九年级数学下册27.2.2相似三角形的应用举例教案新人教版
- 格式:doc
- 大小:43.00 KB
- 文档页数:3
人教版数学九年级下册27.2.2《相似三角形的性质》教案一. 教材分析人教版数学九年级下册27.2.2《相似三角形的性质》是学生在学习了相似三角形的概念和性质之后的一个深化和拓展。
本节内容主要让学生掌握相似三角形的性质,并能够运用这些性质解决一些实际问题。
教材通过生动的例题和丰富的练习,帮助学生理解和掌握相似三角形的性质,培养学生的几何思维和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了相似三角形的概念和性质,对相似三角形的知识有一定的了解。
但学生在运用相似三角形的性质解决实际问题时,往往会存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生更好地理解和运用相似三角形的性质。
三. 教学目标1.理解相似三角形的性质,并能够运用这些性质解决一些实际问题。
2.培养学生的几何思维和解决问题的能力。
3.提高学生的数学兴趣,使学生能够自主学习,提高学习效果。
四. 教学重难点1.掌握相似三角形的性质。
2.能够运用相似三角形的性质解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索,从而激发学生的学习兴趣。
通过案例教学,让学生直观地理解和掌握相似三角形的性质。
通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似三角形的概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过多媒体展示相似三角形的性质,让学生直观地理解和掌握。
同时,教师结合性质给出相应的例题,让学生进一步理解和运用。
3.操练(15分钟)教师给出一些练习题,让学生独立完成。
教师在过程中给予个别学生指导,确保学生能够正确地运用相似三角形的性质解决问题。
4.巩固(10分钟)教师学生进行小组讨论,让学生分享自己的解题心得,互相学习和交流。
人教版九年级下册27.2.3相似三角形应用举例27.2.2相似
三角形应用举例课程设计
一、课程背景
本次课程是人教版九年级下册数学教材中“相似三角形应用举例”部分的教学设计。
在九年级学习过程中,学生已经学习了三角形的基本概念、性质以及相似三角形的判定方法等内容。
本节课旨在通过具体的例子引导学生运用所学知识判断并解决实际问题,提高学生的综合运用能力。
二、教学目标
1.知识目标:
•了解相似三角形的性质及判定方法
•学习相似三角形在实际生活中的应用,并通过解决问题提高对知识点的理解
2.能力目标:
•能够理解并判断相似三角形情况,进行运用和解决实际问题
•能够分析和思考问题,发掘问题的解决方法
3.情感目标:
•培养学生勇于实践、勇于探究的探索精神
•培养学生注重思维方式和方法,进而形成良好的思维习惯
三、教学内容
1.知识点:相似三角形的应用举例,包括周长比、面积比的计算、高度
定理等
2.教学方法:通过例题展开讲解,引导学生积极参与,理解和掌握知识
点
1。
2019-2020年九年级下数学《27.2.2 相似三角形应用举例》教学设计新人教版教学任务分析教学流程安排教学过程设计[活动1] 提出问题:学校操场上的国旗旗杆的高度是多少?你有什么办法测量?小组讨论;师生共同交流.[活动2]例3:据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度.你能画出示意图吗?你能说明其中蕴含的数学知识吗?小组讨论;师生共同交流.得到示意图:如图,如果木杆EF长2 m,它的影长FD 为3 m,测得OA为201 m,求金字塔的高度BO.(思考如何测出OA的长?)[活动3]问题:估算河的宽度,你有什么好办法吗?例 4 如图,为了估算河的宽度,我们可以在河对岸选定一个目标P,在近岸取点Q 和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS = 45 m,ST = 90 m,QR = 60 m,求河的宽度PQ.对于活动3提出的问题,先小组讨论;这是一个利用数学知识解决实际问题的能力形成的重要契机,教师在这一活动中重点关注学生们探究的主动性,特别应关注那些平时学习有一定困难的学生,他们往往在解决实际问题时,显示出创造的能力,这也是树立这些学生自信心的一个契机,然后通过例4进一步完善学生们的想法.DEB CA[活动4]例5 已知左、右并排的两棵大树的高分别是AB = 8 m和CD = 12 m,两树根部的距离BD = 5 m.一个身高1.6 m的人沿着正对这两棵树的一条水平直路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?在这一活动中,重点引导学生认真体会这一生活实际中常见的场景,借助图形把这一实际中常见的场景,抽象成数学图形,利用相似的性质解决这一实际问题,图形可以滞后给出,先让学生经历这一抽象的过程.如果学生对于如何用数学语言表述有一定的困难,教师应与学生一起认真板书解答过程.[活动5]练习:教材51页.[活动6]谈谈你这节课的收获?学生通过练习进一步掌握利用相似三角形解决实际问题中不能直接测量的物体的长度的问题.利用三角形的相似,可以解决一些不能直接测量的物体的长度的问题.在活动6中教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的运用的掌握情况.布置作业:教材56页 8~12-----如有帮助请下载使用,万分感谢。
分析:BF
∥ED ⇒∠BAO=∠EDF 又∠AOB=∠DFE=900
⇒∆ABO ∽∆DEF ⇒
BO OA EF FD =⇒
201
23
BO = 二试牛刀:
例4:如图27.2-9,为了估算河的宽度,我们可以在河对岸选定一个目标点P ,在近岸取点Q 和S ,使点P 、Q 、S 共线且直线PS 与河垂直,接着在过点S 且与PS 垂直的直线a 上选择适当的点T ,确定PT 与过点Q 且垂直PS 的直线b 的交点R 。
如果测得QS=45 m ,ST=90 m ,QR=60 m ,求河的宽度PQ 。
分析:∠PQR=∠PST=900,∠P=∠P
⇒∆PQR ∽∆PST
⇒
8 1.6 6.4
512 1.610.4
FH FH -==
+-,即
PQ QR PQ QS ST =+,60
4590
PQ PQ =+,
90(45)60PQ PQ ⨯=+⨯。
解得PQ=90
三试牛刀:
例5:已知左、右并排的两棵大树的高分别是AB=8m 和CD=12m ,两树的根部的距离BD=5m ,一个身高1.6m 的人沿着正对这两棵树的一条水平直路L 从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C ?
分析:,AB l CD l ⊥⊥⇒AB ∥CD ,∆AFH ∽∆CFK 。
⇒
FH AH FK CK =,即8 1.6 6.4
512 1.610.4
FH FH -==+-,解得FH=8。
运用提高:
a
b
R
Q
P
S
T。
人教版九年级数学下册:27.2.2 《相似三角形的性质》教学设计3一. 教材分析教材内容为人教版九年级数学下册第27章第2节第2部分《相似三角形的性质》。
本节课主要学习相似三角形的性质,包括相似三角形的对应边成比例、对应角相等以及相似三角形的面积比等于相似比的平方。
这些性质是进一步学习几何知识的基础,对于学生形成完整的几何体系具有重要意义。
二. 学情分析九年级的学生已经学习了三角形的性质、角的度量等基础知识,对于图形的观察和分析能力有所提高。
但是,对于相似三角形的性质的理解和应用还需要进一步引导和培养。
此外,学生对于数学语言的严谨性和逻辑推理能力还需要加强训练。
三. 教学目标1.知识与技能:使学生掌握相似三角形的性质,包括对应边成比例、对应角相等以及面积比等于相似比的平方。
2.过程与方法:通过观察、分析、推理等方法,培养学生的逻辑思维能力和图形分析能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和严谨的学习态度。
四. 教学重难点1.重点:相似三角形的性质及其应用。
2.难点:对于相似三角形性质的深入理解和逻辑推理。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。
通过设置问题引导学生观察、分析和推理,培养学生的图形分析能力和逻辑思维能力。
同时,小组合作学习,增强学生的团队合作意识。
六. 教学准备1.准备相似三角形的图片和实例,用于引导学生观察和分析。
2.准备多媒体教学设备,用于展示和解释相似三角形的性质。
3.准备练习题和作业,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些相似三角形的图片,引导学生观察和思考:这些三角形有什么共同的特点?从而引出相似三角形的性质。
2.呈现(10分钟)讲解相似三角形的性质,包括对应边成比例、对应角相等以及面积比等于相似比的平方。
通过多媒体动画展示,使学生更直观地理解这些性质。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,运用相似三角形的性质进行分析和推理。
人教版九年级数学下册:27.2.2 《相似三角形的性质》教学设计2一. 教材分析《人教版九年级数学下册》第27.2.2节《相似三角形的性质》是学生在学习了相似三角形的概念和性质之后的内容。
本节主要让学生掌握相似三角形的性质,并能够运用这些性质解决实际问题。
教材通过具体的例题和练习,引导学生探究相似三角形的性质,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的概念,并对相似三角形的性质有一定的了解。
但在实际运用中,对相似三角形的性质的理解和运用还存在一定的困难。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、交流等活动,加深对相似三角形性质的理解,提高解决问题的能力。
三. 教学目标1.理解相似三角形的性质,并能够运用性质解决实际问题。
2.培养学生的观察能力、操作能力、逻辑思维能力和解决问题的能力。
3.激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.相似三角形的性质及其运用。
2.学生在实际问题中,如何运用相似三角形的性质解决问题。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考、交流等活动,发现相似三角形的性质。
2.使用案例分析法,让学生在具体的问题中,运用相似三角形的性质解决问题。
3.运用启发式教学法,引导学生主动探究,培养学生的创新精神和合作意识。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题和课后作业。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生回顾相似三角形的概念和性质。
例如:在平面直角坐标系中,已知两个三角形的三个顶点坐标,如何判断这两个三角形是否相似?2.呈现(10分钟)呈现教材中的例题,引导学生观察、分析,发现相似三角形的性质。
通过小组讨论,让学生总结出相似三角形的性质。
3.操练(10分钟)让学生通过实际的例题,运用相似三角形的性质解决问题。
相似三角形的判定一、教学目标1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.2.掌握“两角对应相等,两个三角形相似”的判定方法.3.能够运用三角形相似的条件解决简单的问题.二、重点、难点1.重点:三角形相似的判定方法3——“两角对应相等,两个三角形相似”2.难点:三角形相似的判定方法3的运用.3.难点的突破方法(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法.(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据.(3)如果两个三角形是直角三角形,则只要再找到一对锐角相等即可说明这两个三角形相似.三、例题的意图本节课安排了两个例题,例1是教材P48的例2,是一个圆中证相似的题目,让学生掌握遇到等积式,应先将其化为比例式的方法.例2是一个补充的题目,掌握利用三角形相似的知识来求线段长的方法,为下节课学习“27.2.2 相似三角形的应用举例”打基础.四、课堂引入1.复习提问:(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC中,点D在AB上,如果 AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.(3)如(2)题图,△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?——引出课题.(4)教材P48的探究3 .五、例题讲解例1(教材P48例2).分析:要证PA•PB=PC•PD,需要证,则需要证明这四条线段所在的两个三角形相似.由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似.例2 (补充)已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的长.分析:要求的是线段DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在△ABE和△AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似.解:略(DF=).六、课堂练习1.教材P49的练习1、2.2.已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.3.下列说法是否正确,并说明理由.(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形.七、课后练习已知:如图,△ABC的高AD、BE交于点F.求证:.2.已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.(1)求证:AC•BC=BE•CD;(2)若CD=6,AD=3,BD=8,求⊙O的直径BE的长.教后反思:27.2.2 相似三角形的应用举例一、教学目标进一步巩固相似三角形的知识.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.二、重点、难点1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).3.难点的突破方法(1)本节主要探索的是应用相似三角形的判定、性质等知识去解决某些简单的实际问题(计算不能直接测量物体的长度和高度及盲区问题),(2)在实际生活中,面对不能直接测量出长度和宽度的物体及盲区问题,我们可以应用相似三角形的知识来测量,只要将实际问题转化为数学问题,建立相似三角形模型,再利用线段成比例来求解.(3)课上可以通过著名的科学家名句和如何测量神秘的金字塔的高度来激发学生学数学的兴趣,使学生积极参与探索,体验成功的喜悦.(4)运用三角形相似的知识解决实际问题对于学生来说难度较大,可以适当增加课时.三、例题的意图相似三角形的应用主要有如下两个方面:(1)测高(不能直接使用皮尺或刻度尺量的);(2)测距(不能直接测量的两点间的距离) .本节课通过教材P49的例3——P50的例5(教材P49例3——是测量金字塔高度问题;P50例4——是测量河宽问题;P50例5——是盲区问题)的讲解,使学生掌握测高和测距的方法.知道在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解.其中P50的例5出现了几个概念,在讲此例题时可以给学生介绍.(1)视点:观察者眼睛的位置称为视点;(2)视线:由视点出发的线称为视线;(3)仰角:在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;(4)盲区:人眼看不到的地方称为盲区.四、课堂引入问:世界现存规模最大的金字塔位于哪个国家,叫什么金字塔?胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”.塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米.据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低.在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量大金字塔的高度的吗?五、例题讲解例1(教材P49例3——测量金字塔高度问题)分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.解:略(见教材P49)问:你还可以用什么方法来测量金字塔的高度?(如用身高等)解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)例2(教材P50例4——测量河宽问题)分析:设河宽PQ长为x m ,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即.再解x的方程可求出河宽.解:略(见教材P50)问:你还可以用什么方法来测量河的宽度?解法二:如图构造相似三角形(解法略).例3(教材P50例5——盲区问题)分析:略(见教材P50)解:略(见教材P51)六、课堂练习在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高?七、课后练习教材P51.练习1和练习2.如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动)小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少?教后反思:。
27.2.2相似三角形应用举例教学目标1.让学生学会运用两个三角形相似解决实际问题。
2.培养学生的观察﹑归纳﹑建模﹑应用能力。
3.让学生经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
教学重点与难点重点:运用两个三角形相似解决实际问题难点:在实际问题中建立数学模型教学设计设计思想:本节课主要是让学生学会运用两个三角形相似解决实际问题,在解决实际问题中经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
因此在教学设计中突出了“审题⇒画示意图⇒明确数量关系⇒解决问题”数学建模过程,学生可以从中锻炼把生活中的实际问题转化为数学问题的能力,另外,学生在富有故事性或现实性的数学情景问题中,探究解决问题的方法,这一过程有利于培养学生的数学学习兴趣。
课堂检测 一、选择题1.已知一棵树的影长是30m ,同一时刻一根长1.5m 的标杆的影长为3m ,则这棵树的高度是( )A .15mB .60mC .20mD .m 3102.一斜坡长70m ,它的高为5m ,将某物从斜坡起点推到坡上20m 处停止下,停下地点的高度为( ) A .m 711B .m 710 C .m 79 D .m 23 5.如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2m 的标杆,现测量者从E 处可以看到杆顶C 与树顶A 在同一条直线上,如果测得BD =20m ,FD =4m ,EF =1.8m ,则树AB 的高度为______m .6.如图所示,有点光源S 在平面镜上面,若在P 点看到点光源的反射光线,并测得AB =10m ,BC =20cm ,PC ⊥AC ,且PC =24cm ,则点光源S 到平面镜的距离即SA 的长度为______cm .。
巩固运用效果评价活动31、若旗杆的影子长为8m,同时测得旗杆顶端到地面的距离为6m,某同学测得学校钟楼顶端的影子长为16m,钟楼的高 m,顶端到它影子顶端的距离是 m。
2、古代一位数学家想出了一种测量山高的方法:如图所示,为了测量山的高度OB,先竖一根已知长度的木棒O´B´,比较木棒的影长A´B´,即可近似算出山高OB,如果O´B´=1,A´B´=2,AB=274,山高。
3、某天,身高1.6m的张刚站在操场上看棋杆,发现旗杆刚好被一棵树档住后,张刚的眼睛、小树顶端和旗杆顶在同一直线上,经过测量,此时张刚距小树2m,距旗杆10m已知小树高2m,求旗杆高。
4、我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路.1、教师出示问题,学生独立思考练习1、2、3,教师点拨纠偏。
对于学生出现的问题,教师应根据错因,对症强调。
2、教师引导学生共同探讨分析4题,教师板演解题过程。
强调过程的严谨和规范。
本次活动中教师应重点关注:1、学生能否把例题中的已知条件转化为两边对应成比例这一判定相似的条件;2、学生是否能灵活准确地运用本课结论;3、学生能否理解练习中的实际问题,从而将其转化为数学问题来解答。
【媒体使用】依次出示习题及答案。
【设计意图】通过练习的设置不仅达到巩固知识的目的,同时也实现了将知识向能力的转化。
实际问题的设置进一步培养了学生用数学的意识。
通过练习,及时反馈学生学习的情况,便于教师把握授课效果,并能及时查漏补缺,进一步优化教学,也培养了学生踏实、严谨的作风。
27.2.2 相似三角形的性质【教学目标】知识技能目标:1.了解并掌握相似三角形的性质.2.用相似三角形的性质解决简单的问题.过程性目标:经历探索相似三角形性质的过程,并在探究过程中引领学生体验解决问题策略的多样性.情感态度目标:通过探索相似多边形的性质,体验化归思想.【重点难点】重点:理解并掌握相似三角形的性质.难点:探索相似三角形周长的比等于相似比,面积比等于相似比的平方.【教学过程】一、创设情境两个三角形相似,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.例如,在图中,△ABC和△A′B′C′是两个相似三角形,相似比为k,其中AD,A′D′分别为BC,B′C′边上的高,那么AD,A′D′之间有什么关系?二、探索归纳探究1.如果两个三角形相似,它们的周长之间什么关系?两个相似多边形呢?(学生小组讨论)△ABC∽△A′B′C,相似比为k,∵===k,∴AB=kA′B′,BC=kB′C′,CA=kC′A′,∴==k,结论:相似三角形周长的比等于相似比.教师提出问题,先让学生大胆猜想,再通过推理验证猜想的结论,在小组内与其他同学交流,归纳结论.教师让学生书写证明过程.教师引导学生推理验证结论(先由三角形相似得到对应边的比,再得周长的比的关系.)学生思考、分析、写出证明过程,小组交流.教师引导学生类比相似三角形得到相似多边形的性质“相似多边形周长的比等于相似比”.结论:相似多边形周长的比等于相似比.探究2.相似三角形对应高的比、对应中线的比、对应角平分线的比与相似比有怎样的关系?教师提出问题,要求小组讨论完成.学习组长把学习小组分工,分别来研究三个问题,最后一起交流,得出结论.探究3.如果两个三角形相似,它们的面积之间有什么关系?两个相似多边形呢?(学生小组讨论)△ABC∽△A′B′C′,相似比为k,它们的面积比是多少?解:分别作出△ABC和△A′B′C′的高AD和A′D′.∵∠ADB=∠A′D′B′=90°,又∠B=∠B′.∴△ABD∽△A′B′D′.∴==k.∴===k2.结论:相似三角形对应高的比等于相似比,相似三角形面积比等于相似比的平方.三、新知应用例:如图,在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,△ABC的边BC上的高是6,面积是12,求△DEF 的边EF上的高和面积.师生活动:师生一起分析△ABC和△DEF具有什么关系,相似三角形的对应高,对应面积有什么关系?四、检测反馈1.已知△ABC∽△DEF,且AB∶DE=1∶2,则BC的中线与EF的中线之比为( ) A.1∶2 B.1∶4 C.2∶1 D.4∶1设计意图:考查“相似三角形对应线段的比等于相似比”的运用.2.在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为( )A.8,3B.8,6C.4,3D.4,6设计意图:结合三角形相似的判定,考查“相似三角形周长的比等于相似比”和“相似三角形面积的比等于相似比的平方”的运用.3.已知△ABC与△DEF相似且面积比为4∶25,则△ABC与△DEF的相似比为________.设计意图:考查“相似多边形面积的比等于相似比的平方”的运用.4.已知两个相似三角形周长比为1∶2,它们的面积和为25,则较大三角形面积为__________.设计意图:考查“相似三角形周长的比等于相似比”和“相似三角形面积的比等于相似比的平方”的运用.5.如图,▱ABCD中,点E是AB延长线上一点,DE交BC于点F,已知BE∶AB=3∶2,S△BEF=4,求S△CDF.设计意图:结合平行四边形的性质,考查“相似三角形面积的比等于相似比的平方”的运用.五、课堂小结1.通过这节课,同学们学到了什么?(1)相似三角形周长的比等于相似比,相似多边形周长的比等于相似比.(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.(3)相似三角形面积的比等于相似比的平方.2.对本节课你有什么困惑?六、板书设计。