低温处理强化工艺(焊接接头)
- 格式:doc
- 大小:101.50 KB
- 文档页数:9
焊后热处理(PWHT)和焊后消除应力热处理的区别内容来源网络,由深圳机械展收集整理!后热处理(PWHT)工艺是指焊接工作完成后,将焊件加热到一定的温度,保温一定的时间,使焊件缓慢冷却下来,以改善焊接接头的金相组织和性能或消除残余应力的一种焊接热处理工艺。
焊后热处理工艺一般包括加热、保温、冷却三个过程,这些过程相互衔接,不可间断。
广义的焊后热处理包括下列各类热处理:消除应力;完全退火;固溶强化热处理;正火;正火加回火;淬火加回火;回火;低温消除应力;析出热处理等;另外,在避免焊接区急速冷却或者是去氢的处理方法中,采取后热处理也是焊后热处理的一种。
焊后热处理可采取炉内热处理,整体炉外热处理或局部热处理的方法进行。
焊后热处理1、焊接残余应力是由于焊接引起焊件不均匀的温度分布,焊缝金属的热胀冷缩等原因造成的,所以伴随焊接施工必然会产生残余应力。
消除残余应力的最通用的方法是高温回火,即将焊件放在热处理炉内加热到一定温度和保温一定时间,利用材料在高温下屈服极限的降低,使内应力高的地方产生塑性流动,弹性变形逐渐减少,塑性变形逐渐增加而使应力降低。
焊后热处理对金属抗拉强度、蠕变极限的影响与热处理的温度和保温时间有关。
焊后热处理对焊缝金属冲击韧性的影响随钢种不同而不同。
2、热处理方法的选择焊后热处理一般选用单一高温回火或正火加高温回火处理。
对于气焊焊口采用正火加高温回火热处理。
这是因为气焊的焊缝及热影响区的晶粒粗大,需要细化晶粒,故采用正火处理。
然而单一的正火不能消除残余应力,故需再加高温回火以消除应力。
单一的中温回火只适用于工地拼装的大型普通低碳钢容器的组装焊接,其目的是为了达到部分消除残余应力和去氢。
绝大多数场合是选用单一的高温回火。
热处理的加热和冷却不宜过快,力求内外壁均匀。
3、焊后热处理的加热方法⑴感应加热。
钢材在交变磁场中产生感应电势,因涡流和磁滞的作用使钢材发热,即感应加热。
现在工程上多采用设备简单的工频感应加热。
12cr1mov焊后热处理工艺
1. 预热:将焊接接头预热至合适的温度,通常为150-250摄氏度。
预热有助于减少焊接接头的残余应力和改善焊接接头的冷脆性。
2. 焊后退火:将焊接接头进行退火处理,通常温度为690-720摄氏度,保温时间一般为2-4小时。
退火处理有助于消除焊接过程中产生的残余应力,提高焊接接头的韧性和耐蠕变性能。
3. 淬火和回火:对于某些情况下要求更高强度的焊接接头,可以进行淬火和回火处理。
淬火可在880-900摄氏度下进行,保温时间一般为30分钟至1小时;回火温度一般为660-680摄氏度,保温时间为1-2小时。
4. 低温时效处理:在某些高强度和耐蠕变要求的情况下,焊接接头可以进行低温时效处理。
该工艺通常在630-650摄氏度下进行,保温时间为1-4小时。
需要根据具体的焊接接头要求和使用条件来选择适当的热处理工艺。
同时,在热处理过程中应注意控制温度和保温时间,以确保焊接接头的性能和质量。
热处理工艺对2195铝锂合金低温力学性能影响规律本文系统地研究了固溶时效、固溶后分级和形变处理的工艺参数对2195Al-Li合金硬度和低温拉伸性能的影响,通过对拉伸断口的SEM观察,探讨了低温拉伸断裂行为,并对固溶时效态样品进行了较为系统的XRD和TEM研究。
结果表明:与常温相比,77K下的抗拉强度指标显著提高。
欠时效处理条件下520℃固溶,160℃×24h为优化工艺,在77K下的抗拉强度σb >590MPa,σ0.2 >470 MPa,而延伸率δ>16 %;500℃固溶35min+160℃×24h处理工艺是典型的获得高的低温塑性的工艺,77K实验条件下,其延伸率高达29.23%,σb和σ0.2分别约为484 MPa和337 MPa;未处理样品的硬度约为HB66,峰时效态硬度约为HB107-109,时效峰大约出现在60-80h;T6态试样在77K 的低温拉伸性能为:σb和σ0.2约为670 MPa,和570 MPa,与常温拉伸(约555 MPa和480 MPa)相比显著提高,δ约为9%与相应常温数据接近。
高的抗拉强度和低的延伸率指标对应于典型的层状分割断面的断口特征,层状断口的出现不仅与试样的热处理状态有关,还和拉伸实验温度有关。
固溶时效处理过程伴有再结晶发生,并产生了不同的再结晶织构。
在低的固溶温度欠时效处理条件下表现出较为强烈的(111)择优取向,提高固溶温度,出现较强烈的(220)择优取向,而在峰时效处理条件下分别出现了(220)、(311)和(200)、(311)晶面的择优取向,时效时间延长,(311)择优取向比例增强。
在固溶时效态析出相以T1相为主,兼有GP 区和少量的β′相(Al3Zr)和δ′(A13Li)相,在T6状态下,先期析出的T1相有所长大,但同时有大量T1相弥散析出。
低温下,通过分级和形变时效处理后2195铝锂合金的力学性能较常温有了显著提高,峰时效时σb提高幅度达到120MPa。
关于低温条件下B+级铸钢件焊补的探讨—转K6摇枕侧架的焊补摘要:进入冬季以来,天气转冷,气温持续降低,铸件进行焊修时产生冷裂倾向增加,造成铸件的回火率增加,对低温环境下焊接产生冷裂纹的原因分析,通过焊接热输入、焊前局部预热、焊后保温等的控制,防止冷裂纹的产生,保证低温焊接质量。
通过探伤数据的收集分析,验证焊补的质量,降低铸件的回火率,达到降低生产成本的目的。
关键词:焊补;冷裂纹;温度一、概论我公司(南车长江铜陵车间有限公司)主要从事火车关键零部件的生产,其中转K6摇枕侧架是生产的主要产品之一,是组成火车转向架的关键部件,其质量关系到火车的运行。
多年来,伴随着我国铁路货运量的不断增加,我国铁路运输向高速和重载方向发展,转向架侧架摇枕的运用条件日趋苛刻,为使铁路车辆铸件质量满足重载提速的要求,确保铁路营运的安全,铁路货车K6摇枕、侧架铸件采用B+级钢生产。
众所周知,铸件浇注中由于砂型关系,表面常会出现铸造缺陷,就需要在清理工序进行补焊等工作。
在转K6摇枕侧架的表面清理工作中,为了操作方便灵活,采用焊条电弧焊对其进行焊补,因此摇枕侧架在清理过程中焊修质量保证也显得非常重要。
由于我公司位于江南地带,随着冬季天气变化,温度较低,而车间无良好的保温设施,车间环境温度低,直接影响到铸件的焊补质量。
为了保证铸件的整体质量,重要部位的焊补是绝对不允许有缺陷产生的。
通过严格控制焊接工艺[3]等有效的方式进行焊接缺陷产生的控制,不仅能保证铸件的的质量还能减少铸件清理中的生产成本。
二、B+级钢性能及焊接性的分析B+级铸钢(ZG25MnCrNi)K6摇枕侧架理论及实际化学成分见下表一所示,力学性能见表二。
表一 B+级铸钢化学成分表二B+级铸钢力学性能根据碳当量来分析B+级铸钢的焊接性,通过上述化学成份,B+级钢的碳当量在0.3~0.5范围内,焊接性较好,正常情况下不需要焊前预热。
三焊补中冷裂纹的产生分析焊接缺陷的产生因素是多方面的,进入冬季,厂房环境温度随着天气的不断变化,铸件表面温度降低,由于车间保温措施较差,大门关闭不严,致使厂房温度与环境温度相差不大。
3.5ni低温钢的焊接工艺
3.5Ni低温钢是一种常用于低温工况下的钢材,通常用于制造低温容器、储罐和管道等设备。
在焊接3.5Ni低温钢时,需要选择合适的焊接工艺以确保焊缝的质量和性能。
以下是一种常用的焊接工艺:
1. 焊接材料选择:选择适合焊接3.5Ni低温钢的电焊条或焊丝。
常用的焊接材料有E8018-C3型电焊条和ER80S-Ni2型焊丝。
2. 预热:对于较厚的工件,在焊接前需要进行预热处理。
预热温度一般为150°C至250°C,可以提高焊接接头的可塑性和减少焊接应力。
3. 焊接方法:常用的焊接方法有手工电弧焊、埋弧焊和气体保护焊(如TIG焊)。
具体选择哪种焊接方法,取决于焊接材料的厚度、焊接位置和要求。
4. 接头准备:在焊接之前,需要将接头表面清理干净,去除油脂、锈蚀和其他污染物。
可以采用机械清理、喷砂或
刮削等方法。
5. 焊接参数:根据焊接材料和工件厚度确定合适的焊接电流、电压和焊接速度。
焊接参数的选择对焊缝质量和性能具有重要影响。
6. 焊后处理:焊接完成后,需要进行后续的热处理和冷却过程。
这可以通过退火、正火和淬火等方法来改善焊接接头的组织和性能。
需要注意的是,焊接3.5Ni低温钢时应严格按照相应的焊接规范和标准操作。
此外,还应注意焊接过程中的安全措施,如佩戴防护眼镜和手套,确保人身安全。
低温碳钢与镍基合金复合管的焊接工艺探讨关键词:低温碳钢;镍基合金复合管;焊接工艺本研究项目主要是将低温碳钢带 Inconel 625 合金内衬作为母材的复合管线,对其进行积极的异种钢焊接工艺开发。
项目运行过程中管线输送介质设置为天然气。
管线母材材质主要是ASTM A333 Gr.6,管内壁将 3 mm 厚的 CLAD UNS N06625镍基耐蚀合金当作防腐层。
1.母材焊接性研究在对焊接工艺进行评定的时候,需要将母材温度控制为-50 ℃,复合层需要UNS N06625(Inconel 625)镍基耐蚀合金,ASTM 标准中对材料的化学成分进行详细规定[1]。
低温钢母材和镍基层在化学成分方面具有较大的差异,但是其在进行焊接的过程中,需要将合金元素从镍基合金逐渐扩散为低温钢,从而保证镍基层的合金元素稀释,将材料组织的性能改善,防止各种稀释现象的出现,整个过程中需要将高合金成分作为焊材,利用的焊接方法为浅熔深方法。
1.1具有氧化性能较强的特点镍基合金的一个显著特点在于易氧化。
在整个进行焊接的过程中,一定要详细的做好气体保护,如果镍基层在焊接的过程中发生氧化现象,就会直接导致接头性能降低。
1.2熔池金属相对流动性差镍基合金焊缝的显著特点就是金属流动性差,这就需要在进行焊接的过程中,加强对各种摆动工艺的利用,尽量在焊接的过程中使用短的电弧,这样可以从根本上防止咬边产生。
1.3热输入温度控制在进行镍基合金焊接的时候,如果热输入的温度过高,其中就会有碳化物在合金晶界析出,这就属于是敏化现象。
所以必须要加强对热输入温度控制,用较低的热输入和控制层间温度实现镍基合金焊接。
2焊接工艺2.1焊接方法和焊材在焊接之前,要想保证焊接的性能,就要提前对焊接性进行分析,一般情况下,我们可以选择GTAW和SMAW相结合的方法进行焊接,焊丝和焊条的选择需要严格根据化学成分表分析。
2.2做好焊前准备在焊前需要将试验母材确定为Φ508×79.8×300 mm,焊接位置设定为6G。
Q355CQ355C 钢板是中厚板钢材中的一种,其主要应用于桥梁、车辆、建筑等领域。
但在极端条件下,如低温环境下,其机械性能会受到影响。
因此,如何改善Q355C 钢板在低温下的性能,是一个需要解决的问题。
超低温焊接技术是一种有效的针对低温条件下钢材性能提升的方法。
超低温焊接技术是指焊接温度低于零下60℃的特殊焊接技术,它能够提高焊接接头的组织和性能。
本文将研究Q355C 钢板超低温焊接接头组织与性能,以期为Q355C 钢板在低温下的应用提供一定的参考价值。
一、Q355C 钢板超低温焊接接头组织研究1.超低温焊接接头组织特点焊接接头的微结构直接决定了其力学性能。
因此,在研究Q355C 钢板超低温焊接接头的力学性能前,需要了解其微结构特征。
超低温焊接接头组织特点主要表现在两个方面:( 1)焊接接头出现大量的残留奥氏体。
因为焊接过程中,焊缝中心温度降低,过冷奥氏体比温度高奥氏体更容易形成。
由于过冷奥氏体的形成和转变是一种放热过程,因此焊接接头中会形成大量的残余过冷奥氏体。
( 2)焊接接头中的晶界结构发生了变化。
焊接接头中的晶粒受到高热输入和快速冷却的影响,会出现各种晶界类型的结构。
同时,还会出现晶粒紧密度不一致、晶粒结构分化等现象。
2.超低温焊接接头组织调控超低温焊接接头的微结构可以通过合理的调控得到一定程度的改善。
目前主要的调控方法有三种:( 1)热处理法。
通过对焊接接头进行热处理,可以减少残留奥氏体的含量,并促进过冷奥氏体转变为马氏体。
同时,还可以调控晶界结构,减少缺陷的形成。
( 2)化学成分调整法。
通过调整焊接接头的化学成分,可以影响其奥氏体的含量和转变过程。
比如,在焊接过程中加入适量的氮元素,可以促进过冷奥氏体转变为马氏体,并增加焊接接头的强度和塑性。
( 3)焊接工艺优化法。
通过优化焊接工艺参数,可以减少焊接接头的热输入,降低焊接接头中的过冷奥氏体含量,从而减少残留奥氏体的形成。
以上三种方法可以结合使用,得到更好的超低温焊接接头组织。
低碳低合金焊高强度钢(调制钢)焊接简要工艺方案1范围本焊接工艺方案规定了XXXXX您司钢制结构件生产现场组装及焊接的基本规则和要求;本焊接工艺方案适用丁XXXXX松司碳素结构钢、普通低合金结构钢、低合金调质钢的焊接;本通用焊接工艺方案适用丁XXXXX松司各产品零部件的焊条电弧焊、气体保护焊、氯弧焊。
2引用标准下歹0方案所包含的条文,通过在本标准中的引用而构成为本标准的条文。
本标准发布时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准的最新版本的可能性。
JB-T 9186 二氧化碳气体保护焊工艺规程GB/T324 焊接符号的表示方法GB/T 324 焊缝符号表示法GB/T 985 气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式和尺寸GB/T 8110 碳钢、低合金钢气体保护焊焊丝GB9448 焊接与切割安全3基本要求3.1对操作者的要求3.1.1焊工必须经过焊接理论学习和实作培训,经考核合格取得相应证书后方可上岗从事相应的焊接工作。
严禁实习生对产品进行焊接操作。
3.1.2操作者应按照工艺文件的要求进行操作,同时操作者应熟知自己所施焊的工件材料、焊接材料及焊接规范。
32对焊接设备及附属装置的要求—3.2.1对焊机及附届设备进行日常检查,应确保电路、水路、气路及机械装置的正常运行。
3.2.2对焊接机要求:1、逆变全数字式焊机2、拥有稳定可靠的焊接性3、焊接条件调节范围宽广、高速焊接性优良、飞溅发生量少4、拥有焊接参数存储功能(推荐OTCCPVM-500/XDS-500 焊机)3.2.3焊接设备仪表装置应准确可靠,应定期进行检修及维护;当设备出现异常时应立即停机,禁止使用,同时通知设备维修人员进行维修。
3.2.4对保温桶的使用要求:烘干后的低氢碱性焊条须放置在保温桶中,随取随用;取出焊条后,应将保温桶盖盖好,并通电保温。
3.3对焊接材料及原材料的要求3.3.1焊接材料包括焊条、焊丝和保护气体。
低合金高强度钢的焊接工艺1)焊接方法的选择低合金高强度钢可采用焊条电弧焊、熔化极气体保护焊、埋弧焊、钨极氩弧焊、气电立焊、电渣焊等所有常用的熔焊及压焊方法焊接。
具体选用何种焊接方法取决于所焊产品的结构、板厚、堆性能的要求及生产条件等。
其中焊条电弧焊、埋弧焊、实心焊丝及药芯焊丝气体保护电弧焊是常用的焊接方法。
对于氢致裂纹敏感性较强的低合金高强度钢的焊接,无论采用那种焊接工艺,都应采取低氢的工艺措施。
厚度大于100mm低合金高强度钢结构的环形和长直线焊缝,常常采用单丝或双丝载间隙埋弧焊。
当采用高热输入的焊接工艺方法,如电渣焊、气电立焊及多丝埋弧焊焊接低合金高强度钢时,在使用前应对焊缝金属和热影响区的韧性能够满足使用要求。
2)焊接材料的选择低合金高强度钢焊接材料的选择首先应保证焊缝金属的强度、塑性、韧性达到产品的技术要求,同时还应该考虑抗裂性及焊接生产效率等。
由于低合金高强度氢致裂纹敏感性较强,因此,选择焊接材料时应优先采用低氢焊条和碱度适中的埋弧焊焊剂。
焊条、焊剂使用前应按制造厂或工艺规程规定进行烘干。
为了保证焊接接头具有与母材相当的冲击韧性,正火钢与控轧控冷钢焊接材料优先选用高韧性焊材,配以正确的焊接工艺以保证焊缝金属和热影响区具有优良的冲击韧性。
3)焊接热输入的控制焊接热输入的变化将改变焊接冷却速度,从而影响焊缝金属及热影响区的组织组成,并最终影响焊接接头的力学性能及抗裂性。
屈服强度不超过500MPa的低合金高强度钢焊缝金属,如能获得细小均匀针状铁素体组织,其焊缝金属则具有优良的强韧性。
而针状铁素体组织的形成需要控制焊接冷却速度。
因此为了确保焊缝金属的韧性,不宜采用过大的焊接热输入。
焊接操作上尽量不用横向摆动和挑弧焊接,推荐采用多层窄焊道焊接。
热输入对焊接热影响区的抗裂性及韧性也有显著的影响。
低合金高强度热影响区组织的脆化或软化都与焊接冷却速度有关。
由于低合金高强度钢的强度及板厚范围都较宽,合金体系及合金含量差别较大,焊接时钢材的状态各不相同,很难对焊接热输入作出统一的规定。
09MnNiDR低温钢焊后热处理工艺分析摘要:09MnNiDR低温钢在进行加工或安装时需要进行两次以上的热处理,这会使材料焊接接头的综合力学性能出现显著改变,特别是低温状态条件下冲击韧性大幅度下降,为压力容器的安全运行带来安全隐患。
本研究以现场可能出现的焊后热处理工艺为条件,选取550℃、575℃以及600℃三个温度条件进行热处理,研究固定温度下不同保温时间对焊接接头综合力学性能的影响。
关键词:低温钢;焊接;热处理09MnNiDR钢在低温应用场景中较为常见,这种钢材因镍元素加入具有低温条件下的材料机械强度稳定性,同时具有良好的韧性,在低温压力容器中取得了广泛应用。
低温压力容器在完成焊接过程后应通过热处理进行焊接应力消除,根据现场安装条件不同对低温压力容器可能需要两次或三次热处理才能完全消除应力,这就导致局部材料受到反复加热。
由于在现场进行压力容器热处理时需要规格较大的结构件进行热处理,在这种情况下结构件的升温过程以及降温过程都非常缓慢,这就导致压力容器高温保温停留时间远超过工艺规定时间。
此时与焊接工艺有关的各种材料组织结构会出现明显变化,导致该材料综合力学性能下降,尤其对冲击韧性造成严重影响。
为了确保低温容器09MnNiDR钢的结构完整性以及安全性,需要对现场可能出现的热处理工艺进行分析研究,明确不同焊后热处理工艺对焊接接头性能的影响,以期为焊后热处理工艺设置提供借鉴和参考。
1试验材料和方法选择09MnNiDR钢板作为试验材料进行研究,钢板的厚度为90毫米,钢板经过正火与回火处理后交货,处理温度分别为885℃正火与625℃回火,化学成分如表1所示。
表1 09MnNiDR钢板化学成分(w/%)09MnNiDR钢的抗拉强度为466MPa,冲击功为258KJ。
采用SAW工艺进行焊接操作,焊接坡口为双U型,采用埋弧焊进行焊接,焊丝直径φ4.0 mm, 牌号为CHW-S13,焊剂为CHF710,进行100℃预热并使用590A的电流、33V的电弧电压进行试验,焊接速度控制在每分钟400~450毫米,平均每厘米的热输入量为35KJ,焊道间的温度控制在100~200℃之间。
深冷处理工艺及设备
一、什么是深冷处理?
深冷处理是将金属在-150℃下进行处理,使柔软的残余奥氏体几乎全部转变成高强度的马氏体,并能减少表面疏松,降低表面粗糙度的一个热处理后工序,当这个工序完成后,不仅仅是表面,几乎可以使整个金属的强度增加,耐磨性增加,韧性增加,其他性能指标改善,从而使得模具和刀具翻新数次后仍然具有高的耐磨性和高的强度,寿命成倍增加。
而未进行深冷处理的刀剪产品,翻新后寿命会显著降低。
深冷处理不仅应用于刀剪产品,而且能应用于制作刀剪产品的模具上,同样可以使模具寿命显著提高。
二、深冷处理的机理
1、消除残余奥氏体:
一般淬火回火后的残余奥氏体在8~20%左右,残余奥氏体会随着时间的推移进一步马氏体化,在马氏体转变过程中,会引起体积的膨胀,从而影响到尺寸精度,并且使晶格内部应力增加,严重影响到金属性能,深冷处理一般能使残余奥氏体降低到2%以下,消除残余奥氏体的影响。
如果有较多的残余奥氏体,强度降低,在周期应力作用下,容易疲劳脱落,造成附近碳化物颗粒悬空,很快与基体脱落,产生剥落坑,形成较大粗糙度的表面。
2、填补内部空隙,使金属表面积即耐磨面增大:
深冷处理使得马氏体填补内部空隙,使得金属表面更加密实,使
耐磨面积增加,晶格更小,合金成分析出均匀,淬火层深度增加,而且不仅仅是表面,使翻新次数增加,寿命提高。
3、析出碳化物颗粒:
深冷处理不仅减少残余马氏体,还可以析出碳化物颗粒,而且可细化马氏体孪晶,由于深冷时马氏体的收缩迫使晶格减少,驱使碳原子的析出,而且由于低温下碳原子扩散困难,因而形成的碳化物尺寸达纳米级,并附着在马氏体孪晶带上,增加硬度和韧性。
深冷处理后金属的磨损形态与未深冷的金属显著不同,说明它们的磨损机理不同。
深冷处理可以使绝大部分残余奥氏体马氏体化,并在马氏体内析出高弥散度的碳化物颗粒,伴随着基体组织的细微化,这种改变无法用传统的金属学,相变理论来解释,也不是以原子扩散形式来进行的,一般 -150℃~-180℃下,原子已经失去了扩散能力,只能以物理学能量观点来解释,其转变机理目前尚未研究清楚。
因此有待人们进一步探讨。
4、减少残余应力;
5、使金属基体更加稳定;
6、使金属材料的强度、韧性增加;
7、使金属硬度提高约HRC1~2;
8、红硬性显著增加;
部分材料处理效果
Cryogenic Tempering - Documented Gains For All Types Of Metals
深冷处理-受益记录
Comparison chart between -120 degree F shallow quenching vs. -310 degree F deep cryogenic tempering
对比表:在-80℃下与在-190温度下处理的对比
国外某公司经过降温+保温48小时后所测的寿命。
与国内相近钢号:
M2-W6Mo5Cr4V2M7-W6Mo5Cr4V2Co5 M42-W2Mo9Cr4VCo8 D2-Cr12Mo1V1 S7-4-2-5-W7Mo4Cr4V2Co5 316-00Cr17Ni14Mo2 从以上表格中可以看出:
1、只要经过冷处理,就会有效果
2、同样的深冷处理工艺因材质不同而效果不同
3、同样的深冷处理工艺因工件形状不同而效果不同
4、温度越低,效果越好
5、时间越长,效果越好
6、深冷处理后材料的耐腐蚀性有所提高
三、深冷工艺
通常的深冷处理,是按照降温,保温,和升温三个阶段来进行的。
1、通用的深冷处理工艺:
以每分钟降低0.25~0.5℃以内的速度,降低到-185℃,降温时间约12小时,然后保温24~36小时,再缓慢的以每分钟降低0.25~0.5℃以内的速度升到室温或更高温度(+160℃)
℃
以下)。
吉列公司就是用上述曲线。
2、各阶段的意义
(1)降温阶段
缓慢降温的目的是彻底消除残余应力。
因为淬火和回火的过程中,金属基体内会产生残余应力,在残余奥氏体在向马氏体转变的过程中,发生体积膨胀,也会使得残余应力增加,只有缓慢降温,才能抵消残余应力的增加,并彻底消除残余应力。
基体内的残余应力一般情况下大家不予重视,但正是基体内的残余应力,使得刀剪产品产生崩裂等缺陷。
快速降温反而会增加残余应力。
(2)保温阶段
保温的目的是使基体内的残余奥氏体尽可能的全部转变为马氏体,并尽可能多的产生碳化物颗粒,因为残余奥氏体向马氏体转变的过程是个缓慢的过程,保温时间的长短会影响到残余奥氏体转变的量,同时深冷后寿命的高低主要是保温时间的长短来决定的,通常情况下,保温2~4小时性能已经有所改善,但如果是高质量的产品,均需要使用24小时以上的保温时间,寿命的提高倍数与保温时间的长短有直接关系。
(3)升温阶段
缓慢升温的过程主要目的就是防止残余应力的产生。
国内深冷处理的研究因设备的限制一般采用液氮直冷法,即工件直接放入液氮内,保温时间比较短,一般保温时间与直径(mm)一致,这种办法会很大程度的增加残余应力,虽性能有所改善,但毕竟不是一种安全可靠的方法。
升温阶段一般升到室温即可,如果考虑到零件的特殊用途,如工作温度比较高等,可以再缓慢升到+160℃。
从深冷的机理可以看出,以上的工艺曲线与材料的材质及大小关系不大,只是处理后的效果因材料因素而不同,国外几乎所有的工模具,刀剪,量刃具等都采用这种工艺进行深冷处理,而我国一些企业因为成本的原因,往往采用偷工减料的办法,所以成效不高。
3、深冷处理最佳时机
一般认为,深冷处理应该在工件淬火回火后两个小时内处理效果最好,因为残余奥氏体随着时间的推移会逐步向马氏体转变,而且转变后的马氏体会进行固化,从而析出碳化物的能力降低。
四、深冷处理目前国内外的发展状况
上世纪30年代,人们发现在阿尔啤斯雪山放工具一段时间后比较好用,并且用的时间更长。
美国研究人员于1965年发现深冷处理可以使工模具刀具耐磨性增加,日本、德国、俄罗斯等国诸多学者也相继开展了深冷处理技术的研究工作,上世纪七十年代,美国深冷处理工艺在工模具、刀剪、量具上进行应用,大范围应用是在上世纪八十年代,目前美国和欧洲的模具,刀剪等行业已经应用普遍,并且有很多专业深冷处理加工厂,利用现成的工艺为客户进行深冷处理,并承诺无效退款。
瑞士军刀和吉列公司的剃须刀片均进行过深冷处理。
我国深冷处理的研究相对较晚,真正理论性的研究几乎很少,大部分是一些外资企业进到中国后带来的技术,主要应用在一些旨在消
除残余奥氏体等简单应用上,对于深层次的应用尚待时机,特别是刀剪行业,更是微乎其微。
质量上台阶,寿命的提高,增强国际竞争力,需要进行这方面的研究和应用,可以肯定的说,将来的产品一定会走这条路的。
制约国内发展的原因:
1.资料甚少,应用不广,造成信息不通畅。
2.持怀疑态度,能否真的增加寿命?
3.液氮来源不畅,价格不菲。
4.增加成本,售价不会增加,这是主要制约因素。