高中数学《空间向量及其运算-坐标表示(夹角和距离公式)》教案5 新人教A版选修2-1
- 格式:doc
- 大小:64.00 KB
- 文档页数:2
1.4.2用空间向量研究距离、夹角(第一课时)(人教A 版普通高中教科书数学选择性必修第一册第一章)一、教学目标1. 能利用投影向量得到点到直线的距离公式、点到平面的距离公式.2. 能用向量方法解决点到直线、平行线间、点到平面、直线到平面(直线与平面平行)、平行平面间的距离问题.3. 结合一些具体的距离问题的解决,体会向量方法在研究距离问题中的作用,提升学生的直观想象、逻辑推理、数学运算等素养.二、教学重难点1. (重点)利用投影向量推导点到直线的距离公式、点到平面的距离公式..2. (难点)利用投影向量统一研究空间距离问题.三、教学过程1.公式的推导1.1复习回顾【实际情境】如图,在空间中任取一点,作,.问题1:(1)怎样表示向量方向上的单位向量?(2)如何作出向量在向量方向上的投影向量?(3)怎样用单位向量表示向量在向量方向上的投影向量及投影向量的模?【活动预设】学生回忆已学的概念、讨论交流.【预设的答案】(1); (2)过点作垂直于直线,垂足为,向量即为向量在向量方向上的投影向量;(3),即,.【设计意图】投影向量的概念是一个比较抽象的概念,不易被学生理解,而本节课距离公式的推导主要依赖于投影向量.投影向量的几何意义、代数表示及模,既体现了几何直观,又体现了代数定量刻画,从而提供了研究距离的方法. 复习回顾求任意非零向量方向上的单位向O OM = a ON = b b u a b u a b ||b u =b M 1MM ON 1M 1OMab 1=cos=cos |)|(OM θθ |a |u |u u =a |u a u 1=()OM a u u 1||=||OM a u x量,及投影向量的相关知识点,以便于学生更好的参与后续公式的推导过程,以及对公式的理解,进而突破难点.1.2探究思考,提炼公式探究一:已知直线的单位方向向量,是直线上的定点,P 是直线外一点.如何利用这些条件求点到直线的距离?【活动预设】结合已有知识,小组讨论思考,每组选出代表回答. 连接,得到向量在直线直线上的投影向量,表示投影向量,求.进而利用勾股定理,可以求出点到直线的距离.【预设的答案】如图,设,则向量在直线上的投影向量.在中,由勾股定理,得.【设计意图】学生多思考,多发言,老师引导学生实现问题的转化,让学生经历公式的推导过程, 发展学生逻辑推理和数学运算的核心素养.问题2:若与直线垂直,点到直线【预设的答案】若与直线垂直,则.问题3:在立体几何图形中求解距离的问题时,已知条件中一般只会给出点以及直线,l u A l l P l AP APl AQAQ ||AQ P l PQ AP = a AP l |cos |cos |()AQ PAQ PAQ =∠=∠= a |u a |u |u a u u Rt AQP △PQ ==AP l P l AP l 0= a u ||||PA PQ ==P l那么点应该如何确定?【预设的答案】 点到直线的距离,即点到直线的垂线段的长度不会随着点的变化而变化,故点可以是直线上的任意一点.问题4:求解距离的过程中是否需要确定垂线段的垂足?【预设的答案】不需要,只需要参考向量和直线的单位方向向量.【设计意图】通过问题串,引导学生继续深入理解用空间向量的方法解决点到直线距离问题的方法,理解利用向量求解点到直线距离问题时,只需该点和直线上的任意一点确定的参考向量,不必确定垂足的位置,体会向量方法的的优越性.教师讲授:要理解公式中各字母的含义,明确点到直线的距离为参考向量的平方与投影向量的平方差的算术平方根.因此,求解点到直线距离问题时,只需直线的方向向量及直线上的任意一点,这样得到参考向量或, 再求得直线的单位方向向量带入公式即可.问题5:求点到直线距离的主要有哪些方法?【预设的答案】(1)作点到直线的垂线,点到垂足的距离即为点到直线的距离;(2)在三角形中用等面积法求解;(3)向量法,即点到直线的距离为参考向量的平方与投影向量的平方差的算术平方根.思考:类比点到直线的距离的求法,如何求两条平行线间的距离?【预设的答案】在其中一条直线上任取一点,将求两条平行直线之间的距离转化为求点到另一条直线的距离.【设计意图】根据已有知识类比学习,引导学生明确平行直线间的距离的求法:转化为一条直线上的任一点到另一条直线的距离,让学生感悟转化思想,化未知为已知.为后续把直线与平面间的距离、两个平行平面间的距离转化为点到平面的距离,在思想方法上做铺垫.A A A l P l P l A P l l l A AP PA P P2探究二 已知平面的法向量为,是平面内的定点,是平面外一点.过点作出平面的垂线,交平面于点.类比点到直线距离的研究过程,如何用向量表示?【预设的答案】如图,向量在直线上的投影向量是,且. 问题6:点到平面的距离应该怎样表示?【预设的答案】 . 【设计意图】 教师提出问题串,类比点到直线距离的研究过程,合作探究,得到点到平面的距离公式,让学生进一步体会平面的法向量在刻画平面、求距离中的作用.在求解点到平面的距离的过程中,平面的法向量的方向和法向量上投影向量的长度既体现了图形直观,又提供了代数定量刻画.在这个过程中,向量与起点无关的自由性也为求距离带来了便利.问题7: 在立体几何图形中求解距离的问题时,已知条件中一般只会给出点以及平面,那么点应该如何确定?求解距离的过程中是否需要找出点在平面内的投影以及垂线段?【预设的答案】点可以是平面内的任意一点.不需要找出点在平面内的投影以及垂线段.【活动预设】教师提出问题串,引导学生思考,加深对公式的理解,教师总结.αn A αP αP αl αQ AP QP APl QP |cos QP AP PAQ =∠ n ||n |P α|||||||||cos |||||AP QP AP PAQ ⋅=∠= n n n n P αA P αA αPα教师讲授:求解点到平面距离问题时,理解公式中各字母的含义,只需平面的法向量及平面内的任意一点,这样得到“参考向量”,明确点到平面的距离为参考向量与法向量数量积的绝对值与法向量的模之比,即参考向量与法向量方向上的单位向量的数量积取绝对值.【设计意图】 类比点到直线距离的研究方法,以类似的方法研究点到平面的距离,使学生学会距离公式的同时,体会数学中常见的研究问题的方法“类比”.思考:如果直线与平面平行,如何求直线与平面的距离?如何求两平行平面之间的距离?【预设的答案】 先证明直线与平面平行或面面平行,再转化为点到平面的距离.【设计意图】 通过对所提问题的思考,引导学生明确直线到平面的距离以及两平行平面的距离的求法:都可以转化为点到平面的距离.师生共析,将平行于平面的直线和两个平行平面间的距离转化为点到平面的距离,得到统一的向量表达式,进一步体会转化的思想.问题8:求点到平面的距离主要有哪些方法?【预设的答案】 (1)作点到平面的垂线,点与垂足的距离即为点到平面的距离. (2)在三棱锥中用等体积法求解. (3)向量法,即点到平面的距离为参考向量与法向量数量积的绝对值与法向量的模之比.2.初步应用,解决问题例1 如图,在棱长为1的正方体中,为线段的中点,为线段的中点.(1)求点到直线的距离;(2)求直线到平面的距离.P αααA l α1111ABCD A B C D -E 11A B F AB B 1AC FC 1AEC【活动预设】学生分析解题思路,教师给出解答示范.让学生注意到点在直线上,因此,可以选择作为参考向量.事实上,可以选择直线上的任意一点和确定“参考向量”,另外,让学生注意到平面的法向量不唯一.【预设的答案】解:以为原点, ,,所在直线为轴、轴、轴,建立如图所示的空间直角坐标系,则,,,,,,所以,,,,,. (1) 取,,则 ,. 所以,点到直线. (2) 因为,所以,又面,面,所以平面,所以点到平面的距离,即为直线到平面的距离.设平面的法向量为,则 所以 所以取,则,,所以,是平面的一个法向量,又因为, A 1AC AB 1AC F 1AEC 1D 11D A 11D C 1D D x y z (1,0,1)A (1,1,1)B (0,1,1)C 1(0,1,0)C 1(1,,0)2E 1(1,,1)2F (0,1,0)AB = 1(1,1,1)AC =-- 1(0,,1)2AE =- 11(1,,0)2EC =- 1(1,,0)2FC =- 1(0,,0)2AF = (0,1,0)AB == a 11||1,1,1)AC AC ==-- u 21=a ⋅=a u B 1AC ==11(1,,0)2FC EC ==- 1//FC EC FC ⊄1AEC 1EC ⊂1AEC //FC 1AEC F 1AEC FC 1AEC 1AEC (,,)x y z =n 10,0.AE EC ⎧⋅=⎪⎨⋅=⎪⎩ n n 10,210.2y z x y ⎧-=⎪⎪⎨⎪-+=⎪⎩2,.y z x z =⎧⎨=⎩1z =1x =2y =(1,2,1)=n 1AEC 1(0,,0)2AF =所以点到平面的距离为即直线到平面【设计意图】通过典型例题,使学生巩固并逐步掌握利用向量方法求空间距离的方法,体会向量方法再解决距离问题中的作用,渗透用空间向量解决立体几何问题的一般过程,并注意培养学生规范的解题能力.追问: 求两种距离的步骤是怎样的?【活动预设】学生结合具体实例及公式特征,尝试总结解题步骤,教师总结.【预设的答案】点到直线的距离 :第一步:建系,在直线上任取一点 (注:选择特殊便于计算的点),求“参考向量(或)”的坐标. 第二步: 依据图形先求出直线的单位方向向量.第三步:带入公式求解.点到面的距离 :第一步:建系,选择“参考向量”;第二步:确定平面的法向量;第三步: 带入公式求值.【设计意图】总结求解距离问题的步骤,培养学生抽象概括的数学素养.3. 梳理归纳,感悟本质思考:回顾这节课的学习,我们学习了哪些内容?用的是什么方法?【预设的答案】本节课我们一起应用空间向量及其运算研究了求空间中的距离问题,包括两点间的距离,点到直线的距离,平行直线之间的距离,点到平面的距离,直线到平面的距离,平行平面之间的距离等,结合投影向量、勾股定理以及向量数量积运算等,我们得到F 1AEC ||||AF ⋅== n n FC 1AEC P l l A AP PA l u P αAP αn了这些距离问题的计算公式,并通过例题的解决,体会了公式的使用,在很多问题中,我们需要建立空间直角坐标系,求出点的坐标,以及直线的方向向量、平面的法向量的坐标表示,代入公式进行计算.我们用类比和转化的研究方法,把要解决的五个距离问题转化为两个距离问题,几何问题转化为向量问题,求解距离转化为向量运算,在此过程中提升直观想象、数学运算和逻辑推理等数学学科核心素养.教师讲授:本节课的学习你体会到向量方法解决立体几何问题的“三步曲”吗?与用平面向量解决平面几何问题的 “三步曲”类似,我们可以得出用空间向量解决立体几何问题的 “三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面, 把立体几何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间的距离和夹角等问题;(3)把向量运算的结果“翻译”成相应的几何结论.四、课后作业1.在棱长为的正方体中,点到平面的距离等于_________;直线到平面的距离等于________;平面到平面的距离等于__________.2.已知直线过定点,且为其一个方向向量,则点到直线的距离为( )ABCD3.已知平面的一个法向量,点在平面内,则点到平面的距离为( )A .B .C .D . 4.如图,在棱长为的正方体中,求平面与平面的距离.11111ABCD A B CD -A 1B C CD1AB 1DA 1CB l (2,3,1)A (0,1,1)=n ()4,3,2P l α()2,2,1=--n ()1,3,0A -α()2,1,4P -α1038310311111ABCD A B C D -1A DB 11D CB【设计意图】作业中的4个题目,包括了求点到直线的距离、点到平面的距离、直线到平面的距离以及两平行平面间的距离等主要的距离问题,尤其突出训练了本节课的重点以及难点,即点到直线、点到平面的距离.这样可以使学生巩固课上所学习的知识,提升对公式的应用能力.。
9.6空间向量的夹角和距离公式三维目标:知识与技能: ⒈使学生知道如何建立空间直角坐标系,掌握向量的长度公式、夹角公式、两点间距离公式、中点坐标公式,并会用这些公式解决有关问题;⒉使学生经历对从生活中如何抽象出数学模型的过程,从而提高分析问题、解决问题的能力.过程与方法: 通过采用启发探究、讲练结合、分组讨论等教学方法使学生在积极活跃的思维过程中,从“懂”到“会”到“悟”.情感、态度和价值观:⒈通过自主探究与合作交流的教学环节的设置,激发学生的学习热情和求知欲,充分体现学生的主体地位;⒉通过数形结合的思想和方法的应用,让学生感受和体会数学的魅力,培养学生“做数学”的习惯和热情.教学重点:夹角公式、距离公式.教学难点:数学模型的建立.关键: 将生活中的问题转化为数学问题,建立恰当的空间直角坐标系,正确写出空间向量的坐标.教具准备:多媒体投影,实物投影仪.教学过程:(一) 创设情境,新课导入2008年5月16日,南昌可以说是万人空巷,大家都把自己的爱国热情聚集在圣火的传递上,让我们值得骄傲的是火炬传递中的一站就是我们的南昌大学,其中途经我市雄伟而壮观的生米大桥,为记录传递过程,我校派了小记者在船上进行全景拍摄,出现了这么一个问题.引例:在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面)求(1)6s 后火炬手与小船的距离? C 1(2)此时的视线与开始时的视线所成角的余弦值?(不考虑火炬手与小船本身的大小).今天我们从另一个角度来分析这个问题.分析:建立数学模型问题(1)转化为:如何求空间中两点间的距离?问题(2)转化为:如何求空间中两条直线所成角的余弦值?1、空间两点间的距离公式111222(,,)(,,),A x y z B x y z 已知:,则 ()212121,,AB x x y y z z =---(AB AB AB x =⋅= ,A B d =2、夹角公式设()()111222,,,,,a x y z b x y z ==,则,a OA b OB ==cos ,a ba b a b ⋅<>==(二)例题示范,形成技能例1: 在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面)求(1)6s 后火炬手与小船的距离?(2)此时的视线与开始时的视线所成角的余弦值?(不考虑火炬手与小船本身的大小).解:建立如图空间直角坐标系, x y z O 111(,,)A x y z 222(,,)B x y z a a b则 ()()130,0,0,0,30,30A C()()0,18,30,24,0,0M N ;(1)24MN ==(2)()()124,18,30,30,30,30MN AC =--=-. 111cos ,MN AC MN AC MN AC ⋅〈〉=⋅2430183030305⨯-+-⨯+-⨯==- 此题所求的是空间两条直线所成角的余弦值,而不是两个空间向量夹角的余弦值,两者有什么区别?我们又如何转化为本题的结论?(三)学生互动 巩固提高变式训练:实际上,我们刚刚就是在一个正方体中讨论两点间的距离, 两条直线所成的角,而在正方体中还有许多的点与线,例2:(1)若G 为MN 的中点,求GB 两点间的距离.(2)若1111114A B B E D F ==,求1BE 与1DF 所成的角的余弦值. (1)解:设G 点的坐标为(,,)G x y z ,则 ()12D G D M D N =+ ()()10,18,3024,0,02=+⎡⎤⎣⎦()12,9,15=. ∴()()12,9,15,30,30,0G B , GB ∴==(2)解:如图,()14530,30,0,30,,302B E ⎛⎫ ⎪⎝⎭()1150,0,0,0,,302D F ⎛⎫ ⎪⎝⎭.1115150,,30,0,,3022BE DF ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. 111111cos ,BE DF BE DF BE DF ⋅〈〉=⋅1515303015.1722⎛⎫-⨯+⨯ ⎪== 请在上面例题的基础上,各编一个关于求夹角和距离的题目.拓展提高:我们知道平面上到两点距离相等的点的轨迹是一条直线,那么猜想空间上到两点距离相等的点的轨迹是一个平面,我们能不能把它表示出来呢?例3:求到M ,N 两点距离相等的点),,(z y x P 的坐标x 、y 、z 满足的条件. 解: 点),,(z y x P 到M ,N 两点距离相等,则P M P N ==化简,得435540x y z --+= 即到到M ,N 两点距离相等的点的坐标点(,,)x y z 满足的条件是435540x y z --+= (四)概括提炼,总结升华求空间两点间的距离 求空间两条直线的夹角(五)布置作业,探究延续1.课本P 42习题9.6 ⒎⒏ ⒐2.请同学们各编写一道关于求夹角和距离的题目,并解答.M NP3.思考题:引例:何时小船与火炬手之间的距离最短?(六)板书设计:。
课题: 3.1.5空间向量运算的坐标表示 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:掌握空间向量的长度公式、夹角公式、两点间距离公式、中点坐标公式,并会用这些公式解决有关问题. 批注教学重点:夹角公式、距离公式.教学难点:夹角公式、距离公式的应用. 教学用具: 多媒体,三角形 教学方法:启发式教学法 教学过程: 一、复习引入1. 向量的直角坐标运算法则:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴a +b =112233(,,)a b a b a b +++; ⑵a -b =112233(,,)a b a b a b ---; ⑶λa =123(,,)a a a λλλ()R λ∈; ⑷a ·b =112233a b a b a b ++ 上述运算法则怎样证明呢?(将a =1a i +2a j +3a k 和b =1b i +2b j +3b k 代入即可)2. 怎样求一个空间向量的坐标呢?(表示这个向量的有向线段的终点的坐标减去起点的坐标.) 二、新课讲授⒈ 向量的模:设a =123(,,)a a a ,b =123(,,)b b b ,求这两个向量的模.|a |=222123a a a ++,|b |=222123b b b ++.这两个式子我们称为向量的长度公式.这个公式的几何意义是表示长方体的对角线的长度. 2. 夹角公式推导:∵ a ·b =|a ||b |cos <a ,b >∴ 112233a b a b a b ++=222123a a a ++·222123b b b ++·cos <a ,b >由此可以得出:cos <a ,b >=112233222222123123a b a b a b a a ab b b++++++这个公式成为两个向量的夹角公式.利用这个共识,我们可以求出两个向量的夹角,并可以进一步得出两个向量的某些特殊位置关系:当cos <a 、b >=1时,a 与b 同向;当cos <a 、b >=-1时,a 与b 反向; 当cos <a 、b >=0时,a ⊥b .3. 两点间距离共识:利用向量的长度公式,我们还可以得出空间两点间的距离公式:在空间直角坐标系中,已知点111(,,)A x y z ,222(,,)B x y z ,则222211212()()()A B d x x y y z z =-+-+-、,其中A B d 、表示A 与B 两点间的距离.3. 练习:已知A (3,3,1)、B (1,0,5),求:⑴线段AB 的中点坐标和长度;⑵到A 、B 两点距离相等的点(,,)P x y z 的坐标x 、y 、z 满足的条件. (答案:(2,32,3);29;46870x y z +-+=) 说明:⑴中点坐标公式:1()2OM OA OB =+=121212(,,)222x x y y z z +++;⑵中点p 的轨迹是线段AB 的垂直平分平面.在空间中,关于x 、y 、z 的三元一次方程的图形是平面.4. 出示例5:如图,在正方体1111ABCD A B C D -中,1111114A B B E D F ==,求1BE 与1DF 所成的角的余弦值.分析:如何建系? → 点的坐标? → 如何用向量运算求夹角? → 变式:课本P 96、例65. 用向量方法证明:如果两条直线同垂直于一个平面,则这两条直线平行.三.巩固练习作业:课本P97练习3题. 教学后记:。
量运算的坐标表示教案 新人教A 版选修2-1一、向量在轴上的投影1.几个概念(1) 轴上有向线段的值:设有一轴u ,AB 是轴u 上的有向线段,如果数λ满足=λ且当与轴u 同向时λ是正的,当与轴u 反向时λ是负的,那么数λ叫做轴u 上有向线段的值,记做AB ,即AB =λ。
设e 是与u 轴同方向的单位向量,则e λ=(2) 设A 、B 、C 是u 轴上任意三点,不论三点的相互位置如何,总有+=(3) 两向量夹角的概念:设有两个非零向量a 和b ,任取空间一点O ,作a =OA ,b =,规定不超过π的AOB ∠称为向量a 和b 的夹角,记为),(b a ∧(4) 空间一点A 在轴u 上的投影:通过点A 作轴u 的垂直平面,该平面与轴u 的交点'A 叫做点A 在轴u 上的投影。
(5) 向量AB 在轴u 上的投影:设已知向量AB 的起点A 和终点B 在轴u 上的投影分别为点'A 和'B ,那么轴u 上的有向线段的值''B A 叫做向量在轴u 上的投影,记做j u Pr 。
2.投影定理性质1:向量在轴u 上的投影等于向量的模乘以轴与向量的夹角ϕ的余弦:ϕPr AB j u =性质2:两个向量的和在轴上的投影等于两个向量在该轴上的投影的和,即 2121a a a a j j j u Pr Pr )(Pr +=+性质3:向量与数的乘法在轴上的投影等于向量在轴上的投影与数的乘法。
即a a j j u Pr )(Pr λλ=二、向量在坐标系上的分向量与向量的坐标1.向量在坐标系上的分向量与向量的坐标通过坐标法,使平面上或空间的点与有序数组之间建立了一一对应关系,同样地,为了沟通数与向量的研究,需要建立向量与有序数之间的对应关系。
设a =21M M 是以),,(1111z y x M 为起点、),,(2222z y x M 为终点的向量,i 、j 、k 分别表示 图7-5沿x ,y ,z 轴正向的单位向量,并称它们为这一坐标系的基本单位向量,由图7-5,并应用向量的加法规则知:)(1221x x M M -=i + )(12y y -j +)(12z z -k或 a = a x i + a y j + a z k上式称为向量a 按基本单位向量的分解式。
课题:2.4.3.3 空间向量求角度与距离教材分析:角和距离是几何中的基本度量,几何问题和一些实际问题经常设计角和距离,空间坐标系中可以用代数方法解决角度与距离,比找证求的方法更加适用。
课 型: 新授课教学要求:使学生熟练掌握空间角度与距离的求法. 教学重点:公式的应用. 教学难点:公式的应用. 教学过程:一.复习提问:1.空间向量坐标,两点间的距离公式. 2. (1)用法向量求异面直线间的距离如右图所示,a 、b 是两异面直线,n 是a 和b 的法向量,点E∈a,F∈b,则异面直线a 与b 之间的距离是nn EF d ⋅=;(2)用法向量求点到平面的距离如右图所示,已知AB 是平面α的 一条斜线,n 为平面α的法向量,则 A 到平面α的距离为nn AB d ⋅=;(3)用法向量求直线到平面间的距离 首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题.(4)用法向量求两平行平面间的距离 首先必须确定两个平面是否平行,这时可以在一个平面上任取一点,将两平面间的距离问题转化成点到平面的距离问题。
(5)用法向量求二面角二.例题讲解:例题1.如图6,已知正方体1111ABCD A B C D -的棱长为2,点E 是正方形11BCC B 的中心,点F 、G 分别是棱111,C D AA 的中点.设点11,E G 分别是点E ,G 在平面11DCC D 内的正投影.(1)求以E 为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积;ABCnαz yxE 1G 1(2)证明:直线⊥1FG 平面1FEE ; (3)求异面直线11E G EA 与所成角的正弦值.解:(1)依题作点E 、G 在平面11DCC D 内的正投影1E 、1G ,则1E 、1G 分别为1CC 、1DD 的中点,连结1EE 、1EG 、ED 、1DE ,则所求为四棱锥11FG DE E -的体积,其底面11FG DE 面积为111111E D G Rt FG E Rt FG D E S S S ∆∆+= 221212221=⨯⨯+⨯⨯=, 又⊥1EE 面11FG DE ,11=EE ,∴323111111=⋅=-EE S V FG DE FG DE E .(2)以D 为坐标原点,DA 、DC 、1DD 所在直线分别作x 轴,y 轴,z 轴,得)1,2,0(1E 、)1,0,0(1G ,又)1,0,2(G ,)2,1,0(F ,)1,2,1(E ,则)1,1,0(1--=FG ,)1,1,1(-=FE ,)1,1,0(1-=FE ,∴01)1(01=+-+=⋅FE FG ,01)1(011=+-+=⋅FE FG ,即FE FG ⊥1,11FE FG ⊥,又F FE FE =⋂1,∴⊥1FG 平面1FEE .(3))0,2,0(11-=G E ,)1,2,1(--=EA ,则62,cos 111111=⋅>=<EAG E EA G E EA G E ,设异面直线11E G EA 与所成角为θ,则33321sin =-=θ. 例题2.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 为棱AB 的中点。
《1.3 空间向量及其运算的坐标表示》教案【教材分析】本节课选自《2019人教A版高中数学选择性必修第一册》第一章《空间向量与立体几何》,本节课主要学习空间向量及其运算的坐标表示。
通过类比平面向量及其运算的坐标表示,从而引入空间向量及其运算的坐标表示,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间,在学生学习了空间向量的几何形式和运算,以及在空间向量基本定理的基础上进一步学习空间向量的坐标运算及其规律,是平面向量的坐标运算在空间推广和拓展,为运用向量坐标运算解决几何问题奠定了知识和方法基础。
【教学目标与核心素养】【教学重点】:理解空间向量的坐标表示及其运算【教学难点】:运用空间向量的坐标运算解决简单的立体几何问题【教学过程】一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.1.画空间直角坐标系Oxyz时,一般使∠xOy=135°(或45°),∠yOz=90°.三个坐标平面把空间分成八个部分.2.在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.本书建立的都是右手直角坐标系.创设问题情境,引导学生体会运用坐标法,实现将空间几何问题代数化的基本思想2.点的坐标在空间直角坐标系Oxyz 中,i ,j ,k 为坐标向量,对空间任意一点A ,对应一个向量OA ⃗⃗⃗⃗⃗ ,且点A 的位置由向量OA ⃗⃗⃗⃗⃗ 唯一确定,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使OA ⃗⃗⃗⃗⃗ =x i +y j +z k .在单位正交基底{i ,j ,k }下与向量OA⃗⃗⃗⃗⃗ 对应的有序实数组(x ,y ,z ),叫做点A 在空间直角坐标系中的坐标,记作A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.3.向量的坐标在空间直角坐标系Oxyz 中,给定向量a ,作OA⃗⃗⃗⃗⃗ =a 由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =x i +y j +z k .有序实数组(x ,y ,z )叫做a 在空间直角坐标系Oxyz 中的坐标,可简记作a =(x ,y ,z ).小试牛刀1.若a =3i +2j -k ,且{i ,j ,k }为空间的一个单位正交基底,则a 的坐标为 . (3,2,-1)答案:向量OP ⃗⃗⃗⃗⃗ 的坐标恰好是终点P 的坐标,这就实现了空间基底到空间坐标系的转换.思考:在空间直角坐标系中,向量OP ⃗⃗⃗⃗⃗ 的坐标与终点P 的坐标有何关系? 二、空间向量运算的坐标表示 1.空间向量的坐标运算法则|P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ |= .√a 12+a 22+a 32;a 1b 1+a 2b 2+a 3b 3√a 12+a 22+a 32√b 12+b 22+b 32;√(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2.小试牛刀1.已知空间向量m =(1,-3,5),n =(-2,2,-4),则有m +n = ,3m -n = ,(2m )·(-3n )= . (-1,-1,1) ;(5,-11,19) ;168 解析:m +n =(1,-3,5)+(-2,2,-4)=(-1,-1,1),3m -n =3(1,-3,5)-(-2,2,-4)=(5,-11,19),(2m )·(-3n )=(2,-6,10)·(6,-6,12)=168.2.已知空间向量a=(2,λ,-1),b=(λ,8,λ-6),若a ∥b,则λ= ,若a ⊥b,则 λ= . 4 ;-23解析:若a ∥b ,则有2λ=λ8=-1λ-6,解得λ=4.若a ⊥b ,则a ·b =2λ+8λ-λ+6=0,解得λ=-23.3.已知a =(-√2,2,√3),b =(3√2,6,0),则|a |= ,a 与b 夹角的余弦值等于 . 答案:3√69解析:|a |=√a ·a =√(-√2)2+22+(√3)2=3,a 与b 夹角的余弦值cos <a ,b >=a ·b|a ||b |=-6+12+03×3√6=√69. 例1在直三棱柱ABO-A 1B 1O 1中,∠AOB=π2,AO=4,BO=2,AA 1=4,D 为A 1B 1的中点,建立适当的空间直角坐标系,求DO ⃗⃗⃗⃗⃗ ,A 1B ⃗⃗⃗⃗⃗⃗⃗ 的坐标.思路分析先在空间几何体中找到两两垂直的三条直线建立空间直角坐标系,再根据空间向量基本定理,将DO ⃗⃗⃗⃗⃗ ,A 1B ⃗⃗⃗⃗⃗⃗⃗ 用基底表示,即得坐标. 解:由已知AO ⊥OB ,O 1O ⊥OA ,O 1O ⊥OB ,从而建立以OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ 方向上的单位向量i ,j ,k 为正交基底的空间直角坐标系Oxyz ,如图,则OA ⃗⃗⃗⃗⃗ =4i ,OB ⃗⃗⃗⃗⃗ =2j ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ =4k ,DO ⃗⃗⃗⃗⃗⃗ =-OD ⃗⃗⃗⃗⃗⃗ =-(OO 1⃗⃗⃗⃗⃗⃗⃗⃗ +O 1D ⃗⃗⃗⃗⃗⃗⃗⃗ )=-[OO 1⃗⃗⃗⃗⃗⃗⃗⃗ +12(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )]=-OO 1⃗⃗⃗⃗⃗⃗⃗⃗ −12OA ⃗⃗⃗⃗⃗ −12OB⃗⃗⃗⃗⃗ =-2i-j-4k ,故DO ⃗⃗⃗⃗⃗⃗ 的坐标为(-2,-1,-4). A 1B ⃗⃗⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA 1⃗⃗⃗⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ -(OA ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ )=OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ −AA 1⃗⃗⃗⃗⃗⃗⃗ =-4i+2j-4k , 故A 1B ⃗⃗⃗⃗⃗⃗⃗ 的坐标为(-4,2,-4). 即DO ⃗⃗⃗⃗⃗⃗ =(-2,-1,-4),A 1B ⃗⃗⃗⃗⃗⃗⃗ =(-4,2,-4).用坐标表示空间向量的步骤如下:跟踪训练1.如图,在长方体ABCD-A 1B 1C 1D 1中,E,F 分别为D 1C 1,B 1C 1的中点,若以{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗ }为基底,则向量AE ⃗⃗⃗⃗⃗ 的坐标为 ,向量AF ⃗⃗⃗⃗⃗ 的坐标为 ,向量AC 1⃗⃗⃗⃗⃗⃗⃗ 的坐标为 .答案:(12,1,1) (1,12,1) (1,1,1)解析:因为AE ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ +D 1E ⃗⃗⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ ,所以向量AE ⃗⃗⃗⃗⃗ 的坐标为(12,1,1). 因为AF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ +B 1F ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ ,所以向量AF ⃗⃗⃗⃗⃗ 的坐标为(1,12,1). 因为AC 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ ,所以向量AC 1⃗⃗⃗⃗⃗⃗⃗ 的坐标为(1,1,1).例2已知在空间直角坐标系中,A(1,-2,4),B(-2,3,0),C(2,-2,-5). (1)求AB⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ -2BA ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ ; (2)若点M 满足AM⃗⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ ,求点M 的坐标; (3)若p =CA⃗⃗⃗⃗⃗ ,q =CB ⃗⃗⃗⃗⃗ ,求(p +q )·(p -q ). 思路分析先由点的坐标求出各个向量的坐标,再按照空间向量运算的坐标运算法则进行计算求解.解:(1)因为A (1,-2,4),B (-2,3,0),C (2,-2,-5),所以AB⃗⃗⃗⃗⃗ =(-3,5,-4),CA ⃗⃗⃗⃗⃗ =(-1,0,9). 所以AB⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ =(-4,5,5),又CB ⃗⃗⃗⃗⃗ =(-4,5,5),BA ⃗⃗⃗⃗⃗ =(3,-5,4), 所以CB⃗⃗⃗⃗⃗ -2BA ⃗⃗⃗⃗⃗ =(-10,15,-3),又AB ⃗⃗⃗⃗⃗ =(-3,5,-4),AC ⃗⃗⃗⃗⃗ =(1,0,-9), 所以AB⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-3+0+36=33. (2)由(1)知,AM ⃗⃗⃗⃗⃗⃗ =12AB⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ =12(-3,5,-4)+34(1,0,-9)=(-34,52,-354),若设M (x ,y ,z ),则AM ⃗⃗⃗⃗⃗⃗ =(x-1,y+2,z-4),(2)∵|a |=√5,且a ⊥c ,∴{(λ+1)2+12+(2λ)2=5,(λ+1,1,2λ)·(2,-2λ,-λ)=0,化简,得{5λ2+2λ=3,2-2λ2=0,解得λ=-1.因此,a =(0,1,-2).例4如图,在直三棱柱ABC-A 1B 1C 1中,CA=CB=1,∠BCA=90°,棱AA 1=2,M ,N 分别是AA 1,CB 1的中点.(1)求BM ,BN 的长. (2)求△BMN 的面积.思路分析建立空间直角坐标系,写出B ,M ,N 等点的坐标,从而得BM ⃗⃗⃗⃗⃗⃗ ,BN⃗⃗⃗⃗⃗⃗ 在此处键入公式。
1.4.2 用空间向量研究距离、夹角问题(2)本节课选自《2019人教A 版高中数学选择性必修第一册》第一章《空间向量与立体几何》,本节课主要学习运用空间向量解决计算空间角问题。
在向量坐标化的基础上,将空间中线线角、线面角及二面角问题,首先转化为向量语言,进而运用向量的坐标表示,从而实现运用空间向量解决空间角问题,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间。
1.教学重点:理解运用向量方法求空间角的原理2.教学难点:掌握运用空间向量求空间角的方法多媒体解析:设所求二面角的大小为θ, 则|cos θ|=|n 1·n 2||n 1||n 2|=√32,所以θ=30°或150°.答案:C例1. 如图所示,在三棱柱ABC-A 1B 1C 1中,AA 1⊥底面ABC ,AB=BC=AA 1,∠ABC=90°,点E ,F 分别是棱AB ,BB 1的中点,试求直线EF 和BC 1所成的角.思路分析:建立空间直角坐标系,求出直线EF 和BC 1的方向向量的坐标,求它们的夹角即得直线EF 和BC 1所成的角.解:分别以直线BA ,BC ,BB 1为x ,y ,z 轴,建立空间直角坐标系(如右图).设AB=1,则B (0,0,0),E (12,0,0),F (0,0,12),C 1(0,1,1),所以EF⃗⃗⃗⃗⃗ =(-12,0,12),BC 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1).于是cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ |BC1⃗⃗⃗⃗⃗⃗⃗⃗ ||EF ⃗⃗⃗⃗⃗ |=12√22×√2=12,所以直线EF 和BC 1所成角的大小为60°. 1.利用空间向量求两异面直线所成角的步骤. (1)建立适当的空间直角坐标系. (2)求出两条异面直线的方向向量的坐标.(3)利用向量的夹角公式求出两直线方向向量的夹角. (4)结合异面直线所成角的范围得到两异面直线所成角. 2.求两条异面直线所成的角的两个关注点.(1)余弦值非负:两条异面直线所成角的余弦值一定为非负值,而对应的方向向量的夹角可能为钝角.(2)范围:异面直线所成角的范围是(0,π2],故两直线方向向量夹角的余弦值为负时,应取其绝对值.跟踪训练1 如图,在正四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为 .解析:以D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系Dxyz ,设AB=1.则B (1,1,0),A 1(1,0,2),A (1,0,0),D 1(0,0,2),A 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,1,-2), AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2), cos <A 1B ⃗⃗⃗⃗⃗⃗⃗ ,AD 1⃗⃗⃗⃗⃗⃗⃗ >=A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ·AD 1⃗⃗⃗⃗⃗⃗⃗⃗ |A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ||AD 1⃗⃗⃗⃗⃗⃗⃗⃗ |=-4√5×√5=-45,故异面直线A 1B 与AD 1所成角的余弦值为45. 答案:45例2.如图所示,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.思路分析:(1)线面平行的判定定理⇒MN ∥平面PAB.(2)利用空间向量计算平面PMN 与AN 方向向量的夹角⇒直线AN 与平面PMN 所成角的正弦值.(1)证明:由已知得AM=23AD=2.如图,取BP 的中点T ,连接AT ,TN , 由N 为PC 的中点知TN ∥BC ,TN=12BC=2. 又AD ∥BC ,故TN ∥AM 且TN =AM ,所以四边形AMNT 为平行四边形, 于是MN ∥AT.因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB.(2)解:如图,取BC 的中点E ,连接AE.由AB=AC 得AE ⊥BC ,从而AE ⊥AD ,且AE=√AB 2-BE 2=√AB 2-(BC2) 2=√5.以A 为坐标原点,AE⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系A-xyz. 由题意知P (0,0,4),M (0,2,0),C (√5,2,0),N √52,1,2, PM⃗⃗⃗⃗⃗⃗ =(0,2,-4),PN ⃗⃗⃗⃗⃗⃗ =√52,1,-2,AN⃗⃗⃗⃗⃗⃗ =√52,1,2.设n =(x ,y ,z )为平面PMN 的法向量,则{n ·PM⃗⃗⃗⃗⃗⃗ =0,n ·PN⃗⃗⃗⃗⃗⃗ =0,即{2y -4z =0,√52x +y -2z =0,可取n =(0,2,1).于是|cos <n ,AN ⃗⃗⃗⃗⃗⃗ >|=|n ·AN ⃗⃗⃗⃗⃗⃗||n ||AN ⃗⃗⃗⃗⃗⃗ |=8√525. 所以直线AN 与平面PMN 所成角的正弦值为8√525.若直线l 与平面α的夹角为θ,利用法向量计算θ的步骤如下:跟踪训练2 在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 为CC 1的中点,则直线A 1B 与平面BDE 所成的角为( )A.π6B.π3C.π2D.56π解析:以D 为原点建立空间直角坐标系,可求得平面BDE 的法向量n =(1,-1,2),而BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-1,1),所以cos θ=1+22√3=√32,则θ=30°,故直线A 1B 与平面BDE 成60°角. 答案:B例3. 如图,在正方体ABEF-DCE'F'中,M ,N 分别为AC ,BF 的中点,求平面MNA 与平面MNB 所成锐二面角的余弦值.思路分析:有两种思路,一是先根据二面角平面角的定义,在图形中作出二面角的平面角,然后利用向量方法求出夹角从而得到所成二面角的大小;另一种是直接求出两个面的法向量,通过法向量的夹角求得二面角的大小.解:设正方体棱长为1.以B 为坐标原点,BA ,BE ,BC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系B-xyz ,则M (12,0,12),N (12,12,0),A (1,0,0),B (0,0,0). (方法1)取MN 的中点G ,连接BG ,AG ,则G (12,14,14).因为△AMN ,△BMN 为等腰三角形,所以AG ⊥MN ,BG ⊥MN , 故∠AGB 为二面角的平面角或其补角.又因为GA ⃗⃗⃗⃗⃗ =(12,-14,-14),GB ⃗⃗⃗⃗⃗ =(-12,-14,-14),所以cos <GA ⃗⃗⃗⃗⃗ ,GB ⃗⃗⃗⃗⃗ >=GA ⃗⃗⃗⃗⃗ ·GB⃗⃗⃗⃗⃗ |GA⃗⃗⃗⃗⃗ ||GB ⃗⃗⃗⃗⃗ |=-18√38×√38=-13, 故所求两平面所成锐二面角的余弦值为13. (方法2)设平面AMN 的法向量n 1=(x ,y ,z ).由于AM ⃗⃗⃗⃗⃗⃗ =(-12,0,12),AN⃗⃗⃗⃗⃗⃗ =(-12,12,0), 则{n 1·AM ⃗⃗⃗⃗⃗⃗ =0,n 1·AN ⃗⃗⃗⃗⃗⃗ =0,即{-12x +12z =0,-12x +12y =0,令x=1,解得y=1,z=1,于是n 1=(1,1,1).同理可求得平面BMN 的一个法向量n 2=(1,-1,-1), 所以cos <n 1,n 2>=n 1·n 2|n 1||n 2|=-1√3×√3=-13,故所求两平面所成锐二面角的余弦值为13.利用平面的法向量求二面角利用向量方法求二面角的大小时,多采用法向量法,即求出两个面的法向量,然后通过法向量的夹角来得到二面角的大小,但利用这种方法求解时,要注意结合图形观察分析,确定二面角是锐角还是钝角,不能将两个法向量的夹角与二面角的大小完全等同起来.跟踪训练3 如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.解:如图,建立空间直角坐标系.则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2),即BM⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面A 1C 1C 的一个法向量. 设平面A 1B 1C 的一个法向量是n=(x ,y ,z ),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2), A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0), 所以n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y -2z=0, 令z=1,解得x=0,y=1,故n =(0,1,1). 设法向量n 与BM ⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C -C 1的大小为θ,显然θ为锐角.因为cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3,所以二面角B 1-A 1C -C 1的大小为π3.金题典例 如图,四棱柱ABCD-A 1B 1C 1D 1的所有棱长都相等,AC ∩BD=O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.(1)证明:O 1O ⊥底面ABCD.(2)若∠CBA=60°,求二面角C 1-OB 1-D 的余弦值.(1)证明因为四边形ACC 1A 1和四边形BDD 1B 1均为矩形,所以CC 1⊥AC ,DD 1⊥BD ,又CC 1∥DD 1∥OO 1,所以OO 1⊥AC ,OO 1⊥BD ,因为AC ∩BD=O ,所以O 1O ⊥底面ABCD.(2)解:因为四棱柱的所有棱长都相等,所以四边形ABCD 为菱形, AC ⊥BD.又O 1O ⊥底面ABCD ,所以OB ,OC ,OO 1两两垂直.如图,以O 为原点,OB ,OC ,OO 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系.设棱长为2,因为∠CBA=60°,所以OB=√3,OC=1, 所以O (0,0,0),B 1(√3,0,2),C 1(0,1,2),平面BDD 1B 1的一个法向量为n =(0,1,0),设平面OC 1B 1的法向量为m =(x ,y ,z ),则由m ⊥OB 1⃗⃗⃗⃗⃗⃗⃗⃗ ,m ⊥OC 1⃗⃗⃗⃗⃗⃗⃗ ,所以{√3x +2z =0,y +2z =0,取z=-√3,则x=2,y=2√3,所以m =(2,2√3,-√3),所以|cos <m ,n >|=|m ·n|m ||n ||=2√3√19=2√5719. 由图形可知二面角C 1-OB 1-D 的大小为锐角, 所以二面角C 1-OB 1-D 的余弦值为2√5719. 延伸探究1 本例条件不变,求二面角B-A 1C-D 的余弦值.解:建立如图所示的空间直角坐标系.设棱长为2, 则A 1(0,-1,2),B (√3,0,0),C (0,1,0),D (-√3,0,0). 所以BC ⃗⃗⃗⃗⃗ =(-√3,1,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-√3,-1,0).设平面A 1BC 的法向量为n 1=(x 1,y 1,z 1), 则{n 1·A 1C ⃗⃗⃗⃗⃗⃗⃗ =0,n 1·BC ⃗⃗⃗⃗⃗ =0,即{2y 1-2z 1=0,-√3x 1+y 1=0,取x 1=√3,则y 1=z 1=3,故n 1=(√3,3,3).设平面A 1CD 的法向量为n 2=(x 2,y 2,z 2), 则{n 2·A 1C ⃗⃗⃗⃗⃗⃗⃗ =0,n 2·CD⃗⃗⃗⃗⃗ =0,即{2y 2-2z 2=0,-√3x 2-y 2=0,取x 2=√3,则y 2=z 2=-3,故n 2=(√3,-3,-3).所以|cos <n 1,n 2>|=|n 1·n 2|n 1||n 2||=57.由图形可知二面角B -A 1C -D 的大小为钝角,所以二面角B -A 1C -D 的余弦值为-57.延伸探究2 本例四棱柱中,∠CBA=60°改为∠CBA=90°,设E ,F 分别是棱BC ,CD 的中点,求平面AB 1E 与平面AD 1F 所成锐二面角的余弦值.解:以A 为坐标原点建立空间直角坐标系,如图所示,设此棱柱的棱长为1,则A (0,0,0),B 1(1,0,1),E 1,12,0,D 1(0,1,1),F12,1,0,AE ⃗⃗⃗⃗⃗ =1,12,0,AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,1),AF ⃗⃗⃗⃗⃗ =12,1,0,AD 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1).设平面AB 1E 的法向量为n 1=(x 1,y 1,z 1),则{n 1·AB 1⃗⃗⃗⃗⃗⃗⃗ =0,n 1·AE ⃗⃗⃗⃗⃗ =0,即{x 1+z 1=0,x 1+12y 1=0,令y 1=2,则x 1=-1,z 1=1, 所以n 1=(-1,2,1).设平面AD 1F 的法向量为n 2=(x 2,y 2,z 2). 则{n 2·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n 2·AF ⃗⃗⃗⃗⃗ =0,即{y 2+z 2=0,12x 2+y 2=0. 令x 2=2,则y 2=-1,z 2=1.所以n 2=(2,-1,1).所以平面AB 1E 与平面AD 1F 所成锐二面角的余弦值为cos <n 1,n 2>=|n 1·n 2||n 1||n 2|=3√6×√6=12.向量法求二面角(或其某个三角函数值)的四个步骤 (1)建立适当的坐标系,写出相应点的坐标; (2)求出两个半平面的法向量n 1,n 2;(3)设二面角的平面角为θ,则|cos θ|=|cos <n 1,n 2>|;(4)根据图形判断θ为钝角还是锐角,从而求出θ(或其三角函数值). 三、达标检测cos <m ,n >=- 12,则l 与α所成的角为( ) A.30°B.60°C.120°D.150°解析:由已知得直线l 和平面α法向量所夹锐角为60°,因此l 与α所成的角为30°. 答案:A3.在正方体ABCD-A 1B 1C 1D 1中,M 、N 分别为棱BC 和棱CC 1的中点,则异面直线AC 和MN 所成的角为( ) A.30°B.45°C.90°D.60°解析以D 为原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设正方体ABCD-A 1B 1C 1D 1中棱长为2,∵M 、N 分别为棱BC 和棱CC 1的中点,∴M (1,2,0),N (0,2,1),A (2,0,0),C (0,2,0),MN⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AC ⃗⃗⃗⃗⃗ =(-2,2,0), 设异面直线AC 和MN 所成的角为θ,.cos θ=|MN ⃗⃗⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ ||MN ⃗⃗⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |=2√2×2√2=12, 则又θ是锐角,∴θ=60°∴异面直线AC 和MN 所成的角为60°,故选D.答案D4.在三棱锥P-ABC 中,AB ⊥BC ,AB=BC=12PA ,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为 .解析:以O 为原点,射线OA ,OB ,OP 为x ,y ,z 轴建立空间直角坐标系,如图,设AB=a ,则OP=√72a,OD⃗⃗⃗⃗⃗⃗ =(-√24a ,0,√144a),可求得平面PBC 的法向量为n =(-1,-1,√17),所以cos <OD ⃗⃗⃗⃗⃗⃗ ,n >=OD ⃗⃗⃗⃗⃗⃗·n |OD ⃗⃗⃗⃗⃗⃗||n |=√21030,设OD ⃗⃗⃗⃗⃗⃗ 与面PBC 的角为θ,则sin θ=√21030. 答案:√210305.如图,四棱锥P-ABCD 中,PB ⊥底面ABCD ,CD ⊥PD ,底面ABCD 为直角梯形,AD ∥BC ,AB ⊥BC ,AB=AD=PB=3.点E 在棱PA 上,且PE=2EA.求二面角A-BE-D 的余弦值.解:以B 为原点,以直线BC ,BA ,BP 分别为x ,y ,z 轴建立如图所示的空间直角坐标系.设平面EBD 的一个法向量为n 1=(x ,y ,1),因为BE ⃗⃗⃗⃗⃗ =(0,2,1),BD ⃗⃗⃗⃗⃗⃗ =(3,3,0), 由{n 1·BE ⃗⃗⃗⃗⃗ =0,n 1·BD ⃗⃗⃗⃗⃗⃗ =0,得{2y +1=0,3x +3y =0.所以{x =12,y =-12.于是n 1=(12,-12,1).又因为平面ABE 的一个法向量为n 2=(1,0,0), 所以cos <n 1,n 2>=1√6=√66.故二面角A -BE -D 的余弦值为√66.四、小结五、课时练教学中主要突出了几个方面:一是进一步突出运用向量法解决立体几何问题的基本程序,发展学生的数学建模思想和逻辑推理能力。
第六课时3.1.5空间向量运算的坐标表示(夹角和距离公式)
教学要求:掌握空间向量的长度公式、夹角公式、两点间距离公式、中点坐标公式,并会
用这些公式解决有关问题.
教学重点:夹角公式、距离公式. 教学难点:夹角公式、距离公式的应用. 教学过程:
一、复习引入
1. 向量的直角坐标运算法则:设a =123(,,)a a a ,b =123(,,)b b b ,则
⑴a +b =112233(,,)a b a b a b +++; ⑵a -b =112233(,,)a b a b a b ---; ⑶λa =123(,,)a a a λλλ()R λ∈; ⑷a ·b =112233a b a b a b ++
上述运算法则怎样证明呢?(将a =1a i +2a j +3a k 和b =1b i +2b j +3b k 代入即可) 2. 怎样求一个空间向量的坐标呢?(表示这个向量的有向线段的终点的坐标减去起点的坐标.) 二、新课讲授
⒈ 向量的模:设a =123(,,)a a a ,b =123(,,)b b b ,求这两个向量的模.
|a
,|b
这个公式的几何意义是表示长方体的对角线的长度. 2. 夹角公式推导:∵ a ·b =|a ||b |cos <a ,b >
∴ 1122a b a b a
++
cos <a ,b >
由此可以得出:cos <a ,b
这个公式成为两个向量的夹角公式.利用这个共识,我们可以求出两个向量的夹角,并可以进一步得出两个向量的某些特殊位置关系:
当cos <a 、b >=1时,a 与b 同向;当cos <a 、b >=-1时,a 与b 反向; 当cos <a 、b >=0时,a ⊥b .
3. 两点间距离共识:利用向量的长度公式,我们还可以得出空间两点间的距离公式:
在空间直角坐标系中,已知点111(,,)A x y z ,222(,,)B
x y z ,则
A B d =、A B d 、表示A 与B 两点间的距离.
3. 练习:已知A (3,3,1)、B (1,0,5),求:⑴线段AB 的中点坐标和长度;⑵到A 、B 两点距离相等的点(,,)P x y z 的坐标x 、y 、z 满足的条件. (答案:
(2,
3
2
,3);;
46870x y z +-+=)
说明:⑴中点坐标公式:1()
2OM OA OB =+=121212
(
,,)222
x x y y z z +++;
⑵中点p 的轨迹是线段AB 的垂直平分平面.在空间中,关于x 、y 、z 的三元一次方程的图形是平面.
4. 出示例5:如图,在正方体1111ABCD A B C D -中,11
11114
A B B E D F ==,求1BE 与1DF 所成的角的余弦值.
分析:如何建系? → 点的坐标? → 如何用向量运算求夹角? → 变式:课本P 104、
例6
5. 用向量方法证明:如果两条直线同垂直于一个平面,则这两条直线平行. 三.巩固练习 作业:课本P 105练习 3题.。