OH -等。
2、能阻碍水分子之间网状结构的形成,其溶液的流动性比水大,此类离子如:K+、Rb+、Cs +、NH 4+、C l-、B r-、I -、NO -3、BrO -3等;二、水与具有氢键形成能力的中性基团(亲水性溶质)的相互作用许多食品成分,如蛋白质、多糖(淀粉或纤维素)、果胶等中的极性基团,如羟基、羧基、氨基、羰基等,均可与水分子通过氢键相互结合。
水与溶质之间的氢键键合比水与离子之间的相互作用弱。
三、 水与非极性物质的相互作用非极性的分子通常包括烃类、稀有气体、脂肪酸、氨基酸和蛋白质的非极性基团等。
疏水水合作用 疏水相互作用 疏水基团还能和水形成笼形水合物。
四、水与双亲分子的相互作用双亲分子包括脂肪酸盐、蛋白脂质、糖脂、极性脂类和核酸。
双亲分子在水中形成胶团。
食品中水的存在状态根据食品中水分的存在状态,可以把食品中的水分作不同的类型(如下页图)。
结合水,自由水(体相水)之间很难作截然的划分,其主要的区别在于:a.结合水的量与食品中所含极性物质的量有比较固定的关系。
b.结合水的蒸汽压比自由水低得多。
c.结合水不易结冰(冰点约-40℃)。
食品中水的存在形式构成水定义:与非水物质呈紧密结合状态的水特点:非水物质必要的组分,-40度部结冰,无溶剂能力,不能被微生物利用;邻近水定义:处于非水物质外围,与非水物质呈缔合状态的水;特点:-40度不结冰,无溶剂能力,不能被微生物利用;多层水定义:处于邻近水外围的,与邻近水以氢 键或偶极力结合的水;特点:有一定厚度(多层),-40度基本不结 冰,溶剂能力下降,可被蒸发;单分子层水,0.5%5%结合水自由水被组织中的显微结构或亚显微结构或膜滞留的水滞化水不能自由流动,与非水物质没关系毛细管水由细胞间隙等形成的毛细管力所系留的水物理及化学性质与滞化水相同自由流动水以游离态存在的水可正常结冰,具有溶剂能力,微生物可利用定义特点定义特点定义特点d.结合水不能作为溶质的溶剂。
《食品化学》复习要点第2章:水分1.水具有的特殊物理性质?(是什么决定的)水的异常物理性质与断裂的水分子间氢键需要额外能量有关P152.水存在状态:例共价键,离子键的大小和顺序等等共价键>H2O-离子键>H2O- H2O3.可形成氢键的基团?羧基、羰基、氨基、亚胺基、羟基、巯基等。
4.疏水相互作用如果存在两个分离的非极性基团,那么不相容的水环境将促进它们之间的缔合,从而减少水-非极性实体界面面积,此过程是疏水水合的部分逆转,称为“疏水相互作用”。
△G <0 热力学有利R(水合)+R(水合) R2(水合)+H2O5.水存在形式结合水:化合水、邻近水、多层水,自由水:滞化水、毛细管水、自由流动水6.结合水的特点(不被蒸发,不被微生物利用):*结合水最牢固、在食品内部不能做溶剂、不容易被蒸发、-40以下不能结冰。
7.滞化水的特点是被组织中的显微结构与膜阻滞留住的水,不能自由流动。
8.水分活度(定义,意义,变化,与食品稳定性的关系,反正要掌握一切水分活度相关的知识点,必考)定义:食品中水分逸出的程度,可以用食品中水的蒸汽压与同温度下纯水饱和蒸汽压之比表示,也可以用平衡相对湿度表示。
Aw = f(溶液中水的逸度)水逃离的趋势fo(纯水的逸度)≈P(食品中水的蒸汽压)Po(纯水饱和蒸汽压)=ERH/100意义:9.冰点上和冰点下的水分活度冰点以上,A w是样品组成与温度的函数,前者是主要的因素;冰点以下,A w与样品组成无关,而仅与温度有关,即冰相存在时,A w不受所存在的溶质的种类或比例的影响,不能根据A w预测受溶质影响的反应过程;不能根据冰点以下温度A w预测冰点以上温度的A w;当温度改变到形成冰或熔化冰时,就食品稳定性而言,水分活度的意义也改变了。
10.吸湿等温线(定义,分区,掌握BET单层)定义:在恒定温度下,以食品的水分含量对它的水分活度绘图形成的曲线,称水分的吸湿等温线分区:•BET单层:区段I和区段II的边界,相当于食品的“BET单层”水分含量。
食品化学第二章水知识点总结第二章水食品中的水分含量及功能水分含量一般生物体及食品中水分含量为3~97% 水在生物体内的含量约70~80% 水在动物体内的含量特点随动物年龄的增加而减少,成人含水量为58~67%。
不同部位水分含量不同:皮肤 60~70%;肌肉及器脏 70~80%;骨骼 12~15%。
水在植物体内的含量特点营养器官组织含量最高 70~90%。
繁殖器官组织含量最低 12~15%。
某些食品的水分含量表2—1食品水分含量 ( % )白菜,菠菜90—95 猪肉 53—60 新鲜蛋74 奶88 冰淇淋65 大米12 面包35 饼干3—8 奶油 15--20 水的功能水在生物体内的功能1.稳定生物大分子的构象,使其表现特异的生物活性2.体内化学介质,使生物化学反应顺利进行3.营养物质,代谢载体4.热容量大,调节体温5.润滑作用此外,水还具有镇静、强壮效果;保护眼睛,降脂减肥和美容作用。
水的食品功能 1.食品的组成成分2.显示色、香、味、形、质构特征3.分散蛋白质、淀粉、形成溶胶4.影响鲜度、硬度5.影响加工,起浸透、膨胀作用6.影响储藏性水的物理性质水的三态1、以水—汽2、水—冰3、汽—冰特点: 具有水、汽、冰三相共存 * * 水的重要物理性质水的许多物理性质:如熔点、沸点、比热容、熔化热、蒸发热、表面张力和界电常数都明显偏高. * *原因:水分子间存在着三维氢键缔合的缘故1水的密度在4℃最大,为1;0℃时冰密度为,水结冰时,体积膨胀约9%(/L). 实际应用:这种性质易对冷冻食品的结构造成机械损伤,是冷冻食品行业中应关注的问题2. 水的沸点与气压呈正相关关系.当气压升高时,则其沸电升高;当气压下降,则沸点降低。
实际应用:(1)热敏性的食品如牛奶、肉汁、果汁等的浓缩通常采用减压或真空方式来保护食品的营养物质(2)不易煮烂的食物,如动物的筋、骨、牛肉等可采用高压蒸煮,低酸性的罐头的杀菌 (3)高原上做饭应采用高压 3.水的比热较大水的比热大是因为当温度升高时,除了分子动能需要吸收热量外,同时缔合的分子转化为单分子时也需要吸收热量所致。
使得水温不易随气温的变化而异。
比如海洋性气候就是如此。
4. 水的介电常数很高,水的溶解能力强 20℃时,水为。
生物体的干物质的介电常数为~。
介电常数高,可促进电解质的解离,所以对酸、碱、盐等电解质和蛋白质在水中的溶解是非常重要的。
5. 冰的导电系数与热传递系数均比水的大,分别大3倍与4倍也就是说,在一定的环境中,冰改变自身的温度要比水的快得多,所以同一食物的解冻要比冻结快得多# 食品中的水分状态及与溶质间的相互关系(1)水分状态结合水作用力:配位键,氢键,部分离子键特点:在-40℃以上不结冰,不能作为外来溶质的溶剂单分子层水: 与食物的非水组分中离子或强极性基团如氨基、羧基等直接以离子键或氢键结合的第一个水分子层中的水称之。
约为总水量的%。
多分子层水:处于单分子层水外的几层水分子或与非水组分所含的弱极性基团如羟基、酰胺基等形成的氢键的水分子。
# 食品中的水分状态及与溶质间的相互关系(2)自水作用力:物理方式截留,生物膜或凝胶内大分子交联成的网络所截留;毛细管力特点:可结冰,溶解溶质;测定水分含量时的减少量;可被微生物利用。
毛细管水:毛细管径>,约为几~几十um时,其内的水属于自水。
自流动水# 食品中的水分状态及与溶质间的相互关系(3)水溶质间的相互关系水与离子和离子基团的相互作用作用力:极性结合,偶极—离子相互作用阻碍水分子的流动的能力大于其它溶质;水—离子键的强度大于水—水氢键;破坏水的正常结构,阻止水在0℃时结冰,对冰的形成造成一种阻力# 食品中的水分状态及与溶质间的相互关系(4)水与可形成氢键的中性基团的相互作用水可以与羟基、氨基、羰基、酰基、亚氨基等形成氢键;作用力小于水与离子间作用力;流动性小;对水的网状结构影响小;阻碍水结冰;大分子内或大分子间产生“水桥”Η││∣—Ν—Η……Ο—Η……О=С—# 食品中的水分状态及与溶质间的相互关系(5)水与非极性物质的相互作用笼形水合物的形成:于非极性基团与水分子产生斥力,使疏水基团附近的水分子间氢键键合力↑“笼形水合物” :20~74个水分子将“客体”包在其中作用力:范德华力、少量静电力、疏水基团间的缔合作用水分活度与食品稳定性 * * 水分活度的意义问题(1) 含水18%的果脯与含水18%的小麦比较,哪种耐储藏?水分活度: 食品中水的蒸汽分压与同温度下纯水饱和蒸汽压之比表示Aw=P/Po对于纯水: P=Po Aw=1;而对于食品中的水分,因其中溶有其它物质,所以P总是易程度与Aw有关.1.配制食品混合应注意水在配料间的转移2.测定包装材料的阻湿性质3.测定一定水分含量与微生物生长的关系4.预测食品稳定性与水分含量的关系。
2.吸湿等温线与温度的关系T升高,则Aw升高,对同一食品,T升高,形状近似不变,曲线位置向下方移动.不同温度下马铃薯的吸湿等温线# 吸湿等温线的滞后现象测定水加入到干燥食品的吸湿等温线与测定高水分食品→脱水的解吸等温线;二线不完全重合,显示吸湿等温线滞后环吸湿等温线的滞后现象 ;吸湿等温线与解吸等温线不完全重合的现象水分含量相同时,对应的Aw ,解湿V降低 Aw与脂肪的氧化Aw对脂肪的非酶氧化反应的影响比较复杂。
Aw Aw ↑ V ↑ Aw > Aw↑ V↑ (稀释浓度) Aw与水溶性色素分解,维生素分解 Aw ↑ V分解↑* * 结冰对食品稳定性影响食品结冰时1.非冻结相中,溶质变浓,产生浓缩效应冻结的pH、粘度、离子强度、氧化还原电位、胶体性质等发生变化。
加速一些化学反应:蔗糖在酸催化下水解反应,肌红蛋白褐变蛋白质变性S↓2. 冰的体积增加9% ,导致机械伤害,发生错位现象氧化反应酶催化反应水对食品质构的影响(1)水%、Aw对干、半干、中湿食品质构有影响低Aw:饼干脆性油炸土豆片脆性硬糖防粘固体饮料防结块中湿:软糖防变硬蛋糕防变硬面包防变硬降低Aw的方法添加吸湿剂可在水分含量不变条件下,降低Aw值。
吸湿剂应该含离子、离子基团或含可形成氢键的中性基团,即有可与水形成结合水的亲水性物质。
如:多元醇:丙三醇、丙二醇、糖无机盐:磷酸盐、食盐动、植物、微生物胶:明胶、卡拉胶、黄原胶水对食品质构的影响(2)冷冻方式对质构的影响速冻、小晶体破坏小;慢冻,大冰晶破坏大干燥方法对质构的影响空气干燥质构破坏冷冻干燥相似质构如脱水蔬菜高温脱水质构破坏分子流动性与食品稳定性(1)无定形---- 非平衡、非结晶状态玻璃态----以无定形固体存在的物质于玻璃态玻璃化温度----过饱和溶液转变成玻璃态时的温度分子流动性与食品稳定性(2) 食品的物理变化和化学变化的速度分子流动性所决定分子流动性与温度有相依性大多数食品具有玻璃化温度溶质类型影响玻璃化温度分子的缠结能影响食品的性质Aw在~ ,其水分含量在20~40% 中间食品具有如下特征:能象干燥食品那样抵制微生物的繁殖生长;不必复水,且口感良好;能够长期保存; 营养成分容易调整; 包装经济。
讨论、思考题1、试列举水在生物体内的主要功能。
2、简述食品体系中水的存在类型与特点。
3、水的物理性质中有哪些与食品加工有关的?分别有何应用?4、解释:单分子层水、多分子层水、束缚水、毛细管水、截留水5、冻结对食品保藏有何不利的影响?6、为什么水分活度与食品的稳定性密切相关?7、解释:水分活度、玻璃态、玻璃化温度、分子流动性、吸湿等温线第二章水食品中的水分含量及功能水分含量一般生物体及食品中水分含量为3~97% 水在生物体内的含量约70~80% 水在动物体内的含量特点随动物年龄的增加而减少,成人含水量为58~67%。
不同部位水分含量不同:皮肤 60~70%;肌肉及器脏 70~80%;骨骼 12~15%。
水在植物体内的含量特点营养器官组织含量最高 70~90%。
繁殖器官组织含量最低 12~15%。
某些食品的水分含量表2—1食品水分含量 ( % )白菜,菠菜90—95 猪肉 53—60 新鲜蛋74 奶88 冰淇淋65 大米12 面包35 饼干3—8 奶油 15--20 水的功能水在生物体内的功能1.稳定生物大分子的构象,使其表现特异的生物活性2.体内化学介质,使生物化学反应顺利进行3.营养物质,代谢载体4.热容量大,调节体温5.润滑作用此外,水还具有镇静、强壮效果;保护眼睛,降脂减肥和美容作用。
水的食品功能 1.食品的组成成分2.显示色、香、味、形、质构特征3.分散蛋白质、淀粉、形成溶胶4.影响鲜度、硬度5.影响加工,起浸透、膨胀作用6.影响储藏性水的物理性质水的三态1、以水—汽2、水—冰3、汽—冰特点: 具有水、汽、冰三相共存 * * 水的重要物理性质水的许多物理性质:如熔点、沸点、比热容、熔化热、蒸发热、表面张力和界电常数都明显偏高. * *原因:水分子间存在着三维氢键缔合的缘故1水的密度在4℃最大,为1;0℃时冰密度为,水结冰时,体积膨胀约9%(/L). 实际应用:这种性质易对冷冻食品的结构造成机械损伤,是冷冻食品行业中应关注的问题2. 水的沸点与气压呈正相关关系.当气压升高时,则其沸电升高;当气压下降,则沸点降低。
实际应用:(1)热敏性的食品如牛奶、肉汁、果汁等的浓缩通常采用减压或真空方式来保护食品的营养物质(2)不易煮烂的食物,如动物的筋、骨、牛肉等可采用高压蒸煮,低酸性的罐头的杀菌 (3)高原上做饭应采用高压 3.水的比热较大水的比热大是因为当温度升高时,除了分子动能需要吸收热量外,同时缔合的分子转化为单分子时也需要吸收热量所致。
使得水温不易随气温的变化而异。
比如海洋性气候就是如此。
4. 水的介电常数很高,水的溶解能力强 20℃时,水为。
生物体的干物质的介电常数为~。
介电常数高,可促进电解质的解离,所以对酸、碱、盐等电解质和蛋白质在水中的溶解是非常重要的。
5. 冰的导电系数与热传递系数均比水的大,分别大3倍与4倍也就是说,在一定的环境中,冰改变自身的温度要比水的快得多,所以同一食物的解冻要比冻结快得多# 食品中的水分状态及与溶质间的相互关系(1)水分状态结合水作用力:配位键,氢键,部分离子键特点:在-40℃以上不结冰,不能作为外来溶质的溶剂单分子层水: 与食物的非水组分中离子或强极性基团如氨基、羧基等直接以离子键或氢键结合的第一个水分子层中的水称之。
约为总水量的%。
多分子层水:处于单分子层水外的几层水分子或与非水组分所含的弱极性基团如羟基、酰胺基等形成的氢键的水分子。
# 食品中的水分状态及与溶质间的相互关系(2)自水作用力:物理方式截留,生物膜或凝胶内大分子交联成的网络所截留;毛细管力特点:可结冰,溶解溶质;测定水分含量时的减少量;可被微生物利用。