武昌区2013届高三五月供题训练(理数定稿)
- 格式:doc
- 大小:746.00 KB
- 文档页数:11
武昌区2013届高三年级五月供题训练理科综合试卷本卷分第Ⅰ卷(选择题)和第Ⅱ卷(必考题和选考题)两部分,第Ⅰ卷1至6页,第Ⅱ卷6至18页。
本卷共18页。
注意事项:1.答题前,考生务必将自己的学校、班级、姓名、准考证号填写在答题卷指定位置,认真核对与准考证号条形码上的信息是否一致,并将准考证号条形码粘贴在答题卷上的指定位置。
2.第Ⅰ卷的作答:选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
3.第Ⅱ卷的作答:用黑色墨水的签字笔直接答在答题卷上的每题所对应的答题区域内。
答在试题卷上或答题卷指定区域外无效。
4.选考题的作答:先把所选题目的题号在答题卡指定位置用2B铅笔涂黑。
考生应根据自己选做的题目准确填涂题号,不得多选。
答题答在答题卡对应的答题区域内,答在试题卷、草稿纸上无效。
5.考试结束,监考人员将答题卷收回,考生自己保管好试题卷,评讲时带来。
第Ⅰ卷(选择题共126分)本卷共21小题,每小题6分,共126分。
以下数据可供解题时参考:可能用到的相对原子质量H 1 C 12 O 16 Na 23 P 31 S 32 Cl 35.5 Cu 64 Ba 137一、选择题:本大题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列有关细胞中化合物的叙述,正确的是A.核酸、酶、果糖、脂肪都含有C、H、O、N四种元素B.ATP中的“T”代表胸腺嘧啶C.磷脂参与构成的细胞器有线粒体、核糖体等D.DNA分子的特异性主要取决于碱基的排列顺序2.植物激素中的赤霉素与生长素都能促进植株茎秆伸长,根据右图中信息并结合相关知识进行分析,下列说法错误的是A.赤霉素和生长素都是植物细胞合成的微量有机物B.图中赤霉素对①过程起抑制作用,对②过程起促进作用C.由图可知植物的生长是多种激素相互作用、共同调节的结果D.生长素促进胚芽鞘生长的作用部位不在尖端3.细胞增殖过程中DNA的含量会发生变化。
湖北省武汉市武昌区2013届高三年级五月供题训练语文试卷本试卷共8页,六大题23小题。
本试卷共150分,考试用时150分钟。
★祝考试顺利★注意事项:1.答题前,考生务必将自己的学校、班级、姓名、准考证号填写在答题卷指定位置,认真核对与准考证号条形码上的信息是否一致,并将准考证号条形码粘贴在答题卷上的指定位置,用统一提供的2B铅笔将试卷类型A或B后方框涂黑。
2.选择题的作答:选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
3.非选择题的作答:用黑色墨水的签字笔直接答在答题卷上的每题所对应的答题区域内。
答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁,考试结束,监考人员将答题卡和试题卷一并收回。
一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中加点的字,读音全都相同的一组是A.聆.听凌.空模棱.两可高屋建瓴. B.觊觎.谄谀.尔虞.我诈矢志不渝.C.浸.渍陷阱.疾风劲.草泾.渭分明 D.针灸.内疚.鸠.占鹊巢咎.由自取2.下列词语中,没有错别字的一组是A.迤逦蟊贼披肝沥胆削足适履 B.辐射落寞心无旁骛攻城掠地C.冠冕膨胀殒身不恤锐不可挡 D.颓圮惦量指手划脚甘拜下风3.依次填入下列横线处的词语,最恰当的一组是电影本是一种世界语言,如今一种世界产业;李安的《少年派的奇幻漂流》,印度的角色、台湾的场景、美国的资本,始能成就这一部国际级的佳作,可谓。
反观“绿委”要求废金马奖的口水风波,套用一句鲁迅的话,这种“躲进小楼成一统,管他春夏与秋冬”的心态,非但不足成事,反而会使台湾更显。
金马奖没问题,有问题的是的“立委”! A.应是水桶当喇叭---大吹委琐墨守成规B.还是二更棒子打两下---没错萎缩固步自封C.更是厕所里传消息---丑闻萎谢抱残守缺D.便是二八娇妻一岁郞---荒唐萎靡亦步亦趋4.下列各句中,没有语病的一句是A.据报道,从4月30日至5月15日期间,全国共发生道路交通事故68422起,涉及人员伤亡的道路交通事故2164起,造成794人死亡、2473人受伤。
武昌区2013届高三年级五月供题训练 理 科 综 合 试 卷 参 考 答 案22、(6分)(1)作图(4分,每个2分)(2)在误差允许的范围内(1分);两个(共点)力的合成(或“力的合成”) (1分) 23、(9分)(1)黑(1分);红(1分);8V (2分);160Ω(2分) 0.05(2分) (2)变小(1分)24、解:(1)若小球能过D 点,则D 点速度满足Rv m mg D2≤ 即gR v D ≥ (1)从A 到D 对小球由机械能守恒得222121D A mv mgR mv += ........................【2】 联立【1】【2】解得gR v A 3≥ (3)(【1】【2】【3】共2分)若小球能过H 点,则H 点速度满足0H ≥v ……………………………………【4】 从A 到H 对小球由机械能守恒得2221)2(21H A mv R mg mv += ………………【5】 联立【4】【5】解得gR v A 2≥ …………………………………………………【6】 (【4】【5】【6】共2分)小球要能沿环形轨道运行一周,必需都能通过D 点和H 点 比较【3】【6】得gR v A 2≥ (2分) 即:A 点出发时速度v A 至少为gR v A 2=(2)小球在运动过程中,轨道给小球的弹力最大的点只会在圆轨道的最低点,B 点和F 点都有可能从A 到B 对小球由机械能守恒得2221)4(21B A mv R mg v m +-=' ………………………【7】 在B 点轨道给小球的弹力N B 满足Rv m mg N 42BB =- (8)将gR v A 6=代入联立【7】【8】解得mg N 29B = (9)(【7】【8】【9】共3分) 从A 到F 对小球由机械能守恒得2F22121mv mgR v m A +-='………………………………【10】 在F 点轨道给小球的弹力N F 满足Rv m mg N 2FF =- (11)将gR v A 6=带入联立【11】【12】解得mg N 9F = (12)(【10】【11】【12】共3分)比较【9】【12】得F 点处轨道给小球的弹力最大,最大值是9mg (2分) 25.(1)设粒子A 速率为v 0 ,其轨迹圆圆心在O 点,故A 运动至D 点时速度与y 轴垂直, 粒子A 从D 至G 作类平抛运动,令其加速度为a ,在电场中运行的时间为t 则有⎪⎩⎪⎨⎧====t v x at R y 02OG 21…………【1和 0045tan v at v v x y ==………【2联立【1】【2】解得2145tan 212100==⋅=v at x y 故R 2OG =…………………【3【1】【2】【3】式共5分(2)粒子A 的轨迹圆半径为R ,由R v m B qv 200= 得mqBR v =0 (4)mEqa =………………………………………………………………………………………【5】 联立【1】【3】【5】得20)2(21v R m Eq R ⋅⋅= …………………………………………………【6】 解得mqRB E 22= (7)(【4】【5】【6】【7】式共6分)(3)令粒子A′ 轨迹圆圆心为O′ ,因为∠O′CA′ = 90°,O′C = R ,以O′为圆心,R 为半径做A′ 的轨迹圆交圆形磁场O 1于H 点,则四边形CO′H O 1 为菱形,故O′H ∥y 轴,粒子A′从磁场中出来交y 轴于I 点,HI ⊥O′H ,所以粒子A′也是垂直于y 轴进入电场的。
湖北省武汉市2013届高三5月供题训练理科综合试卷14. 一个质点运动的速度时间图象如图甲所示,任意很短时间内质点的运动可以近似视为匀速运动,该时间内质点的位移即为条形阴影区域的面积,经过累积,图线与坐标轴围成的面积即为质点在相应时间内的位移。
利用这种微元累积法我们可以研究许多物理问题,图乙是某物理量随时间变化的图象,此图线与坐标轴所围成的面积,下列说法中不正确的是A. 如果Y轴表示加速度,则面积等于质点在相应时间内的速度变化B. 如果Y轴表示力做功的功率,则面积等于该力在相应时间内所做的功C. 如果Y轴表示流过用电器的电流,则面积等于在相应时间内流过该用电器的电量D. 如果y轴表示变化磁场在金属线圈产生的电动势,则面积等于该磁场在相应时间内磁感应强度的变化量15. 北京时间2012年10月,我国第16颗北斗导航卫星发射成功,它是一颗地球静止轨道卫星(即地球同步卫星),现已与先期发射的15颗北斗导航卫星组网运行并形成区域服务能力。
在这16颗北斗导航卫星中,有多颗地球静止轨道卫星,下列关于地球静止轨道卫星的说法中正确的是A. 它们的运行速度都小于7.9km/sB. 它们运行周期的大小可能不同C. 它们离地心的距离可能不同D. 它们的向心加速度小于静止在赤道上物体的向心加速度16. 如图所示,固定在水平地面上的物体A,左侧是圆弧面,右侧是倾角为θ的斜面,一根轻绳跨过物体A顶点上的小滑轮,绳两端分别系有质量为m1、m2的小球,当两球静止时,小球m1与圆心连线跟水平方向的夹角也为θ,不计一切摩擦,则m1、m2之间的关系是= m2tanθA. mB. m1=m2cotθC. m1=m2cosθD. m1=m217. 下图为某款电吹风的电路图,a、b、c、d为四个固定触点。
可动的扇形金属触片P可同时接触两个触点。
触片P处于不同位置时,电吹风可处于停机、吹热风和吹冷风等不同的工作状态。
n1和n2分别是理想变压器的两个线圈的匝数。
湖北省2013届高三最新理科数学(精选试题16套+2008-2012五年湖北高考理科试题)分类汇编8:解析几何一、选择题1 .(湖北省八校2013届高三第二次联考数学(理)试题)已知双曲线22221(0,0)-=>>x y a b a b右支上的一点00(,)P x y 到左焦点距离与到右焦点的距离之差为,且到两条渐近线的距离之积为23,则双曲线的离心率为( ) ( )A B C D 【答案】D2 .(湖北省武汉市2013届高三5月供题训练数学理试题(二)(word 版) )如图,F 1,F 2是双曲线C:)0(12222>>=+b a by a x l 的左、右焦点,过F 1的直线与C 的左、右两支分别交于A,B 两点.若 |AB|:|BF 2|:|AF 2|=3:4:5,则双曲线的离心率为( )A .13B .15C .2D .3【答案】A3 .(湖北省八市2013届高三3月联考数学(理)试题)抛物线24y x =的焦点为F ,点,A B 在抛物线上,且2π3AFB ∠=,弦AB 中点M 在准线l 上的射影为||||,AB M M M ''则的最大值为( )AB C D【答案】B4 .(湖北省黄梅一中2013届高三下学期综合适应训练(四)数学(理)试题 )我国发射的“神舟3号”宇宙飞船的运行轨道是以地球的中心2F 为一个焦点的椭圆,近地点A 距地面为m 千米,远地点B 距地面为n 千米,地球半径为R 千米,则飞船运行轨道的短轴长为( ) A .))((2R n R m ++ B .))((R n R m ++C.mnD .2mn【答案】A5 .(湖北省浠水一中2013届高三理科数学模拟测试 )已知椭圆12222=+by a x (a>b>0)的左右焦点分别为F 1,F 2.P 是椭圆上一点.∆PF 1F 2为以F 2P 为底边的等腰三角形,当60°<∠PF 1F 2<120°,则该椭圆的离心率的取值范围是 ( ) A .(1,213-) B .(21,213-) C .(1,21) D .(021,) 【答案】B .解析:由c PF 21=,2sin22112F PF PF PF ∠=,a PF PF 221=+ 可得 c c a F PF 22sin 21-=∠,由⎪⎪⎭⎫ ⎝⎛∈∠23,2121F PF 得⎪⎪⎭⎫ ⎝⎛∈∠23,212sin 21F PF 故⎪⎪⎭⎫ ⎝⎛-∈21,213a c 6 .(2011年全国高考理科数学试题及答案-湖北)将两个顶点在抛物线22(0)ypx p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n,则( )A .n=0B .n=1C .n=2D .n ≥3【答案】C7 .(2008年普通高等学校招生全国统一考试理科数学试题及答案-湖北卷)过点A(11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有( )A .16条B .17条C .32条D .34条【答案】C8 .(湖北省黄冈市2013届高三数学(理科)综合训练题 )抛物线28y x =的焦点为F ,O 为坐标原点,若抛物线上一点P满足||:||:2,PF PO POF =∆则的面积为( )A.B.C.D.【答案】C9 .(湖北省武汉市2013届高三5月模拟考试数学(理)试题)如图,P 为椭圆221259x y +=上第一象限内的任意一点,过椭圆的右顶点A,上顶点B 分别作y 轴,x 轴的平行线,它们相交于点C,过P 引BC .AC 的平行线交AC 于N,交BC 于M,交AB 于D .E,记矩形PMCN 的面积为1S ,三角形PDE 的面积为2S ,则12:S S =( )A .1B .2C .12D .与点P 的坐标有关【答案】A10.(湖北省武汉市2013届高三第二次(4月)调研考试数学(理)试题)如右下图,正三角形PA D 所在平面与正方形ABCD 所在平面互相垂直O 为正方形AB- CD 的中心,M 为正方形ABCD 内一点,且满足MP =MB ,则点M 的轨迹为【答案】B11.(湖北省天门市2013届高三模拟测试(一)数学理试题 )双曲线22221y x a b-=与抛物线218y x =有一个公共焦点F,双曲线上过点F 则双曲线的离心率等于 ( )A .2B C D【答案】B12.(湖北省武汉市2013届高三5月供题训练数学理试题(三)(word 版) )过抛物线y 2= 4x 的焦点F 的直线交抛物线于A,B 两点,点O 是原点,若|AF| = 3,则 ΔAOB 的面积为 ( )A .22B . 2C . 223D .22【答案】C13.(2010年高考(湖北理))若直线b x y +=与曲线243x x y --=有公共点,则b 的取值范围是( )A .]221,1[+-B .]221,221[+-C .[1-D .]3,21[-【答案】C .【解析】曲线方程可化简为22(2)(3)4(13)x y y -+-=≤≤,即表示圆心为(2,3)半径为2的半圆,依据数形结合,当直线y x b =+与此半圆相切时须满足圆心(2,3)到直线y=x+b 距离等于2,解得11b b =+=-,因为是下半圆故可得1b =+(舍),当直线过(0,3)时,解得b=3,故13,b -≤≤所以C 正确.14.(湖北省黄梅一中2013届高三下学期综合适应训练(四)数学(理)试题 )若直线4x -3y -2=0与圆01242222=-++-+a y ax y x 有两个不同的公共点,则实数a 的取值范围是( )A .-3<a <7B .-6<a <4C .-7<a <3D .-21<a <19【答案】B15.(2009高考(湖北理))已知双曲线22122x y -=的准线过椭圆22214x y b+=的焦点,则直线2y kx =+与椭圆至多有一个交点的充要条件是 ( )A .11,22K ⎡⎤∈-⎢⎥⎣⎦ B .11,,22K ⎛⎤⎡⎫∈-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭C .K ⎡∈⎢⎣D .2,,K ⎛⎡⎫∈-∞+∞ ⎪⎢ ⎪⎝⎭【答案】A .【解析】易得准线方程是2212a xb =±=±=±所以222241c a b b =-=-= 即23b =所以方程是22143x y += 联立 2 y kx =+可得22 3+(4k +16k)40x x +=由0∆≤可解得A16.(湖北省八校2013届高三第二次联考数学(理)试题)定义:平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度相同)称为平面斜坐标系.在平面斜坐标系xOy 中,若12OP xe ye =+(其中12,e e 分别是斜坐标系x 轴,y 轴正方向上的单位向量,,,x y R O ∈为坐标系原点),则有序数对(),x y 称为点P 的斜坐标.在平面斜坐标系xOy 中,若120,xOy ∠=点C 的斜坐标为()2,3,则以点C 为圆心,2为半径的圆在斜坐标系xOy 中的方程是 ( )A .096422=+--+y x y x B .096422=++++y x y x C .03422=+---+xy y x y xD .034.22=+++++xy y x y x【答案】C17.(湖北省武汉市2013届高三第二次(4月)调研考试数学(理)试题)已知抛物线M:y 2=4X ,圆N(x-1)2+y 2=r 2(其中r 为常数,r>0).过点(1,0)的直 线l交圆N 于C,D 两点,交抛物线财于( ) A .B两点,若满足丨AC 丨=|BD 丨的直线l 有三 条,则( )A .1,0(∈r 23,1(∈r 2,23(∈r ),0(+∞∈r【答案】D18.(湖北省黄冈市2013届高三3月份质量检测数学(理)试题)已知O 为坐标原点,双曲线22221x y a b -=(0,0)a b >>的右焦点F,以OF 为直径作圆交双曲线的渐近线于异于原点的两点( ) A .B,若()0AO AF OF +⋅=,则双曲线的离心率e 为 ( )A .2B .3CD【答案】C19.(湖北省黄冈中学2013届高三第一次模拟考试数学(理)试题)已知双曲线的焦距为,焦点到一条渐,则双曲线的标准方程为( )A .2212y x -=B .2212x y -=C .2212y x -=或2212x y -=D .2212x y -=或2212y x -=【答案】答案:C解析:由题易知2c b ==,故1a =,这样的双曲线标准方程有两个.20.(湖北省七市2013届高三4月联考数学(理)试题)已知直线l:y=ax+1-a(a∈R).若存在实数a 使得一条曲线与直线l 有两个不同的交点,且以这两个交点为端点的线段长度恰好等于|a|,则称此曲线为直线l 的“绝对曲线”.下面给出四条曲线方程:①y=-2 |x-1|;②y=2x ;③(x -1)2+(y-1)2=1;④x 2+3y 2=4;则其中直线l 的“绝对曲线”有 ( )A .①④B .②③C .②④D .②③④【答案】D21.(湖北省黄梅一中2013届高三下学期综合适应训练(四)数学(理)试题 )直线1l :kx +(1-k )y -3=0和2l :(k -1)x +(2k +3)y -2=0互相垂直,则k =( )A .-3或-1B .3或1C .-3或1D .-1或3【答案】C22.(2008年普通高等学校招生全国统一考试理科数学试题及答案-湖北卷)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①a 1+c 1=a 2+c 2; ②a 1-c 1=a 2-c 2; ③c 1a 2>a 1c 2; ④11a c <22c a .其中正确式子的序号是 ( )A .①③B .②③C .①④D .②④【答案】B23.(湖北省黄冈市2013届高三4月调研考试数学(理)试题)已知直线x=2与双曲线14:22=-y y C 的渐近线交于E 1、E 2两点,记2211,e OE e OE ==,任取双曲线C 上的点P,若),(21R b a be ae OP ∈+=,则( )A .1022<+<b a B .21022<+<b a C .122≥+b aD .2122≥+b a 【答案】D24.(湖北省襄阳市2013届高三3月调研考试数学(理)试题)则该双曲线的离心率为( )A B .2C 【答案】C 二、填空题25.(湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)抛物线=2px(p>0)的焦点为F,过F的直线与抛物线交于A 、B 两点,抛物线的准线与x 轴交于点K,则(1)以AB 为直径的圆与抛物线准线的位置关系为____(填“相交”、“相切”或“相离”);(2)△KAB 的面积的最小值为_________.【答案】(1)相切;(2)2p .26.(湖北省黄冈市2013届高三3月份质量检测数学(理)试题)已知椭圆22221(0),(,),(,)x y a b P x y Q x y a b''+=>>是椭圆上两点,有下列三个不等式①222();a b x y +≥+②2221111();x y a b+≥+③221xx yy a b ''+≤.其中不等式恒成立的序号是______.(填所有正确命题的序号)【答案】①②③27.(湖北省黄梅一中2013届高三下学期综合适应训练(四)数学(理)试题 )过双曲线2222x y a b-=1(a >0,b >0)的左焦点F,作圆2224a x y +=的切线,切点为E ,延长FE 交双曲线右支于点P ,若E 为PF 的中点,则双曲线的离心率为________. .【答案】粘贴有误,原因可能为题目为公式编辑器内容,而没有其它字符28.(湖北省七市2013届高三4月联考数学(理)试题)已知抛物线y 2=4x 的焦点为F,过点P(2,0)的直线交抛物线于A(x 1,y 1)和B(x 2,y 2)两点.则:(I) y 1 y 2=______;(Ⅱ)三角形ABF 面积的最小值是______.【答案】(Ⅰ)8-(Ⅱ)29.(2012年湖北高考试题(理数,word 解析版))如图,双曲线2222 1 (,0)x y a b a b-=>的两顶点为1A ,2A ,虚轴两端点为1B ,2B ,两焦点为1F ,2F . 若以12A A 为直径的圆内切于菱形1122F B F B ,切点分别为,,,A B C D . 则(Ⅰ)双曲线的离心率e =________;(Ⅱ)菱形1122F B F B 的面积1S 与矩形ABCD 的面积2S 的比值12S S =________. (二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑. 如果全选,则按第15题作答结果计分.)【答案】(1);(2)【解析】(1)由图象可知,OB 即为点O 到直线12F B 的距离,且OB a =,又易知直线12F B 的方程为0bx cy bc -+=,a =,整理得()22222c a a c -=,得22c a ac -=.所以210e e --=,解得e =(负值舍去) (2)连结OB ,设BC 与x 轴的交点为G,则1BF =.在直角三角形1OBF 中,有11,OB BF BG OF ⊥⊥, 所以1111122OBF S OB BF FO BG ∆==,得11BF OB ab BG F O c ==. 所以2a OG c ==.所以32242||2||a bS OG GB c=⋅=.而112121||||22SF F B B bc ==, 所以33132122S c e S a ===【点评】本题考查双曲线的离心率,点到直线的距离,四边形的面积以及运算求解的能力.由直线与圆相切,得到圆心到该直线的距离等于半径,这是求解本题的突破口.来年需注意双曲线的标准方程,轨迹问题,特别是双曲线的定义的应用.三、解答题30.(湖北省八校2013届高三第二次联考数学(理)试题)已知椭圆1,C 抛物线2C 的焦点均在y 轴上,1C 的中心和2C 的顶点均为原点,O 从每条曲线上取两个点,将其坐标记录于下表中:(1)求12,C C 的标准方程;(2)设斜率不为0的动直线l 与1C 有且只有一个公共点,P 且与2C 的准线相交于点,Q 试探究:在坐标平面内是否存在定点,M 使得以PQ 为直径的圆恒过点?M 若存在,求出点M 的坐标;若不存在,请说明理由. 【答案】31.(湖北省浠水一中2013届高三理科数学模拟测试 )如图所示,过点)1,(m M 作直线AB 交抛物线y x=2于B A ,两点,且MB AM =,过M 作x 轴的垂线交抛物线于点C .连接,,BC AC 记三角形ABC 的面积为∆S ,记直线AB 与抛物线所围成的阴影区域的面积为弓S . (1)求m 的取值范围; (2)是否存在常数λ,使得λ=∆弓S S ?若存在,求出λ的值;若不存在,请说明理由【答案】解:(1)易知直线AB 的斜率存在,设AB 直线方程为()1y k x m =-+代入抛物线方程2x y =得,210x kx mk -+-= (*)设1122(,),(,)A x y B x y 因为M 是AB 的中点,所以1222x x km +==,即2k m = 方程(*)即为:222210x mx m -+-=(**)由224840m m ∆=-+>得11m -<< 所以m 的取值范围是(1,1)-; ......4' (2)因为2(,1),(,),M m C m m MC x ⊥轴,所以|MC |=21m -, 由方程(**)得212122,21x x m x x m +==- 所以S ∆=ACM BCM S S +=121||||2x x MC -.||MC .2(1)m -.=322(1)m -; ...8' 常数λ存在且34λ=不妨设12x x < 212=[()1]x x S k x m x dx -+-⎰弓2122=[212]x x mx m x dx +--⎰212231[(12)]|3x x mx m x x =+--222332121211()(12)()()3m x x m x x x x =-+---- 222212122111()[()(12)()]3x x m x x m x x x x =-++--++22212121211()[()(12)(())]3x x m x x m x x x x =-++--+-由方程(**)得212122,21x x m x x m +==-, 代入上式化简得322224(1)(1)33S m m =-=-弓. 由(2)知S ∆=322(1)m -所以322322(1)3=44(1)3S m S m ∆-=-弓 所以常数λ存在且34λ=. 13' 32.(2011年全国高考理科数学试题及答案-湖北)平面内与两定点1(,0)A a -,2(,0)A a (0)a >连续的斜率之积等于非零常数m 的点的轨迹,加上1A 、2A 两点所成的曲线C 可以是圆、椭圆成双曲线.(Ⅰ)求曲线C 的方程,并讨论C 的形状与m 值得关系;(Ⅱ)当1m =-时,对应的曲线为1C ;对给定的(1,0)(0,)m U ∈-+∞,对应的曲线为2C ,设1F 、2F 是2C 的两个焦点.试问:在1C 撒谎个,是否存在点N ,使得△1F N 2F 的面积2||S m a =.若存在,求tan 1F N 2F 的值;若不存在,请说明理由.【答案】本小题主要考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,以及分类与整合和数形结合的思想.解:(I)设动点为M,其坐标为(,)x y ,当x a ≠±时,由条件可得12222,MA MA y y y k k m x a x a x a⋅=⋅==-+- 即222()mx y ma x a -=≠±,又12(,0),(,0)A a A A -的坐标满足222,mx y ma -= 故依题意,曲线C 的方程为222.mx y ma -=当1,m <-时曲线C 的方程为22221,x y C a ma +=-是焦点在y 轴上的椭圆;当1m =-时,曲线C 的方程为222x y a +=,C 是圆心在原点的圆;当10m -<<时,曲线C 的方程为22221x y a ma +=-,C 是焦点在x 轴上的椭圆;当0m >时,曲线C 的方程为22221,x y a ma-=C 是焦点在x 轴上的双曲线. (II)由(I)知,当m=-1时,C 1的方程为222;x y a += 当(1,0)(0,)m ∈-+∞时,C 2的两个焦点分别为12((F F - 对于给定的(1,0)(0,)m ∈-+∞,C 1上存在点000(,)(0)N x y y ≠使得2||S m a =的充要条件是22200020,0,12|||.2x y a y y m a ⎧+=≠⎪⎨⋅=⎪⎩ 由①得00||,y a <≤由②得0||y =① ②当0,0,a m <≤≤<或0m <≤时, 存在点N,使S=|m|a 2;当,a >即或m >, 不存在满足条件的点N,当150,m ⎫⎛+∈⎪ ⎪ ⎭⎝时, 由100200(1),(1,)NF a m x y NF a x y =-+--=+--, 可得22221200(1),NF NF x m a y ma ⋅=-++=- 令112212||,||,NF r NF r F NF θ==∠=,则由22121212cos ,cos ma NF NF r r ma r r θθ⋅==-=-可得,从而22121sin 1sin tan 22cos 2ma S r r ma θθθθ==-=-,于是由2||S m a =, 可得2212||tan ||,tan .2m ma m a mθθ-==-即 综上可得:当m ⎫∈⎪⎪⎭时,在C 1上,存在点N,使得212||,tan 2;S m a F NF ==且当m ⎛∈ ⎝时,在C 1上,存在点N,使得212||,tan 2;S m a F NF ==-且当15((,)m +-+∞时,在C 1上,不存在满足条件的点N. 33.(湖北省八市2013届高三3月联考数学(理)试题)已知△ABC 的两个顶点,A B 的坐标分别是(0,1),(0,1)-,且,AC BC 所在直线的斜率之积等于(0)m m ≠.(Ⅰ)求顶点C 的轨迹E 的方程,并判断轨迹E 为何种圆锥曲线;(Ⅱ)当12m =-时,过点(1,0)F 的直线l 交曲线E 于,M N 两点,设点N 关于x 轴的对称点为Q (M Q、不重合) 试问:直线MQ 与x 轴的交点是否是定点?若是,求出定点,若不是,请说明理由.【答案】.(Ⅰ)由题知:11y y m x x-+⋅= 化简得:221(0)mx y x -+=≠当1m <-时 轨迹E 表示焦点在y 轴上的椭圆,且除去(0,1),(0,1)-两点;当1m =-时 轨迹E 表示以(0,0)为圆心半径是1的圆,且除去(0,1),(0,1)-两点; 当10m -<<时 轨迹E 表示焦点在x 轴上的椭圆,且除去(0,1),(0,1)-两点; 当0m >时 轨迹E 表示焦点在y 轴上的双曲线,且除去(0,1),(0,1)-两点;(Ⅱ)设112222(,),(,),(,)M x y N x y Q x y -12(0)x x ⋅≠ 依题直线l 的斜率存在且不为零,则可设l :1x ty =+,代入221(0)2x y x +=≠整理得22(2)210t y ty ++-=12222t y y t -+=+,12212y y t -=+, 又因为M Q 、不重合,则1212,x x y y ≠≠-Q MQ 的方程为121112()y y y y x x x x +-=-- 令0y =,得1211211211121212()()2112y x x ty y y ty y x x ty y y y y y y --=+=++=+=+++故直线MQ 过定点(2,0)解二:设112222(,),(,),(,)M x y N x y Q x y -12(0)x x ⋅≠ 依题直线l 的斜率存在且不为零,可设l :(1)y k x =-代入221(0)2x y x +=≠整理得:2222(12)4220k x k x k +-+-= 2122412k x x k +=+,21222212k x x k-=+, Q MQ 的方程为121112()y y y y x x x x +-=-- 令0y =,得121121121211121212()(1)()2()2(2)2y x x k x x x x x x x x x x y y k x x x x ----+=+=+==++-+-∴直线MQ过定点(2,0)34.(湖北省武汉市2013届高三第二次(4月)调研考试数学(理)试题)的直线交椭圆于(I)求橢圆Γ的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点P,Q且OP⊥若存在,求出该圆的方程;若不存在,请说明理由.OQ【答案】35.(湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)已知圆C:=8及点F(1,0),P为圆C 上一动点,在同一坐标平面内的动点M 满足:,││=││.(1)求动点M 的轨迹E 的方程;(2)过点F 作直线l 与(1)中轨迹E 交于不同两点R,S,设=λ,λ∈[-2,-1),求直线l 的纵截距的取值范围. 【答案】36.(湖北省黄梅一中2013届高三下学期综合适应训练(四)数学(理)试题 )设双曲线C :12222=-by a x (a >0,b >0)的离心率为e ,若准线l 与两条渐近线相交于P 、Q 两点,F 为右焦点,△FPQ 为等边三角形.(1)求双曲线C 的离心率e 的值;(2)若双曲线C 被直线y =ax +b 截得的弦长为ae b 22求双曲线c 的方程.【答案】(2)由(1)得双曲线C 的方程为把132222=-ay a x .把a ax y 3+=代入得0632)3(2222=++-a x a x a .依题意 ⎪⎩⎪⎨⎧>--=∆≠-0)3(2412032242,a a a a ∴ 62<a ,且32≠a .∴ 双曲线C 被直线y =ax +b 截得的弦长为]4))[(1())(1()()(2122122212221221x x x x a x x a y y x x l -++=-+=-+-=222242)3()1(2412)1(---+=a a a a a ∵ a a c b l 1222==.∴ 224222)3(1272)1(144--+=⋅a a a a a .整理得 010*******=+-a a .∴ 22=a 或13512=a . ∴ 双曲线C 的方程为:16222=-y x 或115313511322=-y x.(2)将b x y +=3代入862-=x y 得08)1(6922=++-+b x b x .由862-=x y 及22≤≤-y ,得234≤≤x .所以方程①在区间34[,2]有两个实根. 设8)1(69)(22++-+=b x b x x f ,则方程③在34[,2]上有两个不等实根的充要条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-+=≥++-+=>+--=∆⋅⋅⋅⋅⋅⋅.,,,292)1(634082)1(629)2(0834)1(6)34(9)34(0)8(94)]1(6[222222b b b f b b f b b 之得34-≤≤-b . ∵ 7232984)]1(32[4)(||222122121--=+--=-+=-⋅b b b x x x x x x ∴ 由弦长公式,得721032||1||212--=-+=⋅b x x k EF 又原点到直线l 的距离为10||b d =, ∴71)711(73202732072320||222++-=--=--=b b b b b d EF ∵ 34-≤≤-b ,∴ 41131-≤≤-b .∴ 当411-=b ,即4-=b 时,35||max =d EF . 37.(湖北省武汉市2013届高三5月供题训练数学理试题(三)(word 版) )已知P(x 0,y 0)(a x ≠0)是双曲线E:)0,0(12222>>=-b a by a x 上一点,M,N 分别是双曲线E 的左、右顶点,直线PM,PN 的斜率之积为51.(I )求双曲线的离心率;(II)过双曲线E 的右焦点且斜率为1的直线交双曲线于A,B 两点,O 为坐标原点,C 为双曲线上一点,满足OB OA OC +=λ,求λ的值.【答案】38.(湖北省黄冈市2013届高三4月调研考试数学(理)试题)设点A(3-,0),B(3,0),直线AM 、BM 相交于点M,且它们的斜率之积为32-. (1)求动点M 的轨迹C 的方程;(2)若直线l 过点F(1,0)且绕F 旋转,l 与圆5:22=+y x O 相交于P 、Q 两点,l 与轨迹C 相交于R 、S 两点,若|PQ|],19,4[∈求△F′RS 的面积的最大值和最小值(F′为轨迹C 的左焦点).【答案】(Ⅰ)设(,)M x y ,则2(3MA MBk k x ⋅==-≠化简22132x y += ∴轨迹C 的方程为221(32x y x +=≠(Ⅱ)设:1l x my =+,O l 到的距离d =||[4,19]PQ ∴=203m ∴≤≤,将1x my =+代入轨迹C 方程并整理得:22(23)440m y my ++-=设1122(,),(,)P x y Q x y ,则122423m y y m +=-+,122423y y m =-+12||y y ∴-==121||||2S y y FF ∆'∴=-⋅= 设21[1,4]m t +=∈,则1()4[1,4]f t t t =+在上递增,65()[5,]4f t ∴∈S ∆∴==min S ∴=,max S = 39.(湖北省武汉市2013届高三5月供题训练数学理试题(二)(word 版) )已知椭圆)0(12222>>=+b a by a x 的离心率为e=21,以右焦点F 2为圆心,长半轴为半径的圆与直线033=+-y x =O 相切. (I)求椭圆C 的标准方程;(II)过右焦点F 2作斜率为k 的直线l 与椭圆C 交于M 、N 两点,在x 轴上是否存在点 P(m,0)使PM = PN.若存在,求m 的取值范围;若不存在,说明理由.【答案】40.(湖北省天门市2013届高三模拟测试(一)数学理试题 )已知点(1,0),(1,0),(,):||||M N P x y PM PN -+=动点满足(1)求P 的轨迹C 的方程;(2)是否存在过点(1,0)N 的直线l 与曲线C 相交于A,B 两点,并且曲线C 存在点Q,使四边形OAQB 为平行四边形?若存在,求出直线l 的方程;若不存在,说明理由.【答案】解:(1)PM PN +=的轨迹是以MN 为焦点,长轴长为32的椭圆所以P 的轨迹C 的方程为22 1.32x y +=(2)设1122(,)(,)A x y B x y 、,由题意知l 的斜率一定不为0,故不妨设:1l x my =+,代入椭圆方程整理得22(23)440m y my ++-=, 显然0.∆> 则12122244,2323m y y y y m m +=-=-++①, 假设存在点Q ,使得四边形OAQB 为平行四边形,其充要条件为OQ OA OB =+,则点Q 的坐标为1212(,)x x y y ++.由点Q 在椭圆上,即221212()() 1.32x x y y +++= 整理得222211221212232346 6.x y x y x x y y +++++=又A B 、在椭圆上,即2222112223623 6.x y x y +=+=,故1212233x x y y +=-②将212121212(1)(1)()1x x my my m y y m y y =++=+++代入由①②解得m = 即直线l 的方程是:1x y =+,即220x ±-= 41.(2008年普通高等学校招生全国统一考试理科数学试题及答案-湖北卷)如图,在以点O 为圆心,|AB|=4为直径的半圆ADB 中,OD⊥AB,P 是半圆弧上一点,∠POB=30°,曲线C 是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C 过点P.(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程;(Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F. 若△OEF 的面积不小于...,求直线l 斜率的取值范围.【答案】本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(Ⅰ)解法1:以O 为原点,AB 、OD 所在直线分别为x 轴、y 轴,建立平面直角坐标系,则A (-2,0),B (2,0),D (0,2),P (1,3),依题意得||MA |-|MB ||=|PA |-|PB |=221321)32(2222=)(+--++< |AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线. 设实半轴长为a ,虚半轴长为b ,半焦距为c , 则c =2,2a =22,∴a 2=2,b 2=c 2-a 2=2.∴曲线C 的方程为12222=-y x .解法2:同解法1建立平面直角坐标系,则依题意可得||MA |-|MB ||=|PA |-|PB |<|AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线.设双曲线的方程为a by a x (12222=->0,b >0).则由 .4,11)3(222222=+=-b a ba 解得a 2=b 2=2, ∴曲线C 的方程为.12222=-y x(Ⅱ)解法1:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理得(1-K 2)x 2-4kx-6=0. ① ∵直线l 与双曲线C 相交于不同的两点E 、F , ∴,0)1(64)4(,01222>-⨯+-=∆≠-k k k ⇔.33,1<<-±≠k k∴k ∈(-3,-1)∪(-1,1)∪(1,3). ② 设E (x 1,y 1),F (x 2, y 2),则由①式得x 1+x 2=k x x k k --=-16,14212,于是 |EF |=2212221221))(1()()(x x k y y x x -+=-+-=.132214)(1222212212kk k x x x x k --⋅+=-+⋅+而原点O 到直线l 的距离d =212k+,∴S △DEF =.132213221122121222222kk k k k k EF d --=--⋅+⋅+⋅=⋅ 若△OEF 面积不小于22,即S △OEF 22≥,则有 解得.22,022********2≤≤-≤--⇔≥--k k k k k ③综合②、③知,直线l 的斜率的取值范围为[-2,-1]∪(-1,1) ∪(1, 2). 解法2:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理, 得(1-K 2)x 2-4kx -6=0. ① ∵直线l 与双曲线C 相交于不同的两点E 、F , ∴.0)1(64)4(,01222>-⨯+-=∆≠-k k k ⇔33,1<<-±≠k k .∴k ∈(-3,-1)∪(-1,1)∪(1,3). ② 设E (x 1,y 1),F (x 2,y 2),则由①式得|x 1-x 2|=.132214)(22221221kk kx x x x --=-∆=-+ ③当E 、F 在同一支上时(如图1所示),S △OEF =;21212121x x OD x x OD S S ODE ODF -⋅=-⋅=-∆∆ 当E 、F 在不同支上时(如图2所示).+=∆∆ODF OEF S S S △ODE =.21)(212121x x OD x x OD -⋅=+⋅ 综上得S △OEF =,2121x x OD -⋅于是 由|OD |=2及③式,得S △OEF =.132222kk --若△OEF 面积不小于2则有即,22,2≥∆OEF S.22,022********2≤≤-≤--⇔≥--k k k k k 解得 ④综合②、④知,直线l 的斜率的取值范围为[-2,-1]∪(-1,1)∪(1,2).42.(湖北省黄冈市2013届高三数学(理科)综合训练题 )如图,已知椭圆C :22221(0)x y a b a b+=>>的离心率为,以椭圆C 的左顶点T 为圆心作圆T :222(2)(0)x y r r ++=>,设圆T 与椭圆C 交于点M 与点N .(1)求椭圆C 的方程;(2)求TM TN ⋅的最小值,并求此时圆T 的方程;(3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线,MP NP 分别与x 轴交于点,R S ,O 为坐标原点,求证:OR OS ⋅为定值.T SRNMPyxO【答案】解:(1)依题意,得2a =,c e a ==1,322=-==∴c a b c ;故椭圆C 的方程为2214xy += .(2)方法一:点M 与点N 关于x 轴对称,设),(11y x M ,),(11y x N -, 不妨设01>y .由于点M 在椭圆C 上,所以412121xy -=. (*),由已知(2,0)T -,则),2(11y x TM +=,),2(11y x TN -+=,21211111)2(),2(),2(y x y x y x TN TM -+=-+⋅+=⋅∴3445)41()2(1212121++=--+=x x x x51)58(4521-+=x .由于221<<-x ,故当581-=x 时,TM TN ⋅取得最小值为15-. 由(*)式,531=y ,故83(,)55M -,又点M 在圆T 上,代入圆的方程得到21325r =.故圆T 的方程为:2213(2)25x y ++=.方法二:点M 与点N 关于x 轴对称,故设(2cos ,sin ),(2cos ,sin )M N θθθθ-,不妨设sin 0θ>,由已知(2,0)T -,则)sin ,2cos 2()sin ,2cos 2(θθθθ-+⋅+=⋅TN TM3cos 8cos 5sin )2cos 2(222++=-+=θθθθ51)54(cos 52-+=θ.故当4cos 5θ=-时,TM TN ⋅取得最小值为15-,此时83(,)55M -,又点M 在圆T 上,代入圆的方程得到21325r =. 故圆T 的方程为:2213(2)25x y ++=.(3) 方法一:设),(00y x P ,则直线MP 的方程为:)(010100x x x x y y y y ---=-,令0y =,得101001y y y x y x x R --=, 同理:101001y y y x y x x S++=,故212021202021y y y x y x x x S R --=⋅ (**), 又点M 与点P 在椭圆上,故)1(42020y x -=,)1(42121y x -=,代入(**)式,得:4)(4)1(4)1(421202120212021202021=--=----=⋅y y y y y y y y y y x x S R .所以4=⋅=⋅=⋅S R S R x x x x OS OR 为定值.方法二:设(2cos ,sin ),(2cos ,sin )M N θθθθ-,不妨设sin 0θ>,)sin ,cos 2(ααP ,其中θαsin sin ±≠.则直线MP 的方程为:)cos 2(cos 2cos 2sin sin sin αθαθαα---=-x y ,令0y =,得θαθαθαsin sin )sin cos cos (sin 2--=R x ,同理:θαθαθαsin sin )sin cos cos (sin 2++=S x ,故4sin sin )sin (sin 4sin sin )sin cos cos (sin 42222222222=--=--=⋅θαθαθαθαθαS R x x . 所以4=⋅=⋅=⋅S R S R x x x x OS OR 为定值.43.(2010年高考(湖北理))已知一条曲线C 在y 轴右边,C 上每一点到点F(1,0)的距离减去它到y 轴距离的差都是1.(I)求曲线C 的方程;(II)是否存在正数m,对于过点M(m,0)且与曲线C 有两个交点A,B 的任一直线,都有?0<⋅FB FA 若存在,求出m 的取值范围;若不存在,请说明理由.【答案】本小题主要考查直线与抛物线的位置关系,抛物线的性质等基础知识,同时考查推理运算的能力.解:(I)设P(x,y)是曲线C 上任意一点,那么点P(x,y)满足:).0(1)1(22>=-+-x x y x化简得).0(42>=x x y(II)设过点M(m,0))0(>m 的直线l 与曲线C 的交点为),(),,(2211y x B y x A设l 的方程为,0)(16,0444,222>+=∆=--⎩⎨⎧=+=+=m t m ty y xy mty x m ty x 得由 于是⎩⎨⎧-==+my y ty y 442121①又).,1(),,1(2211y x FB y x FA -=-=01)()1)(1(021********<+++-=+--⇔<⋅y y x x x x y y x x FB FA ② 又,42y x =于是不等式②等价于01)44(442221212221<++-+⋅y y y y y y 01]2)[(4116)(2122121221<+-+-+⇔y y y y y y y y③由①式,不等式③等价于22416t m m <+-④对任意实数t,24t 的最小值为0,所以不等式④对于一切t 成立等价于.223223,0162+<<-<+-m m m 即由此可知,存在正数m,对于过点M(m,0)且与曲线C 有两个交点A,B 的任一直线,都有0<⋅FB FA ,且m 的取值范围是).223,223(+-44.(湖北省七市2013届高三4月联考数学(理)试题)在矩形ABCD 中,|AB|=23,|AD|=2,E 、F 、G 、H 分别为矩形四条边的中点,以HF 、GE 所在直线分别为x ,y 轴建立直角坐标系(如图所示).若R 、R ′分别在线段0F 、CF 上,且|OF ||OR |=|OF ||CR'|=n1. (Ⅰ)求证:直线ER 与GR ′的交点P 在椭圆Ω:32x +2y =1上;(Ⅱ)若M 、N 为椭圆Ω上的两点,且直线GM 与直线GN 的斜率之积为32,求证:直线MN 过定点;并求△GMN面积的最大值.【答案】解:(Ⅰ)∵1OR CR OF CF n '==,∴R,1)n R n-'又(0,1)G 则直线GR '的方程为1y x =+ ① 又(0,1)E - 则直线ER的方程为1y x =- ②由①②得221)1n P n -+∵2222222214(1)()11(1)n n n n n -+-+==++ ∴直线ER 与GR '的交点P 在椭圆22:13x y Ω+=上(Ⅱ)①当直线MN 的斜率不存在时,设:(MN x t t =<<不妨取((,M t N t ∴31=⋅GN GM k k ,不合题意②当直线MN 的斜率存在时,设:MN y kx b =+ 1122(,),(,)M x y N x y联立方程2213y kx bx y =+⎧⎪⎨+=⎪⎩ 得 222(13)6330k x kbx b +++-=则2212(31)0k b ∆=-+>22212213133316kb x x k kb x x +-=⋅+-=+, 又()()()321111212212122211=-++-+=-⋅-=⋅x x b x x b k x x k x y x y k k GNGM即221212(32)3(1)()3(1)0k x x k b x x b -+-++-=将22212213133316kb x x k kb x x +-=⋅+-=+,代入上式得0322=-+b b 解得3-=b 或1=b (舍) ∴直线过定点(0,3)T -∴||1||212x x k MN -+=,点G 到直线MN 的距离为214kd +=∴2221221213183344)(2||2||21k k x x x x x x d MN S GMN+-⋅=-+=-=⋅=△ 由3-=b 及0>∆知:0832>-k,(0)t t => 即2238k t =+∴211996t t t t==≤++ 当且仅当3t =时,()332max=∆GMN S 45.(湖北省黄冈市2013届高三3月份质量检测数学(理)试题)已知中心在原点,焦点在坐标轴上的椭圆Ω的方程为22221(0),x y a b a b +=>>它的离心率为12,一个焦点是(-1,0),过直线4x =上一点引椭圆Ω的两条切线,切点分别是A 、B.(Ⅰ)求椭圆Ω的方程;(Ⅱ)若在椭圆Ω22221(0)x y a b a b +=>>上的点00(,)x y 处的切线方程是00221x x y ya b+=.求证:直线AB恒过定点C,并求出定点C 的坐标;(Ⅲ)是否存在实数λ使得||||||||AC BC AC BC λ+=⋅恒成立?(点C 为直线AB 恒过的定点)若存在,求出λ的值;若不存在,请说明理由.【答案】解:(I)设椭圆方程为()222210x y a b a b +=>>的焦点是()1,0-,故1c =,又12c a =,所以2,a b ===,所以所求的椭圆Ω方程为22143x y +=(II)设切点坐标为()11,A x y ,()22,B x y ,直线l 上一点M 的坐标()4,t ,则切线方程分别为11143x x y y +=,22143x x y y +=,又两切线均过点M ,即11221,133t tx y x y +=+=,即点A,B 的坐标都适合方程13t x y +=,故直线AB 的方程是13tx y +=,显然直线13t x y +=恒过点(1,0),故直线AB 恒过定点()1,0C(III)将直线AB 的方程13t x y =-+,代入椭圆方程,得223141203t y y ⎛⎫-++-= ⎪⎝⎭,即2242903t y ty ⎛⎫+--= ⎪⎝⎭, 所以121222627,1212t y y y y t t -+==++,不妨设120,0y y ><,1AC y ===,同理2BC y =,所以2112121111y y AC BC y y y y ⎛⎫-+=-== ⎪⎝⎭43===, 即43AC BC AC BC +=⋅,故存在实数43λ=,使得AC BC AC BC λ+=⋅46.(湖北省武汉市2013届高三5月模拟考试数学(理)试题)已知三点O(0,0),A(-2,1),B(2,1),曲线C 上任意一点M(x,y)满足()2MA MB OM OA OB +=⋅++.(1) 求曲线C 的方程;(2)动点Q(x 0,y 0)(-2<x 0<2)在曲线C 上,曲线C 在点Q 处的切线为l 向:是否存在定点P(0,t)(t<0),使得l 与PA,PB 都不相交,交点分别为D,E,且△QAB 与△PDE 的面积之比是常数?若存在,求t 的值.若不存在,说明理由.【答案】【解析】解:(1)依题意可得(2,1),(2,1)MA x y MB x y =---=--,22||(2)(22),()(,)(0,2)2MA MB x y OM OA OB x y y +=-+-⨯+=⨯=,22y =+,化简得曲线C 的方程: 24x y = (2)假设存在点P (0,t )(t <0)满足条件,则直线PA 的方程是12t y x t -=+,直线PB 的方程是12ty x t -=+,曲线C 在点Q 处的切线l 的方程为200,24x x y x =-它与y 轴的交点为20(0,)4x F -,由于022x -<<,因此0112x -<< ①当10t -<<时, 11122t --<<-,存在0(2,2)x ∈-,使得0122x t -=,即l 与直线PA 平行,故当10t -<<时不符合题意②当1t ≤-时,00111,12222x x t t --≤-<≥>,所以l 与直线PA ,PB 一定相交,分别联立方程组2200001122,2424t t y x t y x t x x x x y x y x --⎧⎧=+=+⎪⎪⎪⎪⎨⎨⎪⎪=-=-⎪⎪⎩⎩, 解得D ,E 的横坐标分别是22000044,2(1)2(1)D E x t x tx x x t x t ++==+-+- 则202204(1)(1)E D x t x x t x t +-=---,又2||4x FP t =--, 有220220(4)11||||28(1)PDE E D x t t SFP x x t x +-=⨯-=⨯--,又2200414(1)242QABx x S -=⨯⨯-= 于是2224222000022422000(4)[(1)][4(1)]4(1)441(4)1816QAB PDES x x t x t x t St x t t x tx t ----+-+-=⨯=⨯-+-++对任意0(2,2)x ∈-,要使△QAB 与△PDE 的面积之比是常数,只需t 满足2224(1)84(1)16t tt t⎧---=⎪⎨-=⎪⎩,解得t =-1,此时△QAB 与△PDE 的面积之比为2,故存在t =-1,使△QAB 与△PDE 的面积之比是常数2.【点评】本题以平面向量为载体,考查抛物线的方程,直线与抛物线的位置关系以及分类讨论的数学思想. 高考中,解析几何解答题一般有三大方向的考查.一、考查椭圆的标准方程,离心率等基本性质,直线与椭圆的位置关系引申出的相关弦长问题,定点,定值,探讨性问题等;二、考查抛物线的标准方程,准线等基本性质,直线与抛物线的位置关系引申出的相关弦长问题,中点坐标公式,定点,定值,探讨性问题等;三、椭圆,双曲线,抛物线综合起来考查.一般椭圆与抛物线结合考查的可能性较大,因为它们都是考纲要求理解的内容.47.(2012年湖北高考试题(理数,word 解析版))设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的0k >,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.【答案】解:(Ⅰ)如图1,设(,)M x y ,00(,)A x y ,则由||||(0,1)DM m DA m m =>≠且, 可得0x x =,0||||y m y =,所以0x x =,01||||y y m=. ① 因为A 点在单位圆上运动,所以22001x y +=. ②将①式代入②式即得所求曲线C 的方程为222 1 (0,1)y x m m m+=>≠且.因为(0,1)(1,)m ∈+∞,所以当01m <<时,曲线C 是焦点在x 轴上的椭圆,两焦点坐标分别为(0),0); 当1m >时,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(0,-,(0,.(Ⅱ)解法1:如图2、3,0k ∀>,设11(,)P x kx ,22(,)H x y ,则11(,)Q x kx --,1(0,)N kx , 直线QN 的方程为12y kx kx =+,将其代入椭圆C 的方程并整理可得222222211(4)40m k x k x x k x m +++-=.依题意可知此方程的两根为1x -,2x ,于是由韦达定理可得 21122244k x x x m k -+=-+,即212224m x x m k =+.。
湖北省武汉市2013届高中毕业生五月供题训练(二)理科综合试题武汉市教育科学研究院编辑人:丁济亮本试卷全卷满分300分。
考试用时150分钟。
★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答题标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
考生应根据自己选做的题目准确填涂题号,不得多选。
答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
选择题共21小题,每小题6分,共126分。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 S 32 Fe 56一、选择题:本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于各种生物膜的说法,正确的是A.线粒体内膜是线粒体中生成A TP的主要场所B.突触后膜上的受体与神经递质发生特异性识别后,神经递质进入细胞内发挥作用C.细胞膜和细胞器膜在结构和功能上紧密联系,共同组成了细胞的生物膜系统D.叶绿体的类囊体上附着大量与光合作用有关的酶,是生成光合产物的主要场所2.下列关于染色体组、单倍体和多倍体的叙述中,正确的是A.生殖细胞中含有的全部染色体称为一个染色体组B.若生物体细胞中含有三个染色体组,则该生物为三倍体生物C.含一个染色体组的生物个体是单倍体,单倍体含有的染色体组数都是奇数D.人工诱导多倍体常用的方法是低温诱导染色体加倍或秋水仙素处理植株幼苗3.反义RNA是指与mRNA或其它RNA互补的小分子RNA,当其与特定基因的mRNA互补结合,可阻断该基因的表达。
2013年高三数学理科5月月考试卷(附答案)秘密★启用前2013年重庆一中高2013级高三下期第三次月考数学试题卷(理科)2013.5数学试题共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设全集集合,则()A.B.C.D.2.向量,且∥,则锐角的余弦值为()A.B.C.D.3.的展开式中,常数项等于()A.15B.10C.D.4.在等差数列中每一项均不为0,若,则()A.2011B.2012C.2013D.20145.采用系统抽样方法从1000人中抽取50人做问卷调查,为此将他们随机编号为1,2,…,1000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.抽到的50人中,编号落入区间1,400]的人做问卷A,编号落入区间401,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷C的人数为()A.12B.13C.14D.156.在中,已知,那么一定是()A.直角三角形B.等腰三角形C.正三角形D.等腰直角三角形7.若定义在R上的函数的导函数是,则函数的单调递减区间是()A.B.C.D.8右图给出了一个程序框图,其作用是输入x的值,输出相应的y值。
若要使输入的x值与输出的y值相等,则这样的x值有()A.1个B.2个C.3个D.4个9已知正数满足则的最小值为()A.B.4C.D.10过双曲线的左焦点,作倾斜角为的直线FE交该双曲线右支于点P,若,且则双曲线的离心率为()A.B.C.D.第Ⅱ卷(非选择题,共分)二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.在复平面内,复数对应的点位于虚轴上,则12.某四面体的三视图如下图所示,则该四面体的四个面中,直角三角形的面积和是_______.13.用红、黄、蓝三种颜色去涂图中标号为1,2,3,,9的9个小正方形,使得任意相邻(由公共边)的小正方形所涂颜色都不相同,且标号为“3,5,7”的小正方形涂相同的颜色,则符合条件的涂法共有种。
武昌区2013届高三年级五月供题训练 理 科 综 合 试 卷 参 考 答 案22、(6分)(1)作图(4分,每个2分)(2)在误差允许的范围内(1分);两个(共点)力的合成(或“力的合成”) (1分) 23、(9分)(1)黑(1分);红(1分);8V (2分);160Ω(2分) 0.05(2分) (2)变小(1分)24、解:(1)若小球能过D 点,则D 点速度满足Rv m mg D2≤ 即gR v D ≥ (1)从A 到D 对小球由机械能守恒得222121D A mv mgR mv += ........................【2】 联立【1】【2】解得gR v A 3≥ (3)(【1】【2】【3】共2分)若小球能过H 点,则H 点速度满足0H ≥v ……………………………………【4】 从A 到H 对小球由机械能守恒得2221)2(21H A mv R mg mv += ………………【5】 联立【4】【5】解得gR v A 2≥ …………………………………………………【6】 (【4】【5】【6】共2分)小球要能沿环形轨道运行一周,必需都能通过D 点和H 点 比较【3】【6】得gR v A 2≥ (2分) 即:A 点出发时速度v A 至少为gR v A 2=(2)小球在运动过程中,轨道给小球的弹力最大的点只会在圆轨道的最低点,B 点和F 点都有可能从A 到B 对小球由机械能守恒得2221)4(21B A mv R mg v m +-=' ………………………【7】 在B 点轨道给小球的弹力N B 满足Rv m mg N 42BB =- (8)将gR v A 6=代入联立【7】【8】解得mg N 29B = (9)(【7】【8】【9】共3分) 从A 到F 对小球由机械能守恒得2F22121mv mgR v m A +-='………………………………【10】 在F 点轨道给小球的弹力N F 满足Rv m mg N 2FF =- (11)将gR v A 6=带入联立【11】【12】解得mg N 9F = (12)(【10】【11】【12】共3分)比较【9】【12】得F 点处轨道给小球的弹力最大,最大值是9mg (2分) 25.(1)设粒子A 速率为v 0 ,其轨迹圆圆心在O 点,故A 运动至D 点时速度与y 轴垂直, 粒子A 从D 至G 作类平抛运动,令其加速度为a ,在电场中运行的时间为t 则有⎪⎩⎪⎨⎧====t v x at R y 02OG 21…………【1和 0045tan v at v v x y ==………【2联立【1】【2】解得2145tan 212100==⋅=v at x y 故R 2OG =…………………【3【1】【2】【3】式共5分(2)粒子A 的轨迹圆半径为R ,由R v m B qv 200= 得mqBR v =0 (4)mEqa =………………………………………………………………………………………【5】 联立【1】【3】【5】得20)2(21v R m Eq R ⋅⋅= …………………………………………………【6】 解得mqRB E 22= (7)(【4】【5】【6】【7】式共6分)(3)令粒子A′ 轨迹圆圆心为O′ ,因为∠O′CA′ = 90°,O′C = R ,以O′为圆心,R 为半径做A′ 的轨迹圆交圆形磁场O 1于H 点,则四边形CO′H O 1 为菱形,故O′H ∥y 轴,粒子A′从磁场中出来交y 轴于I 点,HI ⊥O′H ,所以粒子A′也是垂直于y 轴进入电场的。
2013届武昌区高三年级五月供题训练文 科 数 学 试 卷本试题卷共5页,共22题.满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑.考生应根据自己选做的题目准确填涂题号,不得多选.答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效.5.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}13<<-=x x A ,{}1log 2<=x x B ,则B A 等于A .()()1,00,3 -B .()()1,00,1 -C .()1,2-D .()()1,00,2 - 2.已知()πθ2,0∈,复数θθθθsin i cos sin i cos -+=z ,则z =A .1B .θ4cosC .θ4sinD .θ4tan 3.某程序框图如图所示,若输入的p 为24,则输出的,n S 的值分别为A .4,30n S ==B .4,45n S ==C .5,30n S ==D .5,45n S ==4.已知指数函数()xax f =()1,0≠>a a 、对数函数()x x g b log =()1,0≠>b b 和幂函数2 2侧视图俯视图()()Q ∈=c x x h c 的图象都经过点)2,21(P ,如果()()()4321===x h x g x f ,那么,+1x =+32x xA .67B .56C .45D .235.函数()x f y =的图象如图所示,则导函数)(x f y '=的图象的大致形状是6.设n m ,是两条不同的直线,,αβ是两个不同的平面,给出下列条件,能得到m β⊥的是 A .,m αβα⊥⊂ B .,m ααβ⊥⊥ C .,m n n β⊥⊂ D .//,m n n β⊥ 7.如图,已知三棱锥的俯视图是边长为2的正 三角形,侧视图是有一直角边长为2的直角 三角形,则该三棱锥的正视图可能为8.如图,在OAB ∆中,120=∠AOB ,2=OA ,1=OB ,C 、D 分别是线段OB 和AB 的中点,那么=⋅AC ODA .2-B .23-C .21-D .439.甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机地到达, 则这两艘船中至少有一艘在停靠泊位时必须等待的概率是 A .169 B .21 C .167 D .832 2 11 A .21 1B .211C .2 1 1D .D .A .B .C ./cm10.已知椭圆C :22221x y a b+=(a >b >0F 且斜率为k (k >0)的直线与C相交于A 、B 两点.若FB AF 3=,则k =A .1BCD .2二、填空题:本大题共5小题,每小题7分,共35分,请将答案填在答题卡对应题号的位置上.11.若命题“存在实数x ,使x 2+ax +1<0”的否定是真命题,则实数a 的取值范围为 . 12.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为 (用n 表示). 13.已知直线l 在x 轴、y 轴上的截距分别是a 和b ()0,0>>b a ,且经过点()4,1M ,则b a +的最小值为 . 14.某校高三年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图), 现用分层抽样的方法选取x 名学生参加某项课 外活动,已知从身高在[160,170)的学生中选取 9人,则x = .15.已知数列{}n a 是等差数列,首项391=a ,公差2-=d ,前n 项和为n S ;数列{}n b 是等比数列,首项51=b ,公比2=q ,前n 项和为n T .如果从第m 项开始,对所有的*∈N n 都有n m S T >,则=m .16.已知函数()x x x f 2cos 2sin 3-=,R ∈x,给出以下说法:①函数()x f 的图像的对称轴是Z ∈+=k k x ,3ππ;…①②②点)0,127(πP 是函数()x f 的图像的一个对称中心; ③函数()x f 在区间],2[ππ上的最大值是21;④将函数()x f 的图像向右平移12π个单位,得到函数()x x x g 2cos 32sin -=的图象. 其中正确说法的序号是 .17.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染指数量L /mg P 与时间t h 间的关系为kt e P P -=0.如果在前5个小时消除了10%的污染物,则10小时后还剩__________%的污染物.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤. 18.(本小题满分12分)在ABC ∆中,边a 、b 、c 分别是角A 、B 、C 的对边,且满足cos (3)cos b C a c B =-. (Ⅰ)求B cos ;(Ⅱ)若4BC BA ⋅=,b =,求边a ,c 的值.19.(本小题满分12分)为了了解甲、乙两名同学的数学学习情况,对他们的7次数学测试成绩(满分100分)进行统计,作出如下的茎叶图,其中,x y 处的数字模糊不清.已知甲同学成绩的中位数是83,乙同学成绩的平均分是86分.(Ⅰ)求x 和y 的值;(Ⅱ)现从成绩在[90,100]之间的试卷中随机抽取两份进行分析,求恰抽到一份甲同学试卷的概率.20.(本小题满分13分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(Ⅰ)求异面直线DC 1和BB 1所成的角; (Ⅱ)证明:平面BDC 1⊥平面BDC .甲 乙 6 3 7 8 7 x 1 8 3 3 y 2 3 9 0 1 6CBA DC 1A 1B 121.(本小题满分14分)已知直角坐标平面内一动点P 到点)0,2(F 的距离与直线2-=x 的距离相等. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点)0,(m M (0>m )作斜率为3的直线与曲线C 相交于B A ,两点,若AFB ∠为钝角,求实数m 的取值范围;(Ⅲ)过点)0,(m M (0>m )作直线与曲线C 相交于B A ,两点,问:是否存在一条垂直于x 轴的直线与以线段AB 为直径的圆始终相切?若存在,求出m 的值;若不存在,请说明理由.22.(本大题满分14分)若函数()x f 满足:在定义域内存在实数0x ,使()()()k f x f k x f +=+00(k 为常数),则称“f (x )关于k 可线性分解”.(Ⅰ)函数()22x x f x+=是否关于1可线性分解?请说明理由;(Ⅱ)已知函数()1ln +-=ax x x g ()0>a 关于a 可线性分解,求a 的取值范围; (Ⅲ)在(Ⅱ)的条件下,当a 取最小整数时,求()x g 的单调区间,并证明不等式:()()12e 321-≤⨯⨯⨯⨯n n n ()*∈N n .* *武昌区2013届高三年级五月供题训练文科数学试题参考答案及评分细则一、选择题:1.D 2.A 3.C 4.D 5.D 6.D 7.C 8.B 9.C 10.B二、填空题:11.]2,2[- 12.26+n 13.9 14.30 15.7 16.②④ 17.81三、解答题:18.解:(Ⅰ)由正弦定理和cos (3)cos b C a c B =-,得sin cos (3sin sin )cos B C A C B =-,化简,得sin cos sin cos 3sin cos B C C B A B +=, 即sin 3sin cos B C A B +=(), 故sin 3sin cos A A B =. 因为sin A ≠0,所以1cos =3B . ………………………………………………………6分 (Ⅱ)因为4BC BA ⋅=,所以4cos ||||=⋅⋅=⋅B BA BC BA BC .所以12BC BA ⋅=,即12ac =. ①又因为2221cos =23a cb B ac +-=, 整理,得2240a c +=. ②联立①② ⎩⎨⎧==+,12,4022ac c a ,解得⎩⎨⎧==,6,2c a 或⎩⎨⎧==.2,6c a ………………………………………………………12分19.解:(Ⅰ)甲同学成绩的中位数是83,∴3x =.乙同学的平均分是86分,∴1(78838380909196)867y +++++++=, ∴1y =.…………………………… 6分(Ⅱ)甲同学成绩在[90,100]之间的试卷有二份,分别记为1a ,2a , 乙同学成绩在[90,100]之间的试卷有三份,分别记为1b ,2b ,3b , “从这五份试卷中随机抽取两份试卷”的所有可能结果为:()12,a a ,()11,a b ,()12,a b ,()13,a b ,()()2122,,,a b a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b ,共有10种情况.记“从成绩在[90,100]之间的试卷中随机抽取两份,恰抽到一份甲同学试卷”为事件M ,则事件M 包含的基本事件为:()11,a b ,()12,a b ,()13,a b ,()()2122,,,a b a b ,()23,a b ,共有6种情况.则63()105P M ==, 答:从成绩在[90,100]之间的试卷中随机抽取两份进行分析,恰抽到一份甲同学试卷的概率为35.……………………………………………………12分20.解:(Ⅰ)由题设知AA 1//BB 1,所以异面直线DC 1和BB 1所成的角为11DC A ∠. 因为侧棱垂直底面,9011=∠∴C DA .又AC =BC =12AA 1,D 是棱AA 1的中点,11C DA ∆∴ 是等腰直角三角形. ∴ 4511=∠DC A .所以,异面直线DC 1和BB 1所成的角为45. ………………………………………6分(Ⅱ)由题设知BC ⊥1CC ,BC ⊥AC ,C AC CC = 1, ∴BC ⊥面11ACC A . 又∵1DC ⊂面11ACC A , ∴1DC BC ⊥.由题设知4511=∠=∠ADC DC A ,∴1CDC ∠=90,即1DC DC ⊥.又∵C BC DC = , ∴1DC ⊥面BDC . ∵1DC ⊂面1BDC ,∴面BDC ⊥面1BDC .…………………………………………13分21.解:(Ⅰ)由抛物线的定义,知所求P 点的轨迹是以)0,2(F 为焦点,直线2-=x 为准线的抛物线.其C BAC 1A 1B 1方程为px y 22=,其中22=p ,4=p . 所以,动点P 的轨迹C 的方程为x y 82=.………………………………………4分(Ⅱ)由题意知,直线AB 的方程为)(3m x y -=. 代入x y 82=,得03)86(322=++-m x m x .设),(),,(2211y x B y x A ,则22121,386m x x m x x =+=+. AFB ∠ 为钝角,0<⋅∴. 又),2(11y x -=,),2(22y x -=,∴0)2)(2(2121<+--y y x x .即0])([34)(2221212121<++-+++-m x x m x x x x x x , 034))(32(422121<++++-∴m x x m x x .因此043632<--m m , 321418321418+<<-∴m . 综上,实数m 的取值范围是)321418,2()2,321418(+- .…………………8分 (Ⅲ)设过点M 的直线方程为m y x +=λ,代入x y 82=,得0882=--m y y λ.设),(),,(2211y x B y x A ,则λ821=+y y ,m y y 821-=. 于是m m y y x x 282)(22121+=++=+λλ. AB ∴的中点坐标为)4,4(2λλm +. 又2212221221))(1()()(y y y y x x AB -+=-+-=λ]4))[(1(212212y y y y -++=λ)3264)(1(22m ++=λλ.设存在直线0x x =满足条件,则=-+|4|202x m λ)3264)(1(22m ++λλ.化简,得028)816(020220=+--++mx x m m x λ.所以,028)816(020220=+--++mx x m m x λ对任意的λ恒成立,所以⎩⎨⎧=+--=+.028,081602020mx x m m x 解得20-=x ,2=m . 所以,当2=m 时,存在直线2-=x 与以线段AB 为直径的圆始终相切.……13分22.解:(Ⅰ)函数()22x x f x +=的定义域是R ,若是关于1可线性分解, 则定义域内存在实数0x ,使得()()()1100f x f x f +=+.构造函数()()()()11f x f x f x h --+=()12212221----++=+x x x x ()1221-+=-x x .∵()10-=h ,()21=h 且()x h 在[]1,1-上是连续的,∴()x h 在()1,1-上至少存在一个零点.即存在()1,10-∈x ,使()()()1100f x f x f +=+. …………………………… 4分 另解:函数()22x x f x +=关于1可线性分解, 由()()()11f x f x f +=+,得()3212221++=+++x x x x . 即222+-=x x . 作函数()xx g 2=与()22+-=x x h 的图象, 由图象可以看出,存在∈0x R ,使222+-=x x ,即()()()1100f x f x f +=+)成立.………………………………………… 4分(Ⅱ)()x g 的定义域为()+∞,0.由已知,存在00>x ,使()()()a g x g a x g +=+00.即()()1ln 1ln 1ln 20000+-++-=++-+a a ax x a x a a x .整理,得()1ln ln ln 00++=+a x a x ,即())e ln(ln 00ax a x =+.∴e 00ax x a =+,所以1e 0-=a a x . 由01e 0>-=a a x 且0>a ,得e 1>a .∴a 的取值范围是⎪⎭⎫ ⎝⎛+∞,e 1. ………………………………………… 10分 (Ⅲ)由(Ⅱ)知,a =1,()1ln +-=x x x g ,x x x x g -=-='111)(. 当()1,0∈x 时,0)(>'x g ,∴g (x )的单调递增区间是()1,0; 当()+∞∈,1x ,0)(<'x g ,∴g (x )的单调递减区间是()+∞,1.因此x ∈(0,+∞)时,()x g 的最大值为()1g ,所以()()01=≤g x g , 即01ln ≤+-x x ,1ln -≤x x .由此,得01ln =,12ln <,23ln <,…1ln -<n n .以上各式相加,得()1321ln 3ln 2ln 1ln -++++≤++++n n , 即()()1321321ln -++++≤⨯⨯⨯⨯n n .∴()()21321ln -≤⨯⨯⨯⨯n n n , ∴()()1321ln 2-≤⨯⨯⨯⨯n n n ,所以,()()12e 321-≤⨯⨯⨯⨯n n n ()*∈N n .……………………………14分。
武汉市2013届高中毕业生五月供题训练(二)理科综合试卷(物理部分)2013.5.二、选择题:本大题共8小题,每小题6分。
其中.................在每小题给出的四个....6.题为单项选择题,..14~1选项中,...符合题目要求。
.......有多项.......全部选对的得6分,....只有一项....符合题目要求......;.1.7.~21...题.为多项选择题,选对但不全的得3分,有选错的得0分。
(2013年5月2套)14.如图所示,细线a和b的一端分别固定在水平地面上,另一端系一个静止在空气中的氢气球,细线与地面的夹角分别为30°和60°。
若a、b受到的拉力分别为T a和T b,氢气球受到的浮力为F,则:BA.T a>T bB.T a<T bC.F= T aD.F<T b(2013年5月2套)15.如图所示,空间有沿x轴正方向的匀强磁场,与x轴重合的通电导线ab绕O点在xOy平面内旋转180°的过程中,通电导线受到的安培力:AA.方向不变B.方向不断改变C.逐渐增大小D.逐渐增减小(2013年5月2套)16.如图是一种理想自耦变压器示意图,线圈绕在一个圆环形的铁芯上,P 是可移动的滑动触头。
输入端AB接交流电,输出端CD连接了两个相同的灯泡L1和L2,Q为滑动变阻器的滑动触头。
当开关S闭合,P处于如图所示的位置时,两灯均能发光。
下列说法正确的是:D A.P不动,将Q向右移动,变压器的输入功率变小B.P不动,将Q向右移动,两灯均变暗C.Q不动,将P沿逆时针方向转动,变压器的输入功率变小D.P、Q都不动,断开开关S,L1将变亮(2013年5月2套)17.将小球从高处平抛,不计空气阻力,下列说法正确的是:ACA.小球在空中做匀变速曲线运动B.平抛的初速度一定时,平抛的高度越高,水平位移越小C.平抛的高度一定时,平抛的初速度越大,水平位移越大D.平抛的高度一定时,平抛的初速度越大,空中运动的时间越长(2013年5月2套)18.如图所示,光滑的水平地面上有三块木块a、b、c,质量均为m,a、c 之间用轻质细绳连接。
武昌区2013届高三年级五月供题训练理 科 数 学 试 卷本试题卷共5页,共22题,其中第15、16题为选考题.满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑.考生应根据自己选做的题目准确填涂题号,不得多选.答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效.5.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数1i 2i-在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.下列命题中错误的是A .命题“若2560x x -+=,则2x =”的逆否命题是“若2x ≠,则2560x x -+≠”B .若R ∈y x ,,则“x y =”是“2)2(y x xy +≥”成立的充要条件 C .已知命题p 和q ,若p q ∨为假命题,则命题p 和q 中必一真一假D .对命题p :R ∈∃x ,使得210x x -+<,则p ⌝:R ∈∀x ,则210x x -+≥3.已知函数x x f ωcos )(=)0,(>∈ωR x 的最小正周期为π,为了得到函数()=x g)4sin(πω+x 的图象,只要将()x f y =的图象A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度 D .向右平移4π个单位长度4.执行如图所示的程序框图,若输出的结果为63,则2 2侧视图俯视图判断框中应填A .7?n ≤B .7?n >C .6?n ≤D .6?n >5.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥+-≥--,0,,02,063y x y x y x 若目标函数b ax z +=)0,(>b a 的最大值是12,则22a b +的最小值是 A .613 B . 365 C .65 D .36136.在OAB ∆中,120=∠AOB ,2=OA ,1=OB ,D 、C 分别是线段AB 和OB 的中点,则=⋅ A .2- B .23-C .21- D .437.如图,已知三棱锥的俯视图是边长为2的正三角形,侧视图是有一直角边长为2的直角三角形,则该三 棱锥的正视图可能为8.甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机地到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率是 A .169 B .21 C .167 D .83 9.设点P 是双曲线22197x y -=右支上一动点,,M N 分别是圆()2241x y ++=和()2241x y -+=上的动点,则PM PN -的取值范围是A .[]4,8B .[]2,6C .[]6,8D .[]8,12 10.()f x 是定义在()11-,上的函数,对于(),11x y ∀∈-,,有()())1(xyyx f y f x f --=-成22 1 1 A . 2 1 1 B . 2 1 1 C . 21 1 D .1 1 123 1 6 11 6 1 24 50 35 10 1 ……………………………立,且当()1,0x ∈-时,()0f x >.给出下列命题:①()00f =; ②函数()f x 是偶函数;③函数()f x 只有一个零点; ④)41()31()21(f f f <+. 其中正确命题的个数是A .1B .2C .3D .4二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.已知函数()⎪⎩⎪⎨⎧>≤≤--=,1,,11,12x e x x x f x 则⎰-21d )(x x f =__________.12.若nxx )12(-的展开式中仅第4项的二项式系数最大,则它的第4项系数是________.13.如图是斯特林数三角阵表,表中第r 行每一个数等于它左肩上的数加上右肩上的数的1r -倍,则此表中:(Ⅰ)第6行的第二个数是______________; (Ⅱ)第1n +行的第二个数是___________.(用n 表示)14.已知直角三角形ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,且不等式cb a 111++ cb a m++≥恒成立,则实数m 的最大值是___________.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑. 如果全选,则按第15题作答结果计分.) 15.(选修4—1:几何证明选讲)如图,A ,B 是圆O 上的两点,且OA ⊥OB ,OA =2,C 为OA 的中点,连结BC 并延长交圆O 于点D ,则CD = . 16.(选修4—4:坐标系与参数方程)已知直线l 的参数方程为⎩⎨⎧+==ty t x 21,2(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程 为2cossin ρθθ=.设直线l 与曲线C 交于A ,B 两点,则⋅= .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数()x x x x f sin sin cos 2cos sin 22-+=ϕϕ(πϕ<<0)在π=x 处取最小值. (Ⅰ)求φ的值;(Ⅱ)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知a =1,b =2,f (A )=32,求角C .18.(本小题满分12分)某车站每天上午安排A 、B 两种型号的客车运送旅客,A 型车发车时刻可能是8:00,8:20,8:40;B 型车发车时刻可能是9:00,9:20, 9:40.两种型号的车发车时刻是相互独立的.下表是该车站最近100天发车时刻统计频率表:(Ⅰ)直接写出表中的m ,n 的值; (Ⅱ)某旅客8:10到达车站乘车,根据上表反映出的客车发车规律,(ⅰ)求该旅客能乘上A 型客车的概率;(ⅱ)求该旅客候车时间ξ(单位:分钟)的分布列和数学期望.(注:将频率视为概率)19.(本小题满分12分)已知数列{}n a 是公差不为零的等差数列,65=a ,且1a ,3a ,7a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n an n n b 2)1(4⋅--=λ(*n ∈N ),问:是否存在非零整数λ,使数列{}n b 为递增数列.20.(本小题满分12分)如图,已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,AA 1=AB =AC =1,AB ⊥A C ,M 、N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.(Ⅰ)证明:AM ⊥PN ; (Ⅱ)是否存在点P ,使得平面PMN 与平面ABC 所成的二面角为30º,若存在,试确定点P 的位置,若不存在,请说明理由.21.(本小题满分13分)已知平面内一动点P 到椭圆15922=+y x 的右焦点F 的距离与到直线2-=x 的距离相等.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点)0,(m M (0>m )作倾斜角为60的直线与曲线C 相交于A ,B 两点,若点F 始终在以线段AB 为直径的圆内,求实数m 的取值范围;(Ⅲ)过点)0,(m M (0>m )作直线与曲线C 相交于A ,B 两点,问:是否存在一条垂直于x 轴的直线与以线段AB 为直径的圆始终相切?若存在,求出所有m 的值;若不存在,请说明理由﹒22.(本小题满分14分)设函数()ln f x x x =. (Ⅰ)求函数()f x 的最小值;(Ⅱ)设1212,0,,0,x x p p >>且121,p p +=证明:()())(22112211x p x p f x f p x f p +≥+;(Ⅲ)设0,,,21>n x x x ,0,,,21>n p p p ,且121=+++n p p p ,如果e 2211≥+++n n x p x p x p ,证明:e )()()(2211≥+++n n xf p x f p x f p .武昌区2013届高三年级五月供题训练AB CN MP A 1B 1C 1理科数学参考答案及评分细则一、选择题:1.D 2.C 3.B 4.D 5.D 6.B 7.C 8.C 9.A 10.C二、填空题:11.22e e π+- 12.160- 13.274;111!2n n ⎛⎫+++ ⎪⎝⎭14. 15.553 16. 0三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.解:(Ⅰ)f (x )=2sin x ·1+cos φ2+cos x sin φ-sin x=sin x +sin x cos φ+cos x sin φ-sin x =sin x cos φ+cos x sin φ=sin(x +φ). ∵f (x )在x =π处取最小值, ∴sin(π+φ)=-1,∴sin φ=1, ∵0<φ<π,∴φ=π2. ………………………………6分(Ⅱ)由(Ⅰ),知f (x )=sin(x +π2)=cos x .由f (A )=32,得cos A =32. ∵角A 是△ABC 的内角,∴A =π6.由正弦定理a sin A =b sin B ,得1sin π6=2sin B ,∴sin B =22. ∵b >a ,∴B =π4,或B =3π4.当B =π4时,C =π-A -B =π-π6-π4=7π12;当B =3π4时,C =π-A -B =π-π6-3π4=π12.故C =7π12,或C =π12. ………………………………12分18.解:(Ⅰ)m =50,n =0.25. ………………………………2分(Ⅱ)(ⅰ)设某旅客8:20,8:40乘上车事件分别为A ,B ,则A ,B 互斥.∴()()()113244P A B P A P B +=+=+=. …………………………………5分(ⅱ)可能取值为10,30,50,70,90ξ=,则()1102P ξ==,()1304P ξ==,()3115014416P ξ⎛⎫==-⨯= ⎪⎝⎭, ()311701428P ξ⎛⎫==-⨯= ⎪⎝⎭,()3119014416P ξ⎛⎫==-⨯= ⎪⎝⎭.ξ的分布列是∴1030507090302416816E ξ=⨯+⨯+⨯+⨯+⨯=.…………………12分19.解:(Ⅰ)设公差为d (d ≠0),由题意,知2371a a a =⋅,65=a .于是⎩⎨⎧=++=+.64,)2()6(12111d a d a d a a解得1,21==d a .1+=∴n a n .………………………………………………………4分(Ⅱ)∵1n a n =+, ∴114(1)2n n n n b λ-+=+-⋅.要使数列{}n b 为递增数列,则n n b b >+1(*n ∈N )恒成立.∴()()112114412120nn n n n n n n b b λλ-++++-=-+-⋅--⋅>恒成立,∴()11343120n nn λ-+⋅-⋅->恒成立,∴()1112n n λ---<恒成立.(ⅰ)当n 为奇数时,即12n λ-<恒成立,当且仅当1n =时,12n -有最小值为1,∴1λ<.(ⅱ)当n 为偶数时,即12n λ->-恒成立,当且仅当2n =时,12n --有最大值2-,∴2λ>-.即21λ-<<,又λ为非零整数,则1λ=-.综上所述,存在1λ=-,使数列{}n b 为递增数列.…………………………………12分20.解:如图,以A 为原点建立空间直角坐标系,则)1,0,0(1A ,)1,0,1(1b ,)21,1,0(M ,)0,21,21(N .由题意,可设)1,0,(λP . (Ⅰ)∵)21,1,0(=,)1,21,21(--=λ, 021210=-+=⋅∴PN AM . ∴ AM ⊥PN .………………………6分(Ⅱ)设),,(z y x =是平面PMN 的一个法向量,)21,21,21(-=NM , 则⎪⎩⎪⎨⎧=⋅=⋅.0,0n PN 即⎪⎪⎩⎪⎪⎨⎧=-+-=++-,021)21(,0212121z y x z y x λ得⎪⎪⎩⎪⎪⎨⎧-=+=.322,321x z x y λλ令x =3,得y =1+2λ,z=2-2λ, ∴)22,21,3(λλ-+=.若存在点P ,使得平面PMN 与平面ABC 所成的二面角为30º, 则|cos<,>|=23)22()21(9|22|22=-+++-λλλ.化简得0131042=++λλ.∵△=100-4⨯4⨯13=-108<0,方程无解. ∴不存在点P ,使得平面PMN 与平面ABC 所成的二面角为30º.……………12分21.解:(Ⅰ)易知椭圆的右焦点坐标为)0,2(F .由抛物线的定义,知P 点的轨迹是以)0,2(F 为焦点,直线2-=x 为准线的抛物线. 所以,动点P 的轨迹C 的方程为x y 82=. ……………………………………4分 (Ⅱ)由题意知,直线AB 的方程为)(3m x y -=. 代入x y 82=,得03)86(322=++-m x m x .设),(),,(2211y x B y x A ,则22121,386m x x m x x =+=+. 因为点F 始终在以线段AB 为直径的圆内, AFB ∠∴为钝角.又),2(11y x FA -=,),2(22y x FB -=,0<⋅∴,0)2)(2(2121<+--y y x x .即0])([34)(2221212121<++-+++-m x x m x x x x x x ,034))(32(422121<++++-∴m x x m x x .因此043632<--m m ,321418321418+<<-∴m . 综上,实数m 的取值范围是)321418,321418(+-. (Ⅲ)设过点M 的直线方程为m y x +=λ,代入x y 82=,得0882=--m y y λ.设),(),,(2211y x B y x A ,则λ821=+y y ,m y y 821-=.于是m m y y x x 282)(22121+=++=+λλ.AB ∴的中点坐标为)4,4(2λλm +又2212221221))(1()()(y y y y x x AB -+=-+-=λ]4))[(1(212212y y y y -++=λ)3264)(1(22m ++=λλ.设存在直线0x x =满足条件,则=-+|4|202x m λ)3264)(1(22m ++λλ.化简,得028)816(020220=+--++mx x m m x λ.所以,028)816(020220=+--++mx x m m x λ对任意的λ恒成立,所以⎩⎨⎧=+--=+.028,081602020m x x m m x 解得20-=x ,2=m .所以,当2=m 时,存在直线2-=x 与以线段AB 为直径的圆始终相切. (13)分22.解:(Ⅰ)()x x f ln 1+='.由()0>'x f ,得e 1>x ;由()0<'x f ,得e 10<<x . ∴()f x 在)e 1,0(单调递减;()f x 在),e 1(+∞单调递增.()f x ∴在e 1=x 取最小值e1)e 1(-=f .………………………………………………4分(Ⅱ)令()()()()112112g x p f x p f x f p x p x =+-+,不妨设12x x x ≤≤, 则()()()22112g x p f x p f p x p x '''=-+.0111211≤-=-+x p x p x x p x p , x x p x p ≤+∴211.而()1ln f x x '=+是增函数,()()112f x f p x p x ''∴≥+.()()()221120g x p f x p f p x p x '''∴=-+≥,所以()g x 在[]12,x x 是增函数. ∴()()210g x g x ≥=,即()()()112211220p f x p f x f p x p x +-+≥. ∴()())(22112211x p x p f x f p x f p +≥+.………………………………8分(Ⅲ)先证明()()()()11221122n n n n p f x p f x p f x f p x p x p x +++≥+++ . 当2n =时,由(Ⅱ)知不等式成立.假设当n k =时,不等式成立,即()()()()11221122k k k k p f x p f x p f x f p x p x p x +++≥+++ .当1n k =+时,()112211k k k k f p x p x p x p x ++++++()1122111111k k k k k k p x p x p x f p p x p ++++⎛⎫+++=-+ ⎪-⎝⎭()()1122111111k k k k k k p x p x p x p f p f x p ++++⎛⎫+++≤-+ ⎪-⎝⎭高三理科数学试卷 第 11 页 (共 11 页) ()()()()()1121121111111111k k k k k k k k p p p p f x f x f x p f x p p p ++++++++⎡⎤≤-++++⎢⎥---⎣⎦()()()()11221111k k k k p f x p f x p f x p f x ++++=++++ .所以,当1n k =+时,不等式成立,()()()()11221122n n n n p f x p f x p f x f p x p x p x ∴+++≥+++ .由(Ⅰ)()f x 在),e1(+∞上单调递增,因此()f x 在),e (+∞上也单调递增. e 2211≥+++n n x p x p x p ,e e)()(2211=≥+++∴f x p x p x p f n n .∴e )()()(2211≥+++n n x f p x f p x f p . ……………………………14分。