27.2.3相似三角形的应用举例
- 格式:ppt
- 大小:1022.00 KB
- 文档页数:13
人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1一. 教材分析人教版数学九年级下册27.2.3《相似三角形应用举例》一节,是在学生学习了相似三角形的性质和判定之后,进一步探讨相似三角形在实际问题中的应用。
通过本节课的学习,使学生了解相似三角形在实际生活中的重要性,提高他们运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,具备了一定的逻辑思维能力和空间想象能力。
但学生在解决实际问题时,往往缺乏将数学知识与实际问题相结合的能力。
因此,在教学过程中,教师需要注重引导学生将所学知识应用于实际问题,提高他们的数学应用能力。
三. 教学目标1.理解相似三角形在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。
2.培养学生的逻辑思维能力和空间想象能力。
3.增强学生对数学学科的兴趣和自信心。
四. 教学重难点1.重点:相似三角形在实际问题中的应用。
2.难点:将实际问题转化为数学问题,运用相似三角形的性质和判定解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似三角形在实际问题中的应用。
2.利用多媒体课件辅助教学,直观展示实际问题,提高学生的空间想象能力。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
4.注重个体差异,因材施教,使每个学生都能在课堂上得到有效的训练和提高。
六. 教学准备1.准备相关实际问题,用于引导学生运用相似三角形知识解决。
2.准备多媒体课件,展示实际问题及解题过程。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如建筑物的设计、尺子测量等,引导学生思考这些实际问题与数学知识的联系。
从而引出本节课的主题——相似三角形在实际问题中的应用。
2.呈现(10分钟)教师展示一个实际问题:在同一平面内,有两座建筑物,一座高度为30米,另一座高度为18米。
请问,在离这两座建筑物等距离的地点,如何测量出两座建筑物的高度比?教师引导学生分析问题,并提出解决方法:利用相似三角形。
27.2.3 相似三角形的周长与面积(1)相似三角形的性质:①对应角相等,对应边成比例;②相似三角形周长的比等于相似比;③面积的比等于相似比的平方.(还可以补充④相似三角形对应高的比等于相似比)(2)应用相似三角形的性质,其前提条件是两个三角形相似,不满足前提条件,不能应用相应的性质.如:两个三角形周长比是32,它们的面积之比不一定是94 (3)在应用性质2“相似三角形面积的比等于相似比的平方”时,要注意有相似比求面积比要平方,反过来,由面积比求相似比要开方,如:如果两个相似三角形面积的比为3∶5 ,那么它们的相似比为________,周长的比为________.1.复习提问:已知: ∆ABC ∽∆A’B’C’,根据相似的定义,我们有哪些结论?(从对应边上看; 从对应角上看:)问:两个三角形相似,除了对应边成比例、对应角相等之外,我们还可以得到哪些结论?2.思考:(1)如果两个三角形相似,它们的周长之间有什么关系?(2)如果两个三角形相似,它们的面积之间有什么关系?(3)两个相似多边形的周长和面积分别有什么关系?3.结论——相似三角形的性质:性质1 相似三角形周长的比等于相似比.即:如果 △ABC ∽△A ′B ′C ′,且相似比为k ,那么 k AC C B B A CA BC AB =''+''+''++. 性质2 相似三角形面积的比等于相似比的平方.即:如果 △ABC ∽△A ′B ′C ′,且相似比为k ,那么22)(k B A AB S S C B A ABC =''='''∆∆.一、例题讲解例 1(补充) 已知:如图:△ABC ∽△A ′B ′C ′,它们的周长分别是 60 cm 和72 cm ,且AB =15 cm ,B ′C ′=24 cm ,求BC 、AB 、A ′B ′、A ′C ′的长.例2(教材P53例6)二、课堂练习1.教材P54.1.2.填空:(1)如果两个相似三角形对应边的比为3∶5 ,那么它们的相似比为________,周长的比为_____,面积的比为_____.(2)如果两个相似三角形面积的比为3∶5 ,那么它们的相似比为________,周长的比为________.(3)连结三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于______,面积比等于_______.(4)两个相似三角形对应的中线长分别是6 cm 和18 cm ,若较大三角形的周长是42 cm ,面积是12 cm 2,则较小三角形的周长为________cm ,面积为_______cm 2.3.如图,在正方形网格上有△A 1B 1C 1和△A 2B 2C 2,这两个三角形相似吗?如果相似,求出△A 1B 1C 1和△A 2B 2C 2的面积比.三、课后练习1.教材P54.3、4.2.如图,点D 、E 分别是△ABC 边AB 、AC 上的点,且DE ∥BC ,BD =2AD ,那么△ADE 的周长︰△ABC 的周长= .3.已知:如图,△ABC 中,DE ∥BC ,(1)若32EC AE =,① 求ACAE 的值; ② 求ABC ADE S S ∆∆的值; ③ 若5S ABC =∆,求△ADE 的面积;(2)若S S A B C =∆,32EC AE =,过点E 作EF ∥AB 交BC 于F ,求□BFED 的面积;(3)若k EC AE =, 5S ABC =∆,过点E 作EF ∥AB 交BC 于F ,求□BFED 的面积.(第3题)。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第27章相似27.2.3相似三角形应用举例一、选择题1.如图,身高1.6米的小慧同学从一盏路灯下的B处向前走了8米到达点C处时,发现自己在地面上的影子CE的长是2米,则路灯AB的高为()A.5米B.6.4米C.8米D.10米2.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高为1.5m,测得AB=3m,BC=7m,则建筑物CD的高是()mA.3.5B.4C.4.5D.53.如图所示,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米4.如图1,某温室屋顶结构外框为△ABC,立柱AD垂直平分横梁BC,AD=2m,斜梁AC=4m.为增大向阳面的面积,将立柱增高并改变位置,使屋顶结构外框变为△EBC (点E 在BA 的延长线上),立柱EF ⊥BC ,如图2所示.若EF=3m ,则斜梁增加部分AE 的长为()A .0.5mB .1mC .1.5mD .2m5.如图所示,一张等腰三角形纸片,底边长18cm ,底边上的高为18cm ,现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A .第4张B .第5张C .第6张D .第7张6.一个矩形按如图1的方式分割成三个直角三角形,最小三角形的面积为1S ,把较大两个三角形纸片按图2方式放置,图2中的阴影部分面积为2S ,若212S S =,则矩形的长宽之比为()A .2BC .43D 7.《九章算术》是我国数学经典,上面记载:“今有邑方不知大小,各中开门.出北门三十步有木,出西门七百五十步见木.问邑方几何?”其意思是:如图,已知正方形小城ABCD ,点E ,G 分别为CD ,AD 的中点,EF ⊥CD ,GH ⊥AD ,点F ,D ,H 在一条直线上,EF =30步,GH =750步.正方形小城ABCD 的边长是()A .150步B .200步C .250步D .300步8.如图,花丛中有一路灯杆AB .在灯光下,小明在D 点处的影长DE =3米,沿BD 方向行走到达G 点,DG =5米,这时小明的影长GH =5米.如果小明的身高为1.7米,则路灯杆AB 的高度(精确到1米)为()A .5米B .6米C .7米D .8米9.如图,某数学活动小组为测量校园内移动信号转播塔AB 的高度,他们先在水平地面上一点E 放置了一个平面镜,镜子与铁塔底端B 的距离16m BE =,当镜子与与观测者小芳的距离2m ED =时,小芳刚好从镜子中看到铁塔顶端A ,已知小芳的眼睛距地面的高度 1.5m CD =,铁塔AB 的高度为()(根据光的反射原理,12Ð=Ð)A .9mB .12mC .15mD .18m10.一种雨伞的截面图(如图所示),伞骨AB AC =,支掌杆30OE OF cm ==,当点O 沿AD 滑动时,雨伞开闭.若3AB AE =,3AD AO =,此时B 、D 两点间的距离等于()A .60cmB .80cmC .90cmD .120cm 二、填空题11.如图,晚上小亮在路灯下散步,在由A 点处走到B 点处这一过程中,他在点A ,B ,C 三处对应的在地上的影子,其中影子最短的是在_____点处(填A ,B ,C ).12.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为12m .若小明的眼睛与地面的距离为1.5m ,则旗杆的高度为________.(单位:m )13.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高.下午课外活动时,她测得根长为1m 的竹杆的影长是0.8m .但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上.她先测得留在墙壁上的影高为1.2m ,又测得地面的影长为2.6m ,请你帮她算一下,树高是________m .14.如图,一张矩形纸片ABCD ,9AD =,12AB =,纸片折叠,使A 、C 两点重合,折线MN =________.15.学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m的小明从路灯灯泡A 的正下方点B 处,沿着平直的道路走8m 到达点D 处,测得影子DE 长是2m ,则路灯灯泡A 离地面的高度AB 为_______________m .三、解答题16.如图,小丁家窗外有一堵围墙AB ,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C 射进房间地面的D 处,中午太阳光恰好能从窗户的最低点E 射进房间地面的F 处,AB ⊥BD 于点B ,CE ⊥BD 于点O ,小丁测得OE =1m ,CE =1.5m ,OF =1.2m ,OD =12m ,求围墙AB 的高为多少米.17.小军想用镜子测量一棵古松树的高度,但因树旁有一条小河,不能测量镜子与树之间的距离.于是他利用镜子进行两次测量.如图,第一次他把镜子放在点C 处,人在点F 处正好在镜中看到树尖A ;第二次他把镜子放在点'C 处,人在点F 处正好在镜中看到树尖A .已知小军的眼睛距地面1.7m ,量得'12CC =m , 1.8CF =m ,'' 3.84C F =m.求这棵古松树的高度18.如图,△ABC 是一块锐角三角形余料,边BC =120mm ,高AD =80mm ,要把它加工成矩形零件PQMN ,使一边在BC 上,其余两个顶点分别在边AB 、AC 上.若这个矩形的边PN ∶PQ=1∶2,则这个矩形的长、宽各是多少?19.如图所示,小杰家(点A处)和公路(l)之间竖立着一块30米长且平行于公路的巨型广告牌(BC),一辆小汽车在公路上以60千米/小时匀速行驶,小杰在家观察这辆汽车行驶时,有6秒钟被广告牌挡住.请在图中画出被广告牌挡住的那段公路DE,已知广告牌和公路的距离为35米,求小杰家到公路的距离.20.小明利用灯光下的影子来测量路灯高度,如图,当小明走到A点时,他直立时身高AM 与影子AE恰好相等;他沿着AC方向继续向前,走到B处时,他直立的身高BN的影子恰好是线段AB,此时测得AB=1.2m.已知小明的直立身高是1.6m,求路灯的高度CD.21.如图,数学兴趣小组利用硬纸板自制的Rt△ABC来测量操场旗杆MN的高度,他们通过调整测量位置,并使边AC与旗杆顶点M在同一直线上,已知AC=0.8米,BC=0.5米,目测点A到地面的距离AD=1.5米,到旗杆的水平距离AE=20米,求旗杆MN的高度.22.大雁塔是西安市的标志性建筑和著名古迹,是古城西安的象征.因此西安市徽中央所绘制的便是这座著名古塔.我校社会实践小组为了测量大雁塔的高度AB ,在地面上立两根高为2m 的标杆CD 和GH ,两杆之间的距离62CG =米,点G 、C 、B 成一线.从C 处退行4米到点E 处,人的眼睛贴着地面观察A 点,A 、D 、E 三点成一线;从G 处退行6米到点F 处,从F 观察A 点,A 、F 、H 也成一线.请你根据以上数据,计算大雁塔的高度AB .23.周末,小凯和同学带着皮尺去测量杨大爷家露台遮阳篷的宽度.如图,由于无法直接测量,小凯便在楼前地面上选择了一条直线EF ,通过在直线EF 上选点观测,发现当他位于N ¢点时,他的视线从M 点通过露台D 点正好落在遮阳篷A 点处;当他位于N 点时,视线从M ¢点通过D 点正好落在遮阳篷B 点处,这样观测到的两个点A 、B 间的距离即为遮阳篷的宽,已知AB CD EF ,点C 在AG 上,AG 、DE 、MN 、M N ¢¢均垂直于EF ,MN M N =¢¢,露台的宽CD GE =.测得5GE =米,12.3EN =米, 6.2NN ¢=米.请你根据以上信息,求出遮阳篷的宽AB 是多少米?(结果精确到0.1米)参考答案1.C2.D3.B4.D5.B6.A7.D8.B9.B10.C 11.C12.913.4.4514.45 415.8.516.3m17.这棵古松树的高度为10m18.矩形的长为4807mm,宽是2407mm.19.作图略,小杰家到公路的距离为50米.20.6.4m21.14米22.大雁塔的高度AB为64米23.2.5米。