全国卷理科数学高三一轮复习资料、强化训练、复习补习资料-13总复习:函数的最值与值域(理)(基础)
- 格式:docx
- 大小:565.53 KB
- 文档页数:12
2025年新人教版高考数学一轮复习讲义第二章§2.2 函数的单调性与最值1.借助函数图象,会用数学符号语言表达函数的单调性、最值,理解实际意义.2.掌握函数单调性的简单应用.第一部分 落实主干知识第二部分 探究核心题型课时精练第一部分落实主干知识1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为D,区间I⊆D,如果∀x1,x2∈I当x1<x2时,都有 ,那么就称函数f(x)在区间I上单调递增,特别地,当函数f(x)在它的定义域上单调递增时,我们就称它是增函数当x1<x2时,都有 ,那么就称函数f(x)在区间I上单调递减,特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是减函数f(x1)<f(x2)f(x1)>f(x2)增函数减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义单调递增单调递减如果函数y=f(x)在区间I上 或 ,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提一般地,设函数y =f (x )的定义域为D ,如果存在实数M 满足条件(1)∀x ∈D ,都有 ;(2)∃x 0∈D ,使得_________(1)∀x ∈D ,都有 ;(2)∃x 0∈D ,使得_________结论M 是函数y =f (x )的最大值M 是函数y =f (x )的最小值f (x )≤M f (x 0)=M f (x )≥M f (x 0)=M常用结论1.∀x1,x2∈I且x1≠x2,有 >0(<0)或(x1-x2)[f(x1)-f(x2)]>0(<0)⇔f(x)在区间I上单调递增(减).2.在公共定义域内,增函数+增函数=增函数,减函数+减函数=减函数.3.函数y=f(x)(f(x)>0或f(x)<0)在公共定义域内与y=-f(x),y= 的单调性相反.4.复合函数的单调性:同增异减.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)若函数f (x )满足f (-3)<f (2),则f (x )在[-3,2]上单调递增.( )(2)若函数f (x )在(-2,3)上单调递增,则函数f (x )的单调递增区间为(-2,3).( )(3)若函数f (x )在区间[a ,b ]上连续,则f (x )在区间[a ,b ]上一定有最值.( )(4)函数y = 的单调递减区间是(-∞,0)∪(0,+∞).( )×××√2.下列函数中,在其定义域上是减函数的是√A.y=-2x+1B.y=x2+1C.y=D.y=2xy=-2x+1在R上是减函数,故A正确;y=x2+1在(-∞,0)上单调递减,在(0,+∞)上单调递增,故B错误;y= 在[0,+∞)上是增函数,故C错误;y=2x在R上是增函数,故D错误.√4.函数f(x)是定义在[0,+∞)上的减函数,则满足f(2x-1)> 的x的取值范围是________.∵f(x)的定义域是[0,+∞),又∵f(x)是定义在[0,+∞)上的减函数,返回第二部分探究核心题型题型一 确定函数的单调性命题点1 函数单调性的判断例1 (多选)下列函数在(0,+∞)上单调递增的是√√√由y=|x2-2x|的图象(图略)知,B不正确;∵y′=2-2sin x≥0,∴y=2x+2cos x是R上的增函数,故C正确;函数y=lg(x+1)是定义域(-1,+∞)上的增函数,故D正确.命题点2 利用定义证明函数的单调性方法一 定义法设-1<x1<x2<1,由于-1<x1<x2<1,所以x2-x1>0,x1-1<0,x2-1<0,故当a>0时,f(x1)-f(x2)>0,即f(x1)>f(x2),函数f(x)在(-1,1)上单调递减;当a<0时,f(x1)-f(x2)<0,即f(x1)<f(x2),函数f(x)在(-1,1)上单调递增.方法二 导数法故当a>0时,f′(x)<0,函数f(x)在(-1,1)上单调递减;当a<0时,f′(x)>0,函数f(x)在(-1,1)上单调递增.思维升华确定函数单调性的四种方法(1)定义法.(2)导数法.(3)图象法.(4)性质法.跟踪训练1 (1)函数g(x)=x·|x-1|+1的单调递减区间为√g(x)=x·|x-1|+1画出函数图象,如图所示,(2)(2024·唐山模拟)函数f (x )=的单调递增区间为____________.212log (232)x x --令t=2x2-3x-2>0,log t由f(t)= 在(0,+∞)上单调递减,12根据复合函数的单调性:同增异减,函数t=2x2-3x-2的单调递减区间,即为f(x)的单调递增区间,题型二 函数单调性的应用命题点1 比较函数值的大小√所以f(x)在(-∞,0]上单调递减,又f(x)为偶函数,所以f(x)在(0,+∞)上单调递增,则f(2)<f(3)<f(4),又f(-2)=f(2),所以f(-2)<f(3)<f(4).命题点2 求函数的最值√微拓展求函数的值域(最值)的常用方法(1)配方法:主要用于和一元二次函数有关的函数求值域问题.(2)单调性法:利用函数的单调性,再根据所给定义域来确定函数的值域.(3)数形结合法.(4)换元法:引进一个(几个)新的量来代替原来的量,实行这种“变量代换”.(5)分离常数法:分子、分母同次的分式形式采用配凑分子的方法,把函数分离成一个常数和一个分式和的形式.典例 (多选)下列函数中,值域正确的是√A.当x∈[0,3)时,函数y=x2-2x+3的值域为[2,6)√√由x∈[0,3),再结合函数的图象(如图①所示),可得函数的值域为[2,6).故函数的值域为(-∞,2)∪(2,+∞).对于D,函数的定义域为[1,+∞),命题点3 解函数不等式例5 函数y =f (x)是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a的取值范围是________.所以实数a 的取值范围是[-1,1).[-1,1)命题点4 求参数的取值范围√思维升华(1)比较函数值的大小时,先转化到同一个单调区间内,然后利用函数的单调性解决.(2)求解函数不等式时,由条件脱去“f”,转化为自变量间的大小关系,应注意函数的定义域.(3)利用单调性求参数的取值(范围).根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值.A.(-2,1)B.(0,1)C.(-∞,-2)∪(1,+∞)D.(1,+∞)√则不等式f(x+2)<f(x2+2x)等价于x+2<x2+2x,即x2+x-2>0,解得x>1或x<-2,则原不等式的解集为(-∞,-2)∪(1,+∞).∵f (x )在(a ,+∞)上单调递增,[1,2)知识过关一、单项选择题1.(2023·菏泽检测)下列函数中,在区间(0,1)上单调递增的是√y=-x2+1在区间(0,1)上单调递减,故A不符合题意;y=3-x在区间(0,1)上单调递减,故D不符合题意.2.函数f(x)=-|x-2|的单调递减区间为√A.(-∞,2]B.[2,+∞)C.[0,2]D.[0,+∞)∴函数y=|x-2|的单调递减区间是(-∞,2],单调递增区间为[2,+∞),∴f(x)=-|x-2|的单调递减区间是[2,+∞).3.(2024·邵阳统考)已知f(x)是偶函数,f(x)在[1,3]上单调递增,则f(1),f(-2),f(-3)的大小关系为A.f(1)>f(-2)>f(-3)B.f(-2)>f(-3)>f(1)√C.f(-3)>f(1)>f(-2)D.f(-3)>f(-2)>f(1)因为f(x)是偶函数,所以f(-2)=f(2),f(-3)=f(3).因为f(x)在[1,3]上单调递增,所以f(3)>f(2)>f(1),所以f(-3)>f(-2)>f(1).√∴f(x)max=f(2)=4.5.(2023·杭州模拟)已知函数f(x)=x+ln x-1,则不等式f(x)<0的解集为A.(e,+∞)B.(1,+∞)√C.(0,1)D.(0,+∞)函数f(x)=x+ln x-1的定义域为(0,+∞).因为y=x-1在(0,+∞)上单调递增,y=ln x在(0,+∞)上单调递增,所以f(x)=x+ln x-1在(0,+∞)上单调递增,又f(1)=1+ln 1-1=0,所以不等式f(x)<0的解集为(0,1).6.已知函数y=f(x)的定义域为R,对任意x1,x2且x1≠x2,都有>-1,则下列说法正确的是A.y=f(x)+x是增函数B.y=f(x)+x是减函数C.y=f(x)是增函数D.y=f(x)是减函数不妨令x1<x2,∴x1-x2<0,√令g(x)=f(x)+x,∴g(x1)<g(x2),又x1<x2,∴g(x)=f(x)+x是增函数.。
第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有,那么就称函数f(x)在区间D上是增函数当x1<x2时,都有,那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是或,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得(1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞B .[3,)+∞C .(,1]-∞-D .[1,)+∞2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.[举一反三]1.(2022·全国·高三专题练习)函数222x x y -++=的单调递增区间是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( )A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞-D .递增区间是(1,1)-4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x =B .()ln y x =-C .12xy =D .1y x=-6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.7.(2022·全国·高三专题练习)函数216y x x =-+_____. 8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;10.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b ac << B .a b c << C .c a b << D .a c b <<2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)[举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7-D .()(),77,-∞-⋃+∞6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,17.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭ D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >-B .1b >-C .1b ≥-D .2a <-10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______.11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________.12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________.13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.16.(2022·全国·高三专题练习)已知函数()f x x .(1)若1a ,求函数的定义域;(2)是否存在实数a,使得函数()f x在定义域内具有单调性?若存在,求出a的取值范围第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有f (x )≤M ; (2)∃x 0∈I ,使得f (x 0)=M(1)∀x ∈I ,都有f (x )≥M ; (2)∃x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞ B .[3,)+∞ C .(,1]-∞-D .[1,)+∞【答案】B 【解析】由题意,可得2230x x --≥,解得1x ≤-或3x ≥, 所以函数2()23f x x x =--(][),13,-∞-⋃+∞,二次函数223y x x =--的对称轴为1x =,且在(][),13,-∞-⋃+∞上的单调递增区间为[3,)+∞,根据复合函数的单调性,可知函数2()23f x x x =--[3,)+∞.故选:B.2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性. 【解】任取1x 、2(11)x ∈-,,且12x x <,(11)1()(1)11a x f x a x x -+==+--,则:21121212()11()()(1)(1)11(1)(1)a x x f x f x a a x x x x --=+-+=----,当0a >时,12())0(f x f x ->,即12()()f x f x >,函数()f x 在(11)-,上单调递减; 当0a <时,12())0(f x f x -<,即12()()f x f x <,函数()f x 在(11)-,上单调递增. [举一反三]1.(2022·全国·高三专题练习)函数y = )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 【答案】C 【解析】令220x x -++≥,解得12x -≤≤, 令22t x x =-++,则y =∵函数22t x x =-++在区间112⎡⎤-⎢⎥⎣⎦,上单调递增,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,y =内递增,∴根据复合函数的单调性可知,函数y =112⎡⎤-⎢⎥⎣⎦,.故选:C2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( ) A .(),2-∞ B .()2,+∞ C .()2,2- D .()2,6-【答案】C 【解析】 令13log y u=,2412u x x =-++.由24120u x x =-++>,得26x -<<.因为函数13log y u=是关于u 的递减函数,且()2,2x ∈-时,2412u x x =-++为增函数,所以()213log 412y x x =-++为减函数,所以函数()213log 412y x x =-++的单调减区间是()2,2-.故选:C.3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞- D .递增区间是(1,1)-【答案】D 【解析】因为函数222,0()22,0x x x f x x x x x x x ⎧-+≥=-+=⎨+<⎩,作出函数()f x 的图象,如图所示:由图可知,递增区间是(1,1)-,递减区间是(,1)-∞-和()1,+∞. 故选:D .4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞【答案】C 【解析】因为12log y x=在()0,∞+上为减函数,所以只要求()y f x =的单调递减区间,且()0f x >.由图可知,使得函数()y f x =单调递减且满足()0f x >的x 的取值范围是()[),50,1-∞-.因此,函数()()12log g x f x =的单调递增区间为(),5-∞-、[)0,1.故选:C.5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x = B .()ln y x =-C .12xy =D .1y x=-【答案】D 【解析】选项A. 函数tan y x =在(),0∞-上只有单调增区间,但不是一直单调递增,故不满足; 选项B. 由复合函数的单调性可知函数()ln y x =-在(),0∞-上单调递减,故不满足;选项C. 函数1122xx y ⎛⎫== ⎪⎝⎭在(),0∞-上单调递减,故不满足;选项D. 函数1y x=-在(),0∞-上单调递增,故满足,故选:D6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.【答案】 (12,1)-,(12,)++∞ (,12)-∞-,(1,12)【解析】作出函数y =|-x 2+2x +1|的图像,如图所示,观察图像得,函数y =|-x 2+2x +1|在(12,1)-和(12,)++∞上单调递增,在(,12)-∞和(1,12)上单调递减,所以原函数的单调增区间是(1,(1)+∞,单调递减区间是(,1-∞,(1,12).故答案为:(1-,(1)++∞;(,1-∞,(1,12)7.(2022·全国·高三专题练习)函数1y =_____. 【答案】[3,6] 【解析】226060x x x x -+≥⇒-≤,解得06x ≤≤,令()()22639x x x x μ=-+=--+,对称轴为3x =,所以函数()x μ在(),3-∞为单调递增;在[)3,+∞上单调递减.所以函数1y =[3,6]. 故答案为:[3,6]8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.【答案】1()12xf x =-(答案不唯一) 【解析】 1()12x f x =-,定义域为R ;102x>,1()112x f x =-<,值域为(,1)-∞; 是增函数,满足对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.故答案为:1()12xf x =-(答案不唯一). 9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;【解】由题意,040x x x ≠⎧⎪-⎨>⎪⎩,解得04x <<故f (x )的定义域为(0,4) 令441x u x x -==-,lg y u =,由于41u x=-在(0,4)单调递减,lg y u =在(0,)+∞单调递增,因此4lgxy x-=在(0,4)单调递减,又1y x =在(0,4)单调递减,故f (x )1x =+4lgx x -在(0,4)上单调递减,证明如下: 设0<x 1<x 2<4,则: ()()()()121221121122122144411lg lg lg 4x x x x x x f x f x x x x x x x x x -----=+--=+-, ∵0<x 1<x 2<4,∴x 2﹣x 1>0,x 1x 2>0,4﹣x 1>4﹣x 2>0,12214114x xx x -->,>, ∴()()()()1212211221214401lg 044x x x x x x x x x x x x ----->,>,>, ∴f (x 1)>f (x 2),∴f (x )在(0,4)上单调递减11.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.【解】由题意11211()22212x x x f x +-==-+++, 令1112,2xu y u =+=-+,由于12x u =+在R 上单调递增,112y u=-+在(0,)+∞单调递减,由复合函数单调性可知f (x )在R 上为减函数. 证明:设∀x 1,x 2∈R ,且x 1<x 2,所以f (x 1)﹣f (x 2)()()211212112212121212x x x x x x -=-=++++,由于x 1<x 2,y =2x 在R 上单增 所以21220x x ->,且2x >0 所以f (x 1)>f (x 2), 所以f (x )在R 上单调递减.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b a c <<B .a b c <<C .c a b <<D .a c b <<【答案】A【解析】()f x 的定义域为R , 因为()()()e e ee ()22x xxx x x f x f x ------===,所以()f x 为偶函数,所以()()2221log log 3log 33a f f f ⎛⎫==-= ⎪⎝⎭,443322c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,当0x >时,()()()ee e e 2xx x xx f x ---++'=,因为0x >,所以e1,0e 1xx -><<,所以e e 0x x -->,(e e )0x x x -+>,所以()0f x '>,所以()f x 在(0,)+∞上单调递增,因为2x y =在R 上单调递增,且340143-<<<,所以43013402222-<<<<,即433402122-<<<<,因为2log y x =在(0,)+∞上为增函数,且234<<,所以222log 2log 3log 4<<,即21log 32<<,所以4334202log 32-<<<,所以()433422log 32f f f -⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即b a c <<,故选:A2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.【答案】1 【解析】解:(],1x ∈-∞时,()1x f x e -=单调递增,()()1111f x f e -==≤;()1,x ∈+∞时,()1+1f x x x=-单调递减,()11+111f x <-=.所以()f x 的最大值为1. 故答案为:1.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】C 【解析】解:()f x 定义域为R , 又()()-=-f x f x ,所以()f x 是奇函数,当0x =时,()00f =,当0x >时,()=f x ()f x 在()0,∞+上递增, 所以()f x 在定义域R 上递增,又()()21f x f x >-,所以21x x >-,解得13x >,故选:C4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)【答案】C 【解析】解:根据题意,函数221()11()ax a x a a a f x a x a x a x a--+--===+---, 若()f x 在区间(2,)+∞上单调递减,必有2102a a ⎧->⎨⎩,解可得:1a <-或12a <,即a 的取值范围为(-∞,1)(1-⋃,2], 故选:C . [举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<【答案】B 【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,122112121212()()()()00f x f x x f x x f x x x x x x x -->⇔>--, 于是得函数()f x x 在(0,)+∞上单调递增,而函数()f x 是R 上的偶函数,即(2)(2)22f f b -==,显然有(1)(2)(3)123f f f <<,因此得:a b c <<, 所以a b c <<. 故选:B2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>【答案】D 【解析】解:因为()()()32200x x x f x x x -⎧-+>⎪=⎨-≤⎪⎩,又2x y =在()0,∞+上单调递增,2x y -=在()0,∞+上单调递减,则()22xx g x -=-+在()0,∞+上单调递减且()002002g -+==,又()3h x x =-在(),0∞-上单调递减且()3000h =-=,所以()f x 在R 上单调递减,又因为0.20331>=,即1b >,0ln1ln 2lne 1=<<=,即01a <<,0.30.3log 2log 10<=,即0c <,所以b a c >>,所以()()()f b f a f c <<; 故选:D3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦【答案】C 【解析】设1x t ,1x t =-,1,22x ⎡⎤∈-⎢⎥⎣⎦,则1,32t ⎡⎤∈⎢⎥⎣⎦,则()41g t t t =+-,根据双勾函数性质:函数在1,22⎡⎤⎢⎥⎣⎦上单调递减,在(]2,3上单调递增,()()max 1151015max ,3max ,2232g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,()()min 23g t g ==,故函数值域为153,2⎡⎤⎢⎥⎣⎦.故选:C.4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭【答案】C【解析】因为函数()1y f x =-是定义在R 上的偶函数,所以()y f x =的图象关于直线1x =-对称.因为()f x 在(),1-∞-上单调递减,所以在()1,-+∞上单调递增. 因为()00f =,所以()()200f f -==.所以当()(),20,x ∈-∞-⋃+∞时,()0f x >;当()2,0x ∈-时,()0f x <.由()()210f x f x +<,得20,2210.x x x ⎧-⎨-<+<⎩或或20,212210.x x x -<<⎧⎨+-+⎩或解得312,,022x ⎛⎫⎛⎫∈--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:C5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7- D .()(),77,-∞-⋃+∞【答案】A 【解析】解:因为()()212,12,1x x f x x x ⎧++<⎪=⎨-≥⎪⎩,所以()36f =-,()()233126f -=-++=,则()()340f f x +->,即()()()4363f x f f ->-==-,()f x 的函数图象如下所示:由函数图象可知当3x >-时()6f x <且()f x 在(),3∞--上单调递减,所以()()43f x f ->-等价于43x -<-,即1x <,解得11x -<<,即()1,1x ∈-; 故选:A6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1【答案】B 【解析】因为分段函数()f x 在R 上的单调函数,由于22y x ax =-开口向上,故在1≥x 上单调递增,故分段函数()f x 在在R 上的单调递增,所以要满足:0212112a aa a>⎧⎪-⎪-≤⎨⎪-≤-⎪⎩,解得:203a <≤ 故选:B7.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-【答案】D 【解析】解:函数2()2(1)3f x x m x =-+-+的图像的对称轴为2(1)12m x m -=-=--, 因为函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,所以14m -≥,解得3m ≤-, 所以m 的取值范围为(],3-∞-, 故选:D8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭【答案】B 【解析】由题意可知,()313y a x a =-+在(),1-∞上为减函数,则310a -<, 函数21y x =-+在[)1,+∞上为减函数,且有()3130a a -+≥,所以,310610a a -<⎧⎨-≥⎩,解得1163a ≤<.综上所述,实数a 的取值范围是11,63⎡⎫⎪⎢⎣⎭.故选:B.9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >- B .1b >- C .1b ≥- D .2a <-【答案】AC 【解析】 ()22211x a a f x x x -+==-++, ()f x 在区间()b +∞,上单调递增,20a ∴+>,2a >-∴,由()f x 在区间()1+∞-,上单调递增, 1b.故选:AC10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______. 【答案】(2,4]- 【解析】 函数5()3x f x x a +=-+,定义域为(,3)(3,)x a a ∈-∞-⋃-+∞,又322()133x a a a f x x a x a -++++==+-+-+,因为函数5()3x f x x a +=-+在(1,)+∞上是减函数,所以只需23a y x a +=-+在(1,)+∞上是减函数,因此2031a a +>⎧⎨-≤⎩,解得24a -<≤.故答案为:24a -<≤11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________. 【答案】(-∞,0)∪(1,4] 【解析】由题意可得4-mx ≥0,x ∈(0,1]恒成立,所以m ≤4()xmin =4.当0<m ≤4时,4-mx 单调递减,所以m -1>0,解得1<m ≤4; 当m <0时,4-mx 单调递增,所以m -1<0,解得m <1,所以m <0. 故实数m 的取值范围是(-∞,0)∪(1,4]. 故答案为: (-∞,0)∪(1,4].12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________. 【答案】22x x -+ 【解析】由(1)(1)f x f x +=-可得()f x 关于1x =对称,所以开口向下,对称轴为1x =,且过原点的二次函数满足题目中的三个条件, 故答案为:22x x -+13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.【答案】1223⎛⎫- ⎪⎝⎭,【解析】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________. 【答案】13(,)22【解析】解:由题意得2()4f x x ax =-+的对称轴为2x a =,因为函数()f x 在[]1.3内不单调,所以123a <<,得1322a <<.故答案为:13(,)22.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.【解】因为函数()y f x =是定义在R 的递减函数,所以2(31)(1)(2)f mx f mx x f m ->+->+对(0x ∈,1]恒成立2231112mx mx x mx x m ⎧-<+-⇔⎨+-<+⎩在(0x ∈,1]恒成立.整理,当(0x ∈,1]时,2222(1)1mx x m x x ⎧<-⎨-<+⎩恒成立, (1)当1x =,2102m <⎧⎨<⎩,所以12m <;(2)当(0,1)x ∈时,222211x m xx m x ⎧-<⎪⎪⎨+⎪>⎪-⎩恒成立,1,2xy y x ==-都在(0,1)x ∈上为减函数22122x x y x x -∴==-在(0,1)x ∈上为减函数, ∴22122x x ->,222x m x-∴<恒成立⇔12m ≤. 结合当1x =时,12m <①又2222212(1)(1)21,01(1)(1)x x x x x x y y x x x +--+--'===<-++,当(0,1)x ∈ 故211x y x +=-在(0,1)x ∈上是减函数,∴2111x x +<--.211x m x +∴>-恒成立1m ⇔≥-② ∴①、②两式求交集1[1,)2m ∈-由(1)(2)可知当[1m ∈-,1)2时,对任意(0x ∈,1]时,2(31)(1)(2)f mx f mx x f m ->+->+恒成立.16.(2022·全国·高三专题练习)已知函数()f x x . (1)若1a =,求函数的定义域;(2)是否存在实数a ,使得函数()f x 在定义域内具有单调性?若存在,求出a 的取值范围. 【解】(1)()f x x ,∴|1|10x +-≥,解得(,2][0,)x ∈-∞-+∞; 所以函数的定义域为(,2][0,)x ∈-∞-+∞.(2)当x a ≥-,211()24f x x x ⎫===-+⎪⎭,在1[,)4+∞递减,此时需满足14a -≥,即14a -≤时,函数()f x 在[,)a -+∞上递减;当x a <-,()f x x x ,在(,2]a -∞-上递减, ∵104a ≤-<,∴20a a ->->,即当14a -≤时,函数()f x 在(,)a -∞-上递减;综上,当14a -≤时,函数()f x 在定义域R 上连续,且单调递减.所以a 的取值范围是1,4⎛⎤-∞- ⎥⎝⎦。
高考冲刺:函数【高考展望】函数知识是高中数学的重要内容之一,也是每年高考必考的重要知识点之一, 分析历年高考函数试题,大致有这样几个特点:1.常常通过选择题和填空题,全面考查函数的基本概念,性质和图象.2.在解答题的考查中,常常与不等式、导数、数列,偶尔也与解析几何等结合命题,以综合题的形式出现.3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查.4.每年高考题中都会涌现出一些函数新题型,但考查的重点仍然是对函数有关知识的深刻理解.【知识升华】1.了解映射的概念,理解函数的概念并能在简单的问题中应用.2.理解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性的方法,并能利用函数的性质简化函数图象的绘制过程.3.掌握基本初等函数的图像,掌握某些简单函数的图像变换. 4.理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【典型例题】类型一:函数的定义域及其求法函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会应用用函数的定义域解决有关问题.例1.已知函数()|lg |f x x =,若0a b <<,且()()f a f b =,则a+2b 的取值范围是 A.)+∞ B.)+∞ C .(3,)+∞ D .[3,)+∞ 【思路点拨】含绝对值的分段函数,应根据正负情况考虑去掉绝对值. 【解析】画出()|lg |f x x =的示意图.由题设有 ()|l g|l g f a a a ==-,()|lg |lg f b b b ==(1)b >,∴1l g l g a ba b -=⇒=,122a b b b +=+令1()2g b b b =+,则21'()2g b b =-,∵ 1b >, ∴ '()0g b >.∴ ()g b 在(1,)+∞上是增函数.∴ 1()(1)3g b b g b =+>=.选C.举一反三: 【变式1】函数y =( )(A )(3,+∞) (B )[3, +∞) (C )(4, +∞) (D )[4, +∞)【解析】由24.log 20x x x >⎧⇒≥⎨-≥⎩,故选D.例2.若函数f (x )=loga (x+1)(a >0,a ≠1)的定义域和值域都是[0,1],则a 等于A. 31B.2C.22D.2【思路点拨】因为底数不确定,需要讨论.【解析】f (x )=loga (x+1)的定义域是[0,1],∴0≤x ≤1,则1≤x+1≤2. 当a >1时,0=loga1≤loga (x+1)≤loga2=1,∴a=2;当0<a <1时,loga2≤loga (x+1)≤loga1=0,与值域是[0,1]矛盾. 综上,a=2. 【答案】D 举一反三: 【变式1】函数y )A .{}|0x x ≥B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤【答案】C. 【解析】由()10x x -≥且0x ≥得1x ≥或0x =.类型二:复合函数问题复合函数问题属于偏难些的内容.此类题目往往分为两类:一是结合函数解析式的求法来求复合函数的值.二是应用已知函数定义域求复合函数的定义域. 例3.对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( )A.①② B.①③ C.② D.③ 【思路点拨】复合函数的奇偶性问题也应该从定义来考虑. 【解析】22()(2),(2)f x x f x x =-∴+=是偶函数,又函数2()(2)f x x =-开口向上且在()-∞2,上是减函数,在(2)+∞,上是增函数.故能使命题甲、乙均为真的函数仅有2()(2)f x x =-.故选C 举一反三:【变式1】若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2 B .10[2,]3 C .510[,]23 D .10[3,]3 【答案】B【解析】令()t f x =,则1[,3]2t ∈,110()[2,]3F x t t =+∈ 例4.已知132(0)()(01)log (1)xx f x x x x ⎧<=≤≤>⎪⎩ 求((()))f f f a 。
一、学习目标:1. 了解函数图象的基本变换,能画出简单的函数图象。
(一次函数、二次函数、初等函数等)2. 认识函数图象,并能根据函数图象理解函数的性质。
3. 能利用函数图象解决简单的问题。
二、重点、难点:重点:作图→识图→用图难点:函数图象的应用三、考点分析:函数图象是新课标高考命题的重点之一,考查的题型多以选择、填空题出现。
根据新课标高考知识点的要求:只要求掌握对简单的函数图象的认识、应用等。
通过对函数图象这一知识点的考查,进一步考查学生分析问题、解决问题的能力及数形结合的思想方法。
知识网络结构:知识要点解析:(一)作图:1. 一般作图方法:(列表、描点、连线)确定函数定义域、化简函数解析式、讨论函数性质、画出函数图象。
2. 变换作图(1)平移变换:函数)0y的图象可由函数)f(xfxy=的图象向左(a>0)或向右(a<0)(),(≠+a=a平移|a|个单位得到。
(此平移过程中:函数的值域不变)函数)0y的图象可由函数)f(xxfy=的图象向上(b>0)或向下(b<0)(≠(,)+b=b平移|b|个单位得到。
(此平移过程中:函数的定义域不变)(2)对称变换函数)(x f y -=的图象可由函数)(x f y =的图象作关于x 轴对称变换得到。
函数)(x f y -=的图象可由函数)(x f y =的图象作关于y 轴对称变换得到。
函数)(x f y --=的图象可由函数)(x f y =的图象作关于原点对称变换得到。
函数)(1x fy -=的图象可由函数)(x f y =的图象作关于直线y =x 对称变换得到。
函数|)(|x f y =的图象可通过作函数)(x f y =的图象,然后把x 轴下方的图象翻折到x 轴的上方,其余部分不变得到。
函数|)(|x f y =的图象可由函数)(x f y =的图象在y 轴右边的部分及该部分关于y 轴对称的部分组成。
(3)伸缩变换:函数)10(),(≠>=A A x Af y 且的图象可由函数)(x f y =的图象上的各点纵坐标伸长(A >1)或缩短(0<A <1)原来的A 倍得到。
函数的最值与值域【考纲要求】1. 会求一些简单函数的定义域和值域;2. 理解函数的单调性、最大(小)值及其几何意义;3. 会运用函数图象理解和研究函数的性质.4. 在某些实际问题中,会建立不等式求参数的取值范围,以及求最大值和最小值. 【知识网络】【考点梳理】考点一、函数最值的定义1.最大值:如果对于函数()f x 定义域D 内的任意一个自变量x ,存在0x D ∈,使得0()()f x f x ≤成立,则称0()f x 是函数()f x 的最大值.注意:下面定义错在哪里?应怎样订正.如果对于函数()f x 定义域D 内的任意一个自变量x ,都有()f x M ≤,则称M 是函数()f x 的最大值. 2.最小值的定义同学们自己给出. 考点二、函数最值的常用求法1.可化为二次函数的函数,要特别注意自变量的取值范围.2.判别式法:主要适用于可化为关于x 的二次方程,由0∆≥(要注意二次项系数为0的情况)求出函数的最值,要检验这个最值在定义域内是否有相应的x 的值.3.换元法:很多含根式的函数的最值的求法经常用到换元法来求.常用的换元有———三角代换,整体代换.4.不等式法:利用均值不等式求最值.5.利用函数的性质求函数的最值6.含绝对值的函数或分段函数的最值的求法7.利用导数求函数的最值。
要点诠释:(1)求最值的基本程序:求定义域、求导数、求导数的零点、列表、根据表比较函数值大小给出最值; (2)一些能转化为最值问题的问题:()f x A >在区间D 上恒成立函数min ()()f x A x D >∈⇔函数的最值与值域 函数的值域函数的最大值函数的最小值()f x B <在区间D 上恒成立函数max ()()f x B x D <∈在区间D 上存在实数使()f x B <函数min ()()f x B x D <∈ 在区间D 上存在实数使()f x A >函数max ()()f x A x D >∈ 【典型例题】类型一、通过转化或换元的方法求解函数的值域或最值 例1.求函数22()xx x f x e me e -=-+-x me -的最值.【解析】22()()xx x x f x ee m e e --=+-+2()()2xx xxe e m e e --=+-+-令x x t e e -=+(注意t 的范围),这样所求函数就变为二次函数.【总结升华】当式子中同时出现22x x -+和1x x -±时,都可以化为二次式. 举一反三:【变式】求函数y =【解析】平方再开方,得[3,1]y x =∈-[2,y ∴∈类型二、函数值的大小比较,求函数值域,求函数的最大值或最小值 例2. 求下列函数值域: (1)2-12x y x =+; 1)x ∈[5,10]; 2)x ∈(-3,-2)∪(-2,1); (2)y=x 2-2x+3; 1)x ∈[-1,1]; 2)x ∈[-2,2]. 【解析】(1)2(2)-5-5-522x y y x x x+===+++2可看作是由左移2个单位,再上移2个单位得到,如图1)f(x)在[5,10]上单增,919[(5),(10)][,]712y f f ∈即; 2)1(-,(1))((-3),)(-)(7)3y f f ∈∞⋃+∞∞⋃+∞即,,; (2)画出草图⇔x ⇔x ⇔1)y ∈[f(1),f(-1)]即[2,6]; 2)[(1),(-2)][2,11]y f f ∈即. 举一反三:【变式】已知函数13xf (x)13x+=-. (1)判断函数f(x)的单调区间;(2)当x ∈[1,3]时,求函数f(x)的值域.【解析】(1)13x (3x 1)22f (x)113x 13x 3x 1+--++===----- 1f (x)(-)3∴∞在,上单调递增,在1(,)3+∞上单调递增;(2)1[1,3](,)3⊆+∞故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=-2 x=3时f(x)有最大值5f (3)4=-∴x ∈[1,3]时f(x)的值域为5[2,]4--. 类型三、含参类函数的最值与值域问题例3(2018 北京高考)设函数.①若,则的最大值为______________; ②若无最大值,则实数的取值范围是________. 【答案】,.【解析】如图先作出函数与直线的图象,它们的交点是,,,由,知是函数的极大值点,①当时,,因此的最大值是;33,()2,x x x af x x x a⎧-≤=⎨->⎩0a =()f x ()f x a 2(,1)-∞-3()3g x x x =-2y x =-(1,2)A -(0,0)O (1,2)B -2'()33g x x =-1x =()g x 0a =33,0()2,0x x x f x x x ⎧-≤=⎨->⎩()f x (1)2f -=②由图象知当时,有最大值是;只有当时,由,因此无最大值,∴所求的范围是,故填:,..举一反三:【变式】(2014 甘肃一模)若不等式2229t t a t t +≤≤+在(]0,2t ∈上恒成立,则a 的取值范围是( ) A. 1,16⎡⎤⎢⎥⎣⎦ B. 2,113⎡⎤⎢⎥⎣⎦ C. 14,613⎡⎤⎢⎥⎣⎦ D.1,6⎡⎢⎣ 【答案】B 【解析】函数22212t y t t t+==+,在(]0,2t ∈上为减函数 ∴当2t =时,22t t +的最小值为1;又2196t t ≤=+,当且仅当3t =时等号成立 所以函数29ty t =+在区间(]0,2上为增函数 可得2t =时,29t t +的最大值为213.因为不等式2229t t a t t+≤≤+在(]0,2t ∈上恒成立所以22max min 29t t a t t +⎛⎫⎛⎫≤≤⎪ ⎪+⎝⎭⎝⎭即2113a ≤≤可得a 的取值范围是2,113⎡⎤⎢⎥⎣⎦. 类型四、抽象函数的最值与值域问题例4.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2 B .10[2,]3 C .510[,]23 D .10[3,]3【答案】B1a ≥-()f x (1)2f -=1a <-332a a a -<-()f x a (,1)-∞-2(,1)-∞-【解析】令()t f x =,则1[,3]2t ∈,110()[2,]3F x t t =+∈ 举一反三:【变式】设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1()(2)f f 的值为( ) A .1516B .2716-C .89D .18【答案】A【解析】∵2(2)2224f =+-=,∴211115()()1()(2)4416f f f ==-=. 类型五:解析几何在最值方面的综合应用例5.设A (0,0),B (4,0),C (t+4,4),D (t ,4)(t ∈R ).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数N (t )的值域为( )A .{9,10,11}B .{9,10,12}C .{9,11,12}D .{10,11,12}【解析】当t ≠0时,直线AD 的方程为4y x t=, 分别与直线y=1,y=2,y=3交于点1(,1)4t M ,2(,2)2t M 33(,3)4M t 。
同理直线BC 的方程为4(4)y x t=-分别与直线y=1,y=2,y3交于点 1(4,1)4t N +,2(4,2)2t N +,33(4,3)4N t +。
此时当3014t <<时,直线y=1,y=2,y=3在平等四边形ABCD 内部的线段上各有4个整点,故此时N (t )=12; 当314t =时,直线y=1,y=2在平行四边形ABCD 内部的线段上各有4个整点, 而直线y=3在平行四边形ABCD 内部的线段上只有3个整点, 此时N (t )=11。
同理可得当31()4k k k t<<+∈Z 时,N (t )=12; 当31()4t k k =+∈Z 时,N (t )=11。
综上得 9, 044()12, (1)33411, (1)3t N t k t k t k ⎧⎪=⎪⎪=<<+⎨⎪⎪=+⎪⎩,其中k ∈Z )。
故选C 。
【答案】C 当t=0时,平行四边形ABCD 为正方形,不含边界的整点个数为9个。
【变式2】设直线x=t 与函数2()f x x =,()ln g x x =的图像分别交于点M ,N ,则当|MN|达到最小时t 的值为( )A .1B .12C【答案】D 如图,2||ln MN t t =-,令2()ln (0)h t t t t =->,∵2121'()2t h t t t t -=-=,∴易知0t <<时,'()0h t <;2t >'()0h t >。
于是可判断当2t =时,|MN|取得小值。
【巩固练习】1.(2018 北京高考)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x −y 的最大值为(A )−1 (B )3 (C )7 (D )82.(2017 唐山一模)直线y a =分别与曲线()21y x =+,ln y x x =+交于A 、B,则AB 的最小值为()A.3B.2C.32D. 43.已知不等式222(cos 5)4sin 0m m θθ+-+≥恒成立,则实数m 的取值范围是( ) A.04m ≤≤ B. 14m ≤≤ C .4m ≤或0m ≤ D. 1m ≤或0m ≤ 4. 已知函数()x f x a -=,()log (0,1)a g x x a a =>≠,若f(2)·g(2)<0,则f(x)与g(x)在同一坐标系内的图象可能是( )A B C D5.设定义域为R 的函数⎩⎨⎧=≠-=1,01||,1|lg |)(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是( )A .0<b 且0>cB .0>b 且0<cC .0<b 且0=cD .0≥b 且0=c6.设()f x 是定义在R 上的奇函数,且当x ≥0时,2()f x x =。
若对任意的x ∈[t ,t+2],不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是( )A.)+∞ B .[2,+∞)C .(0,2] D.[1][2,3]- 7.(2018 潍坊一中二模)函数1(x)a 2(a 0,a 1)x f -=->≠的图像恒过定点A ,若点A 在直线mx-my-1=0上,其中m>0,n>0,则12m n+的最小值为( ) A 4 B 5 C 6D 3+ 8.已知()f x 是奇函数,当(0,1)x ∈时1()lg 1f x x=+,那么当(1,0)x ∈-时()f x 的表达式是_____. 9. 记1010101111112212221S =++++++-,则S 与1的大小关系是 . 10.(2017 浙江高考)已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()()2f f -= ,()f x 的最小值是 . 11.实数,x y 满足xx y y=-,则x 的取值范围是__________. 12.设不等式221(1)x m x ->-对满足22m -≤≤的一切实数m 的值都成立,则实数x 的取值范围 。