2019年高考数学一轮总复习 第七章 立体几何 7.3 空间点、线、面之间的位置关系课时跟踪检测 理.doc
- 格式:doc
- 大小:281.00 KB
- 文档页数:7
(全国版)2019版高考数学一轮复习第7章立体几何第3讲空间点、直线、平面之间的位置关系增分练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第7章立体几何第3讲空间点、直线、平面之间的位置关系增分练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第7章立体几何第3讲空间点、直线、平面之间的位置关系增分练的全部内容。
第3讲空间点、直线、平面之间的位置关系板块四模拟演练·提能增分[A级基础达标]1.[2018·济宁模拟]直线l1,l2平行的一个充分条件是( )A.l1,l2都平行于同一个平面B.l1,l2与同一个平面所成的角相等C.l1平行于l2所在的平面D.l1,l2都垂直于同一个平面答案D解析对A,当l1,l2都平行于同一个平面时,l1与l2可能平行、相交或异面;对B,当l1,l2与同一个平面所成角相等时,l1与l2可能平行、相交或异面;对C,l1与l2可能平行,也可能异面,只有D满足要求.故选D.2.[2018·太原期末]已知平面α和直线l,则α内至少有一条直线与l()A.平行 B.相交 C.垂直 D.异面答案C解析直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错误;l⊂α时,在平面α内不存在与l异面的直线,∴D错误;l∥α时,在平面α内不存在与l相交的直线,∴B错误.无论哪种情形在平面α内都有无数条直线与l垂直.故选C。
3.已知a,b,c为三条不重合的直线,已知下列结论:①若a⊥b,a⊥c,则b∥c;②若a ⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,则a⊥c。
专题7.0 直线、平面平行的判定及性质【考试要求】1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.【知识梳理】1.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理文字语言图形表示符号表示判定定理平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面a⊄α,b⊂α,a∥b⇒a∥α性质定理一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行a∥α,a⊂β,α∩β=b⇒a∥b2.平面与平面平行(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β性质定理两个平面平行,则其中一个平面内的直线平行于另一个平面α∥β,a⊂α⇒a∥β如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β,α∩γ=a,β∩γ=b⇒a∥b平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)两个平面平行,则其中任意一个平面内的直线与另一个平面平行.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.( )(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.( )(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( )(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( )【答案】(1)×(2)×(3)×(4)√【解析】(1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.(2)若a∥α,P∈α,则过点P且平行于a的直线只有一条,故(2)错误.(3)如果一个平面内的两条直线平行于另一个平面,则这两个平面平行或相交,故(3)错误.【教材衍化】2.(必修2P61A1(2)改编)下列说法中,与“直线a∥平面α”等价的是( )A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交【答案】 D【解析】因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交,故选D.3.(必修2P61A1(1)改编)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α【答案】 D【解析】根据线面平行的判定与性质定理知,选D.【真题体验】4.(2018·某某模拟)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.m∥α,n∥α,则m∥nB.m∥n,m∥α,则n∥αC.m⊥α,m⊥β,则α∥βD.α⊥γ,β⊥γ,则α∥β【答案】 C【解析】A中,m与n平行、相交或异面,A不正确;B中,n∥α或n⊂α,B不正确;根据线面垂直的性质,C正确;D中,α∥β或α与β相交,D错.5.(2019·某某月考)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线【答案】 A【解析】当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.6.(2019·十八中开学考试)如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH 的形状为________.【答案】平行四边形【解析】∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.【考点聚焦】考点一与线、面平行相关命题的判定【例1】 (1)在空间中,a,b,c是三条不同的直线,α,β是两个不同的平面,则下列命题中的真命题是( )A.若a⊥c,b⊥c,则a∥bB.若a⊂α,b⊂β,α⊥β,则a⊥bC.若a∥α,b∥β,α∥β,则a∥bD.若α∥β,a⊂α,则a∥β(2)(2019·聊城模拟)下列四个正方体中,A,B,C为所在棱的中点,则能得出平面ABC∥平面DEF的是( )【答案】(1)D (2)B【解析】(1)对于A,若a⊥c,b⊥c,则a与b可能平行、异面、相交,故A是假命题;对于B,设α∩β=m,若a,b均与m平行,则a∥b,故B是假命题;对于C,a,b可能平行、异面、相交,故C是假命题;对于D,若α∥β,a⊂α,则a与β没有公共点,则a∥β,故D是真命题.(2)在B中,如图,连接MN,PN,∵A,B,C为正方体所在棱的中点,∴AB∥MN,AC∥PN,∵MN∥DE,PN∥EF,∴AB∥DE,AC∥EF,∵AB∩AC=A,DE∩EF=E,AB,AC⊂平面ABC,DE,EF⊂平面DEF,∴平面ABC∥平面DEF.【规律方法】 1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.2.(1)结合题意构造或绘制图形,结合图形作出判断.(2)特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.【训练1】 (1)下列命题正确的是( )A.若两条直线和同一个平面平行,则这两条直线平行B.若一条直线与两个平面所成的角相等,则这两个平面平行C.若一条直线与两个相交平面都平行,则这条直线与这两个平面的交线平行D.若两个平面垂直于同一个平面,则这两个平面平行(2)在正方体ABCD -A 1B 1C 1D 1中,M ,N ,Q 分别是棱D 1C 1,A 1D 1,BC 的中点,点P 在BD 1上且BP =23BD 1,则下面说法正确的是________(填序号).①MN ∥平面APC ;②C 1Q ∥平面APC ;③A ,P ,M 三点共线;④平面MNQ ∥平面APC . 【答案】 (1)C (2)②③【解析】 (1)A 选项中两条直线可能平行也可能异面或相交;对于B 选项,如图,在正方体ABCD -A 1B 1C 1D 1中,平面ABB 1A 1和平面BCC 1B 1与B 1D 1所成的角相等,但这两个平面垂直;D 选项中两平面也可能相交.C 正确.(2)如图,对于①,连接MN ,AC ,则MN ∥AC ,连接AM ,,易得AM ,交于点P ,即MN ⊂平面APC ,所以MN∥平面APC 是错误的. 对于②,由①知M ,N 在平面APC 内,由题易知AN∥C 1Q ,且AN ⊂平面APC , C 1Q ⊄平面APC.所以C 1Q ∥平面APC 是正确的.对于③,由①知,A ,P ,M 三点共线是正确的.对于④,由①知MN ⊂平面APC ,又MN ⊂平面MNQ ,所以平面MNQ ∥平面APC 是错误的. 考点二 直线与平面平行的判定与性质 角度1 直线与平面平行的判定【例2-1】 (2019·东北三省四市模拟)在如图所示的几何体中,四边形ABCD 是正方形,PA ⊥平面ABCD ,E ,F 分别是线段AD ,PB 的中点,PA =AB =1.【答案】见解析【解析】(1)证明:EF ∥平面PDC ; (2)求点F 到平面PDC 的距离.(1)证明 取PC 的中点M ,连接DM ,MF ,∵M,F 分别是PC ,PB 的中点,∴MF∥CB,MF =12CB ,∵E 为DA 的中点,四边形ABCD 为正方形, ∴DE∥CB,DE =12CB ,∴MF∥DE,MF =DE ,∴四边形DEFM 为平行四边形, ∴EF∥DM,∵EF ⊄平面PDC ,DM ⊂平面PDC , ∴EF ∥平面PDC . (2)解 ∵EF ∥平面PDC ,∴点F 到平面PDC 的距离等于点E 到平面PDC 的距离.∵PA ⊥平面ABCD ,∴PA ⊥DA ,在Rt△PAD 中,PA =AD =1,∴DP = 2. ∵PA ⊥平面ABCD ,∴PA ⊥CB ,∵CB ⊥AB ,PA ∩AB =A ,∴CB ⊥平面PAB , ∴CB ⊥PB ,则PC =3,∴PD 2+DC 2=PC 2, ∴△PDC 为直角三角形, ∴S △PDC =12×1×2=22.连接EP ,EC ,易知V E -PDC =V C -PDE ,设E 到平面PDC 的距离为h , ∵CD ⊥AD ,CD ⊥PA ,AD ∩PA =A ,∴CD ⊥平面PAD , 则13×h ×22=13×1×12×12×1,∴h =24, ∴点F 到平面PDC 的距离为24. 角度2 直线与平面平行性质定理的应用【例2-2】 (2018·某某模拟)如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为2,E ,F 分别是棱DD 1,C 1D 1的中点.(1)求三棱锥B 1-A 1BE 的体积;(2)试判断直线B 1F 与平面A 1BE 是否平行,如果平行,请在平面A 1BE 上作出与B 1F 平行的直线,并说明理由. 【答案】见解析【解析】(1)如图所示,V B 1-A 1BE =V E -A 1B 1B =13S △A 1B 1B · DA =13×12×2×2×2=43.(2)B 1F ∥平面A 1BE .延长A 1E 交AD 延长线于点H ,连BH 交CD 于点G ,则BG 就是所求直线.证明如下: 因为BA 1∥平面CDD 1C 1,平面A 1BH ∩平面CDD 1C 1=GE ,所以A 1B ∥GE . 又A 1B ∥CD 1,所以GE ∥CD 1.又E 为DD 1的中点,则G 为CD 的中点. 故BG ∥B 1F ,BG 就是所求直线.【规律方法】 1.利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反.【训练2】 (2017·某某卷)如图,在三棱锥A -BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC . 【答案】见解析【解析】证明 (1)在平面ABD 内,AB⊥AD,EF⊥AD, 则AB∥EF.∵AB ⊂平面ABC ,EF ⊄平面ABC ,∴EF∥平面ABC.(2)∵BC⊥BD,平面ABD∩平面BCD=BD,平面ABD⊥平面BCD,BC⊂平面BCD,∴BC⊥平面ABD.∵AD⊂平面ABD,∴BC⊥AD.又AB⊥AD,BC,AB⊂平面ABC,BC∩AB=B,∴AD⊥平面ABC,又因为AC⊂平面ABC,∴AD⊥AC.考点三面面平行的判定与性质【例3】 (经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.【答案】见解析【解析】证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,则GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1平行且等于AB,∴A1G平行且等于EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【迁移探究1】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.【答案】见解析【解析】证明 如图所示,连接A 1C 交AC 1于点M , ∵四边形A 1ACC 1是平行四边形, ∴M 是A 1C 的中点,连接MD , ∵D 为BC 的中点, ∴A 1B∥DM. ∵A 1B ⊂平面A 1BD 1, DM ⊄平面A 1BD 1, ∴DM∥平面A 1BD 1,又由三棱柱的性质知,D 1C 1平行且等于BD , ∴四边形BDC 1D 1为平行四边形, ∴DC 1∥BD 1.又DC 1⊄平面A 1BD 1,BD 1⊂平面A1BD1, ∴DC 1∥平面A 1BD 1,又DC 1∩DM=D ,DC 1,DM ⊂平面AC1D , 因此平面A 1BD 1∥平面AC 1D .【迁移探究2】 在本例中,若将条件“E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点”变为“点D ,D 1分别是AC ,A 1C 1上的点,且平面BC 1D ∥平面AB 1D 1”,试求AD DC的值. 【答案】见解析【解析】连接A 1B 交AB 1于O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O ,所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB=1.又由题设A 1D 1D 1C 1=DC AD, ∴DC AD =1,即ADDC=1. 【规律方法】 1.判定面面平行的主要方法 (1)利用面面平行的判定定理.(2)线面垂直的性质(垂直于同一直线的两平面平行). 2.面面平行条件的应用(1)两平面平行,分析构造与之相交的第三个平面,交线平行. (2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.【提醒】 利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线. 【训练3】 (2019·某某二模)如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥CD ,AB ⊥AD ,AB =2CD =2AD =4,侧面PAB 是等腰直角三角形,PA =PB ,平面PAB ⊥平面ABCD ,点E ,F 分别是棱AB ,PB 上的点,平面CEF ∥平面PAD .(1)确定点E ,F 的位置,并说明理由; (2)求三棱锥F -DCE 的体积. 【答案】见解析【解析】(1)因为平面CEF ∥平面PAD ,平面CEF ∩平面ABCD =CE , 平面PAD ∩平面ABCD =AD , 所以CE ∥AD ,又AB ∥DC , 所以四边形AECD 是平行四边形, 所以DC =AE =12AB ,即点E 是AB 的中点.因为平面CEF ∥平面PAD ,平面CEF ∩平面PAB =EF ,平面PAD ∩平面PAB =PA , 所以EF ∥PA ,又点E 是AB 的中点, 所以点F 是PB 的中点.综上,E ,F 分别是AB ,PB 的中点.(2)连接PE ,由题意及(1)知PA =PB ,AE =EB ,所以PE ⊥AB ,又平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,所以PE ⊥平面ABCD . 又AB ∥CD ,AB ⊥AD ,所以V F -DEC =12V P -DEC =16S △DEC ×PE =16×12×2×2×2=23. 【反思与感悟】1.转化思想:三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.【易错防X 】1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.4.运用性质定理,要遵从由“高维”到“低维”,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.若直线l 不平行于平面α,且l ⊄α,则( )A.α内的所有直线与l 异面B.α内不存在与l 平行的直线C.α与直线l 至少有两个公共点D.α内的直线与l 都相交【答案】 B【解析】 因为l ⊄α,直线l 不平行于平面α,所以直线l 只能与平面α相交,于是直线l 与平面α只有一个公共点,所以平面α内不存在与l 平行的直线.2.(2019·某某双基测试)已知直线l ,m ,平面α,β,γ,则下列条件能推出l∥m 的是( )A.l ⊂α,m ⊂β,α∥β B .α∥β,α∩γ=l ,β∩γ=mC.l∥α,m⊂αD.l⊂α,α∩β=m【答案】 B【解析】选项A中,直线l,m也可能异面;选项B中,根据面面平行的性质定理,可推出l∥m,B正确;选项C中,直线l,m也可能异面;选项D中,直线l,m也可能相交.故选B.3.(2018·长郡中学质检)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB 的位置关系是( )A.异面B.平行C.相交D.以上均有可能【答案】 B【解析】在三棱柱ABC-A1B1C1中,AB∥A1B1,∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB.4.(2018·某某六校联考)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α【答案】 D【解析】对于选项A,若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a,使得a∥α,a∥β,所以选项A的内容是α∥β的一个必要条件;同理,选项B、C的内容也是α∥β的一个必要条件而不是充分条件;对于选项D,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件.故选D.5.(2019·某某模拟)若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( )A.0条B.1条C.2条D.1条或2条【答案】 C【解析】如图所示,四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH.∴CD∥平面EFGH,同理,AB∥平面EFGH,所以与平面α(面EFGH)平行的棱有2条.二、填空题6.(2018·某某模拟)如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=________.【答案】 2【解析】根据题意,因为EF∥平面AB1C,所以EF∥AC.又E是AD的中点,所以F是CD的中点.因为在Rt△DEF中,DE=DF=1,故EF= 2.7.如图,平面α∥平面β,△ABC,△A′B′C′分别在α,β内,线段AA′,BB′,CC′共点于O,O在α,β之间,若AB=2,AC=1,∠BAC=60°,OA∶OA′=3∶2,则△A′B′C′的面积为________.【答案】23 9【解析】相交直线AA′,BB′所在平面和两平行平面α,β相交于AB,A′B′,所以AB∥A′B′.同理BC∥B′C′,CA∥C′A′.所以△ABC与△A′B′C′的三内角相等,所以△ABC∽△A′B′C′,A′B′AB=OA ′OA =23.S △ABC =12×2×1×32=32,所以S △A ′B ′C ′=32×⎝ ⎛⎭⎪⎫232=32×49=239. 8.(2019·某某调研)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊂α,n ∥α,则m ∥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ;③若α∩β=n ,m ∥n ,m ∥α,则m ∥β;④若m ∥α,n ∥β,m ∥n ,则α∥β.其中是真命题的是________(填上正确命题的序号).【答案】 ②【解析】①m ∥n 或m ,n 异面,故①错误;易知②正确;③m ∥β或m ⊂β,故③错误;④α∥β或α与β相交,故④错误.三、解答题9.(2019·某某模拟)已知四棱锥P -ABCD 的底面ABCD 是平行四边形,侧面PAB ⊥平面ABCD ,E 是棱PA 的中点.(1)求证:PC ∥平面BDE ;(2)平面BDE 分此棱锥为两部分,求这两部分的体积比.【答案】见解析【解析】(1)证明 在平行四边形ABCD 中,连接AC ,设AC ,BD 的交点为O ,则O 是AC 的中点. 又E 是PA 的中点,连接EO ,则EO 是△PAC 的中位线,所以PC∥EO,又EO ⊂平面EBD ,PC ⊄平面EBD ,所以PC∥平面EBD.(2)解 设三棱锥E -ABD 的体积为V 1,高为h ,四棱锥P -ABCD 的体积为V ,则三棱锥E -ABD 的体积V 1=13×S △ABD ×h , 因为E 是PA 的中点,所以四棱锥P -ABCD 的高为2h ,所以四棱锥P -ABCD 的体积V =13×S 四边形ABCD ×2h =4×13S △ABD ×h =4V 1, 所以(V -V 1)∶V 1=3∶1,所以平面BDE 分此棱锥得到的两部分的体积比为3∶1或1∶3.10.如图,ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.【答案】见解析【解析】证明(1)连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.【能力提升题组】(建议用时:20分钟)11.(2019·某某模拟)过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有( )A.4条B.6条C.8条D.12条【答案】 B【解析】如图,H,G,F,I是相应线段的中点,故符合条件的直线只能出现在平面HGFI中,有FI,FG,GH,HI,HF,GI共6条直线.12.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【答案】 D【解析】A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故D项正确.13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.【答案】Q为CC1的中点【解析】如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,所以平面D1BQ∥平面PAO.故Q为CC1的中点时,有平面D1BQ∥平面PAO.14.(2018·某某六市三模)已知空间几何体ABCDE中,△BCD与△CDE均是边长为2的等边三角形,△ABC是腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积.【答案】见解析【解析】(1)如图所示,取DC的中点N,取BD的中点M,连接MN,则MN即为所求.证明:连接EM,EN,取BC的中点H,连接AH,∵△AB C是腰长为3的等腰三角形,H为BC的中点,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH⊂平面ABC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN∥AH,∵EN⊄平面ABC,AH⊂平面ABC,∴EN∥平面ABC.又M,N分别为BD,DC的中点,∴MN∥BC,∵MN⊄平面ABC,BC⊂平面ABC,∴MN∥平面ABC.又MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,∴平面EMN∥平面ABC,又EF⊂平面EMN,∴EF∥平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行.(2)连接DH,取CH的中点G,连接NG,则NG∥DH,由(1)可知EN∥平面ABC,∴点E到平面ABC的距离与点N到平面ABC的距离相等,又△BCD 是边长为2的等边三角形, ∴DH⊥BC, 又平面ABC⊥平面BCD ,平面ABC∩平面BCD =BC ,DH ⊂平面BCD ,∴DH ⊥平面ABC ,∴NG ⊥平面ABC ,易知DH =3,又N 为CD 中点,∴NG =32, 又AC =AB =3,BC =2,∴S △ABC =12·BC ·AH =12×2×32-12=22, ∴V E -ABC =V N -ABC =13·S △ABC ·NG =63. 【新高考创新预测】15.(【答案】不唯一型)如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件________时,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)【答案】 点M 在线段FH 上(或点M 与点H 重合)【解析】 连接HN ,FH ,FN ,则FH∥DD 1,HN∥BD,易知平面FHN∥平面B1BDD 1,只需M∈FH,则MN ⊂平面FHN ,∴MN∥平面B 1BDD 1.。
2019年高考数学一轮总复习第七章立体几何 7.3 空间点、线、面之间的位置关系课时跟踪检测理[课时跟踪检测][基础达标]1.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF 的位置关系是( )A.相交B.异面C.平行D.垂直解析:由BC綊AD,AD綊A1D1知,BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,则A1B与EF相交.答案:A2.下列命题中,真命题的个数为( )①如果两个平面有三个不在一条直线上的公共点,那么这两个平面重合;②两条直线可以确定一个平面;③空间中,相交于同一点的三条直线在同一平面内;④若M∈α,M∈β,α∩β=l,则M∈l.A.1 B.2C.3 D.4解析:根据公理2,可判断①是真命题;两条异面直线不能确定一个平面,故②是假命题;在空间,相交于同一点的三条直线不一定共面(如墙角),故③是假命题;根据平面的性质可知④是真命题.综上,真命题的个数为2.答案:B3.已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC 和BD不相交,则甲是乙成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若A,B,C,D四点不共面,则直线AC和BD不共面,所以AC和BD不相交;若直线AC和BD不相交,但直线AC和BD平行时,A,B,C,D四点共面,所以甲是乙成立的充分不必要条件.答案:A4.已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1,A 1C 1的中点,则异面直线AE 和CF 所成的角的余弦值为( )A.32 B .33010C.3010D .12解析:如图,设正方体的棱长为a ,取线段AB 的中点M ,连接CM ,MF ,EF .则MF 綊AE ,所以∠CFM 即为所求角或所求角的补角,在△CFM 中,MF =CM =52a ,CF =62a ,根据余弦定理可得cos ∠CFM =3010,所以异面直线AE 与CF 所成的角的余弦值为3010.故选C.答案:C5.在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3解析:△ABC 的内切圆的半径r =6+8-102=2,又因为AA 1=3<4,所以在三棱柱中体积最大的球的半径为32,此时V =43π×⎝ ⎛⎭⎪⎫323=92π.答案:B6.(2017届郑州模拟)如图所示,ABCD -A 1B 1C 1D 1是正方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,则下列结论正确的是( )A .A ,M ,O 三点共线B .A ,M ,O ,A 1不共面C.A,M,C,O不共面D.B,B1,O,M共面解析:连接A1C1,AC(图略),则A1C1∥AC,所以A1,C1,A,C四点共面,所以A1C⊂平面ACC1A1.因为M∈A1C,所以M∈平面ACC1A1.又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理A,O在平面ACC1A1与平面AB1D1的交线上.所以A,M,O三点共线.答案:A7.(2018届福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α、b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是________(写出所有正确命题的序号).解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.答案:①8.如图所示,在正三棱柱ABC-A1B1C1中,D是AC的中点,AA1∶AB=2∶1,则异面直线AB1与BD所成的角为________.解析:如图,取A1C1的中点D1,连接B1D1,因为点D是AC的中点,所以B1D1∥BD,所以∠AB1D1即为异面直线AB1与BD所成的角.连接AD1,设AB=a,则AA1=2a,所以AB 1=3a ,B 1D 1=32a , AD 1=14a 2+2a 2=32a . 所以,在△AB 1D 1中,由余弦定理得,cos ∠AB 1D 1=AB 21+B 1D 21-AD212AB 1·B 1D 1=3a 2+34a 2-94a22×3a ×32a=12,所以∠AB 1D 1=60°. 答案:60°9.如图,已知圆柱的轴截面ABB 1A 1是正方形,C 是圆柱下底面弧AB 的中点,C 1是圆柱上底面弧A 1B 1的中点,那么异面直线AC 1与BC 所成角的正切值为________.解析:取圆柱下底面弧AB 的另一中点D ,连接C 1D ,AD , 因为C 是圆柱下底面弧AB 的中点,所以AD ∥BC ,所以直线AC 1与AD 所成角等于异面直线AC 1与BC 所成角,因为C 1是圆柱上底面弧A 1B 1的中点,所以C 1D ⊥圆柱下底面,所以C 1D ⊥AD , 因为圆柱的轴截面ABB 1A 1是正方形, 所以C 1D =2AD ,所以直线AC 1与AD 所成角的正切值为2, 所以异面直线AC 1与BC 所成角的正切值为 2. 答案: 210.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD=∠FAB =90°,BC 綊12AD ,BE 綊12FA ,G ,H 分别为FA ,FD 的中点.(1)求证:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么? 解:(1)证明:由题设知,FG =GA ,FH =HD , 所以GH 綊12AD .又BC 綊12AD .故GH 綊BC .所以四边形BCHG 是平行四边形. (2)C ,D ,F ,E 四点共面. 理由如下:由BE 綊12FA ,G 是FA 的中点,知BE 綊GF ,所以EF 綊BG . 由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面, 又点D 在直线FH 上, 所以C ,D ,F ,E 四点共面.[能 力 提 升]1.如图是三棱锥D -ABC 的三视图,点O 在三个视图中都是所在边的中点,则异面直线DO 和AB 所成角的余弦值等于( )A.33B .12 C. 3D .22解析:由三视图及题意得如图所示的直观图,从A 出发的三条线段AB ,AC ,AD 两两垂直且AB =AC =2,AD =1,O 是BC 中点,取AC 中点E ,连接DE ,DO ,OE ,则OE =1,又可知AE =1,由于OE ∥AB ,故∠DOE 或其补角即为所求两异面直线所成的角.在直角三角形DAE中,DE =2,由于O 是中点,在直角三角形ABC 中可以求得AO =2,在直角三角形DAO 中可以求得DO = 3.在三角形DOE 中,由余弦定理得cos ∠DOE =1+3-22×1×3=33,故所求余弦值为33.答案:A2.在正四棱锥P -ABCD 中,PA =2,直线PA 与平面ABCD 所成角为60°,E 为PC 的中点,求异面直线PA 与BE 所成角.解:连接AC ,BD 相交于O ,连接PO ,在正四棱锥P -ABCD 中,PO ⊥面ABCD ,故∠PAO =60°,O 为AC 、BD 中点,连接OE ,则OE ∥PA ,则∠OEB (或其补角)为异面直线PA 与BE 所成角, 在△OBE 中,OE =1,OB =1,BE =2,∴cos ∠OEB =1+2-12×1×2=22,∴∠OEB =45°.故异面直线PA 与BE 所成角为45°.3.如图所示,三棱柱ABC -A 1B 1C 1,底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解:(1)解法一:如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为侧棱A 1A ⊥底面ABC , 所以侧面A 1ACC 1⊥底面ABC . 又因为EC =2FB =2,所以OM ∥FB ∥EC 且OM =12EC =FB .所以四边形OMBF 为矩形,BM ∥OF . 因为OF ⊂平面AEF ,BM ⊄平面AEF , 故BM ∥平面AEF ,此时点M 为AC 的中点.解法二:如图所示,取EC 的中点P ,AC 的中点Q .连接PQ ,PB ,BQ . 因为EC =2FB =2,所以PE 綊BF ,所以PQ ∥AE ,PB ∥EF ,所以PQ ∥平面AFE ,PB ∥平面AEF , 因为PB ∩PQ =P ,PB ,PQ ⊂平面PBQ , 所以平面PBQ ∥平面AEF . 又因为BQ ⊂平面PBQ , 所以BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )或其补角就是异面直线BM 与EF 所成的角. 易求AF =EF =5,MB =OF =3,OF ⊥AE , 所以cos ∠OFE =OFEF=35=155, 所以BM 与EF 所成的角的余弦值为155.。