太阳能光伏组件常见质量问题现象及分析
- 格式:pptx
- 大小:3.95 MB
- 文档页数:23
太阳能光伏系统质量问题整改记录一、引言太阳能光伏系统作为一种新兴的可再生能源发电技术,具有清洁、可持续和环保的优势,被广泛应用。
然而,在实际运营中,我们发现太阳能光伏系统存在一些质量问题,为了保证系统的正常运行和发电效率,我们制定了整改方案并进行了相应的改进措施。
二、质量问题分析1.组件效率下降在日常运行中,我们发现部分太阳能光伏组件的发电效率存在明显下降的问题。
经过调查和测试,我们发现主要原因是组件表面被积尘和污垢覆盖,影响了太阳辐射的吸收和转换效率。
2.电缆接头故障另外,一些太阳能光伏系统出现了电缆接头接触不良的问题,导致电流传输不畅,影响了整个发电系统的正常运行。
三、整改方案为了解决上述质量问题,我们制定了以下整改方案:1.定期清洗组件我们将建立定期清洗组件的制度,确保组件表面的积尘和污垢得到有效清除。
清洗操作将在清晨或傍晚进行,避免高温时对组件造成损害。
2.强化检查和维护我们将加强对电缆接头的检查和维护工作,确保接触性能良好。
定期对接头进行紧固、清洁和检测,发现问题及时修复,避免故障发生。
3.加强培训和管理为了提高系统运维人员的技能水平,我们将加强培训,并建立健全的管理制度。
确保系统管理人员具备必要的专业知识和技能,能够及时发现和解决系统运行中的质量问题。
四、改进措施除了整改方案外,我们还采取了以下改进措施:1.优化系统设计在新项目的设计阶段,我们将根据实际情况进行系统设计优化,考虑光照条件、安装角度等因素,以提高系统的光电转换效率和整体发电性能。
2.加强供应商管理我们将加强对太阳能光伏系统供应商的管理,对产品质量和服务水平进行评估,确保所采购的设备符合标准要求,并能提供长期的售后支持。
3.建立完善的监测系统为了及时发现系统运行中的问题,我们将建立完善的监测系统,对关键参数进行实时监测和数据分析,以便及时采取相应的措施,保障系统的正常运行。
五、总结通过以上的整改措施和改进方案,我们相信太阳能光伏系统的质量问题将得到有效的解决。
光伏组件故障分析光伏组件是太阳能发电系统的核心部件,它负责将太阳光能转化为电能。
然而,在使用过程中,光伏组件可能会出现各种故障,例如温度过高、光照不均匀、灰尘积累等。
这些故障都会导致光伏组件的发电效率降低,甚至影响到整个发电系统的正常运行。
因此,对光伏组件的故障进行及时分析和处理至关重要。
首先,温度过高是光伏组件故障的常见原因之一、高温会导致光伏组件的屏幕温度升高,进而降低组件的发电效率。
导致高温的原因可能有很多,包括高环境温度、组件正常工作时的热量、组件间隙不足以散热等。
针对这个问题,可以采取增加散热装置、增加组件间隙、降低组件温度等措施来解决。
其次,光照不均匀也是光伏组件故障的常见原因。
光伏组件只有在有足够的太阳光照下才能正常发电,如果光照不均匀,部分组件的发电效率会受到影响。
导致光照不均匀的原因可能有树木遮挡、建筑物阻挡等。
解决这个问题的方法可以是优化组件布局,避免遮挡物对组件的影响。
另外,灰尘积累也是光伏组件故障的常见原因之一、随着时间的推移,光伏组件表面会积累一层灰尘。
这些灰尘会遮挡太阳光的入射,导致组件的发电效率降低。
解决这个问题的方法可以是定期清洁组件表面,保持其干净。
此外,光伏组件还可能存在接触不良、连接器松动、线路断开等故障。
这些故障会导致光伏组件无法正常工作,影响发电效率。
解决这些问题的方法可以是定期检查组件的连接线路,确保其牢固可靠。
另外,有条件的话,可以使用红外热像仪来检测组件的故障。
总之,光伏组件故障分析对于太阳能发电系统的正常运行至关重要。
在分析故障时,我们需要找出故障的原因,并采取相应的措施来解决。
对于温度过高的问题,我们可以增加散热装置和组件间隙,降低组件的温度。
对于光照不均匀的问题,我们可以优化组件布局,避免遮挡物对组件的影响。
对于灰尘积累的问题,我们可以定期清洁组件表面,保持其干净。
对于接触不良、连接器松动、线路断开等问题,我们可以定期检查组件的连接线路,并使用红外热像仪来检测故障。
光伏组件常见的故障
1. 热斑:热斑是指在光伏组件中由于部分电池片受到遮挡或损坏,导致该部分电池片产生过热现象。
热斑会降低光伏组件的输出功率,并可能引起电池片的老化和损坏。
2. 隐裂:隐裂是指在电池片内部出现的细微裂纹,通常无法直接观察到。
隐裂会降低电池片的转换效率,并可能导致电池片的开路或短路。
3. 功率衰减:随着时间的推移,光伏组件的输出功率可能会逐渐下降,这称为功率衰减。
功率衰减的原因可能包括电池片的老化、灰尘和污垢的积累、以及温度和湿度等环境因素的影响。
4. 旁路二极管失效:旁路二极管用于保护光伏组件免受反向电流的损害。
如果旁路二极管失效,可能会导致光伏组件在反向电流时受到损坏。
5. 连接失效:光伏组件之间的连接可能会出现松动、腐蚀或断开等问题,导致组件之间的电流传输受阻或中断。
6. 玻璃破裂:光伏组件的玻璃表面可能会因为受到冲击、温度变化或其他原因而破裂。
玻璃破裂会影响组件的绝缘性能和机械强度。
7. 接线盒故障:接线盒是光伏组件的电气连接部分,如果接线盒出现故障,如密封不良、接线松动或腐蚀等,可能会导致电气连接失效。
为了确保光伏组件的正常运行,需要定期进行检查和维护,及时发现和处理潜在的故障。
此外,在安装和使用光伏组件时,应遵循相关的安装和操作规范,以减少故障的发生。
光伏组件短路的原因
光伏组件是一种将太阳能转化为电能的装置,具有环保、可再生等优点,在如今的能源转型中发挥着重要作用。
然而,就像其他电子设备一样,光伏组件也会出现故障。
其中,短路是一种常见的故障现象。
下面将从不同角度解析光伏组件短路的原因。
一、材料质量问题
光伏组件是由多个太阳能电池片组成的,而电池片的材料质量直接影响着组件的性能。
如果电池片材料存在缺陷,例如表面存在微小的裂纹或缺陷,那么在光照下,这些缺陷可能会导致电流短路,使整个组件失效。
二、制造工艺不当
光伏组件的制造过程复杂,需要经过多道工序。
如果制造工艺不当,例如焊接过程中接触不良、焊点接触不牢固等问题,都可能导致光伏组件出现短路。
此外,组件背板的安装过程中,如果安装不稳固或存在短路风险的接触,也可能引起短路现象。
三、环境因素影响
光伏组件通常安装在户外,长时间暴露在恶劣的环境中。
例如,高温、潮湿、腐蚀性气体等因素都会对组件产生一定的影响。
如果组件的密封性不好,容易受到湿气侵入,导致电池片内部发生短路。
此外,如果组件表面积聚了大量灰尘或污垢,也会导致电流短路。
四、人为操作失误
在光伏组件的安装和维护过程中,如果操作不当或维护不及时,也可能引发短路问题。
例如,安装时未正确连接电缆,或者在维护过程中未及时清洁组件表面,都可能导致短路。
光伏组件短路的原因多种多样,涉及材料质量、制造工艺、环境因素和人为操作等多个方面。
为了减少光伏组件短路的发生,我们应该选购质量可靠的组件,确保制造工艺的合规和环境的良好保护,同时加强对组件的安装和维护,以提高光伏系统的可靠性和稳定性。
光伏组件和汇流箱常见故障处理
1.自身破坏或损坏
①晶硅片的摩擦损坏、碰撞损坏:检查太阳能板的表面,看是否有摩
擦受伤或者碰撞受伤,太阳能电池板的碰撞损坏(太阳能电池片和玻璃直
接贴合),会影响整板的终端电压,短路电流也会减少,从而影响太阳能
组件的总输出功率,偷走系统效率和可靠性,因此应尽快修复;
②易损件的损坏:太阳能电池板需要使用密封胶密封,如果密封胶发
生损坏,会导致太阳能电池板损坏。
此外,太阳能组件不推荐使用极性反接,正极和负极要仔细区分,避免出现短路,从而导致太阳能组件的损坏。
2.部件的损坏
①绝缘性能差:如果太阳能电池板有存在绝缘性能差的现象,会影响
太阳能电池板的正常工作,可以检查绝缘纸的破损、太阳能纤维、接头等,如果有绝缘性能差的情况,就要及时处理。
21)层压机未及时抽空(加压过程挤不出);2)真空泵问题,或硅胶板破、硅胶条不严密导致;真空度或压力不够;3)来料不良,例如EVA含有水分子;空气被密封在EVA胶膜内;4)EVA裁剪后,放置时间过长,它已吸潮;5)层压时间过长或温度过高,使有机过氧化物分解,产出氧气;1)层压人员随时检查真空表显示值,要有预防措施;2)维护真空泵的同时,对硅胶板的使用寿命要严格控制;3)注意EVA放置的周围环境和使用时间;4)延长真空时间 检查层压机的密封圈检查真空度和抽气速率;5)检查抽气速度 加快硅胶板下压速度 降低层压温度 ,使用表面压花的EVA膜 检查加热板温度 ;人员、反光检验及层压员也可能造成);2)来料不良,或过程中掉至,(由于EVA、背板、小车子有静电的存在,把飘在空气中的头发,灰尘及一些小垃圾吸到表面);的材料有质检意识;2)反光检验员提高质检意识,仔细,负责任的检验,重中之重;3)做好6S管理,保持周边工作环境的整太阳能组件生产过程主要不良现象造成的原因及纠正措施(以下图片仅仅是一种不良现象代表)1不良图片不良原因纠正措施1)提高来料质检的力度和方法;2)对串焊台及时清理。
包括单焊人员的质量意识(同时控制焊接手势);3)对层压机的维护,提高加压阶段的稳定性;4)对新员工的培训,包括盖层压布的手势并对现场指导为主;1)电池片本身质量,隐裂所致(暗伤)加上EVA的流动性;2)焊珠顶破或者焊锡堆积过厚;3)层压机加压阶段压力大导致;4)EVA不平整(鼓包现象严重);5)层压人员盖层压布布手势不正确;6)单串焊手势过重致使造成;未按工艺要求(离起焊点绝缘边3-4mm);裂片气泡1)单焊人员焊接速度过快,及辅焊带手势不对;2)焊带规格与电池片主栅线不匹配,容易露白;虚焊导致(层压后);3)新员工不知,更加容易造成;1)通过培训加强新老员工的焊接手势及质量意识,对其问题引起重视;焊问题的产生;31)主要原因帽子佩戴不严密(主要集中排版人员、反光检验及层压员也可能造成);2)来料不良,或过程中掉至,(由于EVA、背板、小车子有静电的存在,把飘在空气中的头发,灰尘及一些小垃圾吸到表面);1)确保佩戴帽子严密,同时要对所用到的材料有质检意识;2)反光检验员提高质检意识,仔细,负责任的检验,重中之重;3)做好6S管理,保持周边工作环境的整洁,并勤洗衣裤做好个人卫生;41)排版人员不经意将残留焊条溅进,(往往是手套毛丝钩进导致,剪的过程飞入);2)剪多余焊带时未一刀剪下,多次剪所致;3)拿第一张EVA碰到排版桌边的PET,其粘在EVA上;非排版人员帮贴PET过程碰到桌上的PET致其渐入组件内;1)对剪下的残留焊带要一一放入盒子,统一回收,切忌,养成习惯性动作!!!保持排版台的干净整齐;2)反光检验员得仔细,做到心中有数!3)改善焊带长度;4)排版人员拿EVA要养成良好的手势,勿使EVA接触PET;51)单焊时,重复焊接导致焊锡堆积(焊锡丝过量),串焊过程致使焊锡溅出;单焊造成焊锡黏在单片上;2)串焊盒未清理干净,有焊锡,致排版过程掉入;1)保重焊接手势正确,勿重复焊接,确保一次性拉到位;多其过程出现的焊锡及时清理,保证焊接台面的整洁;2)时刻擦洗串焊磨具台和串焊盒,预防焊锡、焊渣等调入;3)反光检验要认真检查,尤其是头尾焊锡,易造成短路;露白发丝焊条/焊屑/PET焊锡12131)排版人员漏剪导致,尤其是上下班更易出错;1)要对剪焊带有个习惯,一定的顺序(从左往右),对每次剪完后要自觉检查一次 ;2)反光检验要认真负责,有条理的检查;3)更改汇流条设计尺寸,最合理化;141)排版人员未控制汇间距(PET贴的过紧);2)EVA收缩导致间距不足;1)利用黄蜡板的间距,一一焊接;2)汇流条间更改PET贴法的工艺;3)移上下距离时重新检验一遍;4)反光检验要认真负责,有条理的检查;151)分选人员存在颜色误区(应区分单片的浅、中、深);2)更换一道中的不良单片导致其中一片存在色差;3)单焊人员色差意识低导致;4)修复人员更换单片容易造成色差;1)分选人员严格把控色差,统一分类;2)对更换不良单片要说明色差情况;3)单串焊人员要有自检意识,杜绝色差流入下道工序;4)反光检验人员要仔细检查,对色差及时反馈与改组;5)修复人员返修前要查看其色差问题;剪汇流条未剪色差汇流条间距16171)反光检验处汇流条划痕;2)割边过程拿刀手势不正确导致;3)装框过程角码掉落;4)清理背面胶过程刀片划至;5)裁剪过程刀片划伤及排版过程刀片划至;1)反光检验台上有随工单遮住汇流条引出端;2)对新员工的培训及组长的指导;3)清理过程要求品质意识,注意拿刀片的手势;4)裁剪背板时要时刻注意拿刀方向;181)EVA与玻璃间脱层,原因①EVA问题(粘结剂不足)②玻璃含有油污,灰尘等1)首先品质过程巡检及工艺员要有敏感有必要对层压后抽检;2)强化对EVA实验,尽量细化,及时反馈与供应商;1)条形码受潮;2)层压机加热板温度过高;1)保证条形码储存在干燥的环境,或提前几天打印;2)层压后有层压员负责对其擦洗(橡皮、酒精);背板划伤剥离强度不合格焊条码糊211)焊接手势过重导致缺角;或焊接工艺不达标(起收点间距未控制好);2)排版人员剪汇流条过急碰到单片,易造成缺角;1)通过培训提高焊接工艺要求;2)在排版过程时拿电池串要稳拿稳放;剪汇流条时要细心,力道不要太大;1)焊带、电池片及助焊剂不匹配;1)对每批次电池片工艺员要确认焊带、电池片及助焊剂的匹配性;3)控制标准的焊接环境温湿度;19201)焊台电烙铁温度设置偏高;2)焊接时间过长;3)黄蜡板孔未对住;1)定时对其焊台温度的抽检;2)对黄蜡板的工艺技术改善;3)通过培训指导,注重焊斑的严重性;4)层压后检验员及时与改组反馈问题;1)绝缘层开口裁斜;2)排版人员未对其拉到位;1)保证开口完好的情况下,排版人员要对其拉到位,同时自检;2)检验员对其监督反馈;焊斑绝缘层未放到位缺角虚焊1)来料存在问题;2)过程中撞击所致或划到装框机进刀口;3)清理过程刀片划至;1)操作人员要对使用材料有自检的能力;2)装框过程要注意手势,时常查看装框后的效果;242)焊接手势及焊接速度过快;3)环境温度过高,容易造成虚焊;2)通过培训提高焊接手势及焊接时间要求;3)控制标准的焊接环境温湿度;1)长短边来料存在尺寸上的误差;2)装框机气源不足;1)来料不良导致;2)修边或装框过程与桌面硬物接触划至;3)清理正面过程刀片使用不当(过重);1)对其半成品接触的桌面采取保护措施(垫上橡胶布);2)通过培训提高清理人员的质量意识;22231)来料要加强的同时,操作人员要对使用材料有自检的能力;2)装框要有一个准备的工作,确保装框机正常运行;间距过大铝边框碰焊玻璃划伤253)清理过程刀片划至;3)抬组件时要拿稳,勿大手大脚 ;4)清理时用刀片要仔细;1)装线盒时,未对残留胶带清理干净;1)撕胶带时,容易抠起汇条至折弯;2)盖上层压布不小心导致扭曲;1)层压人员盖上层压布过程要边盖边检查(尤其是新员工) ;2)装线盒时要认真对待,巧取;271)背板上有未固化的硅胶,装线盒过程于其接触导致;1)尽量保证背板上不留多余硅胶;2)清理过程要一一检查线盒及引出线上的硅胶,确保不流入客户手中;1)对其胶带的更改(美纹纸),容易撕起;2)通过培训提高操作人员要品质意识;2826框碰伤引出线内打折引出线有硅胶引出线有残留焊带1)贴标签的手势不对,导致空气进入,引起气泡;1)贴的方向一定要顺手;确保平整,并用手抚平;291)电池片整体移位,导致条形码背铝边框遮住;2)电池片移位(背板)导致铝边框上下间距不足;1)层压前要控制其电池片上下的距离,认真对待每次层压前的距离测量,减少后道不必要的麻烦;2)盖上层压布要确保一次盖到位;1)线盒硅胶打的不均匀;2)安装线盒不够用力,未均匀的挤出,容易导致线盒脱落现象;1)打胶要符合线盒胶的工艺要求,保证均匀溢出 ;2)安装线盒时要有自检意识,不足之处及时补胶;3)成品检验要一一检查;3130背板/电池移位接线盒一角无硅胶标签内有气泡暗341)单焊过程要控制焊接工艺,尤其焊接温度,焊接手势;1)通过培训提高员工的质量意识,并现场监督焊接要求是否符合工艺要求;1)电池片本身质量,隐裂所致(暗伤)加上EVA的流动性;2)焊珠顶破或者焊锡堆积过厚;3)层压机加压阶段压力大导致;4)EVA不平整(鼓包现象严重);(离起焊点绝缘边3-4mm);1)提高来料质检的力度和方法;2)对串焊台及时清理。
光伏常见故障及其解决方法光伏发电系统是一种利用太阳能转化为电能的装置。
随着光伏技术的不断发展,光伏发电系统在各个领域得到了广泛应用。
然而,在实际运行中,光伏发电系统常常会出现一些故障,影响其正常运行和发电效率。
本文将介绍光伏常见故障及其解决方法。
1. 组件故障:光伏组件是光伏发电系统的核心部件,负责将太阳能转化为电能。
常见的组件故障包括组件破损、老化、温度过高等。
解决方法是定期检查组件表面是否有裂纹或腐蚀现象,并及时更换老化或损坏的组件。
2. 逆变器故障:逆变器是光伏发电系统中将直流电转换为交流电的设备。
常见的逆变器故障包括逆变器损坏、故障代码显示等。
解决方法是定期检查逆变器运行状态,及时清理逆变器散热器,并根据故障代码进行维修或更换。
3. 连接线路故障:光伏发电系统中的电缆和连接器是电能传输的重要组成部分。
常见的连接线路故障包括线路断裂、接触不良等。
解决方法是定期检查连接线路的接触情况,及时修复断裂或更换接触不良的连接器。
4. 遮挡物影响:遮挡物是指遮挡光伏组件表面的物体,如树木、建筑物等。
遮挡物会降低光伏组件的接收阳光的面积,影响发电效率。
解决方法是及时修剪树木,避免建筑物的阴影对光伏组件的影响。
5. 清洁问题:光伏组件表面的灰尘、污垢会影响光的透过率,降低发电效率。
解决方法是定期清洁光伏组件表面,保持其光亮度。
6. 雪灾影响:在寒冷地区,积雪会覆盖光伏组件表面,影响发电效率。
解决方法是及时清除积雪,保持光伏组件表面干净。
7. 电压问题:光伏发电系统中的电压波动会影响系统的稳定性和发电效率。
解决方法是安装电压稳定器,控制电压在合理范围内。
8. 防雷问题:雷电天气会对光伏发电系统造成损害。
解决方法是安装避雷装置,保护光伏发电系统免受雷击。
9. 盗窃问题:光伏发电系统的组件和设备价值较高,容易引起盗窃。
解决方法是加强安全防护措施,如安装监控设备、加固围墙等。
10. 电池故障:光伏发电系统中的电池是储存电能的设备。
光伏组件质量问题及预防措施汇总光伏组件较为常见的质量问题汇总,很多质量问题隐藏在电池板内部,或光伏电站运营一段时间后才发生,在电池板进场验收时难以识别,需借助专业设备进行检测。
1、蜗牛纹1.蜗牛纹的出现是一个综合的过程,EVA胶膜中的助剂、电池片表面银浆构成、电池片的隐裂以及体系中水份的催化等因素都会对蜗牛纹的形成起促进作用,而蜗牛纹现象的出现也不是必然,而是有它偶然的引发因素。
EVA胶膜配方中包含交联剂,抗氧剂,偶联剂等助剂,其中交联剂一般采用过氧化物来引发EVA 树脂的交联,由于过氧化物属于活性较高的引发剂,如果在经过层压后交联剂还有较多残留的话,将会对蜗牛纹的产生有引发和加速作用。
2.EVA胶膜使用助剂都有纯度的指标,一般来说纯度要求要在99.5%以上。
助剂中的杂质主要是合成中的副产物以及合成中的助剂残留,以小分子状态存在,沸点较高,无法通过层压抽真空的方法从体系中排除,所以助剂如果纯度不高,那么这些杂质也将会影响EVA胶膜的稳定性,可能会造成蜗牛纹的出现。
组件影响:1.纹路一般都伴随着电池片的隐裂出现。
2.电池片表面被氧化。
3.影响了组件外观。
预防措施:1.VA胶膜使用符合纯度指标的助剂。
2.安装过程中对组件的轻拿轻放有足够认识。
3.EVA脱层1.交联度不合格.(如层压机温度低,层压时间短等)造成。
2.EVA、玻璃、背板等原材料表面有异物造成。
3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层。
4.助焊剂用量过多,在外界长时间遇到高温出现延主栅线脱层。
组件影响:1.脱层面积较小时影响组件大功率失效。
当脱层面积较大时直接导致组件失效报废。
预防措施:1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验,并将交联度控制在85%±5%内。
2.加强原材料供应商的改善及原材检验。
3.加强制程过程中成品外观检验。
4.严格控制助焊剂用量,尽量不超过主栅线两侧0.3mm。
光伏组件的系列缺陷定义光伏组件是利用太阳能将光能转化为电能的装置,它在可再生能源领域具有重要的地位。
然而,光伏组件也存在一些系列缺陷,这些缺陷可能会影响其性能和寿命。
接下来,我将介绍一些常见的光伏组件缺陷。
1. 电池片裂纹:光伏组件中的电池片是将光能转化为电能的关键部件,然而,由于制造过程中的缺陷或外部因素的影响,电池片可能会出现裂纹。
这些裂纹会导致电池片的损坏,降低光伏组件的发电效率。
2. 导线断裂:光伏组件中的导线用于将电能从电池片传输到电网或电池储能系统中。
然而,由于材料老化、温度变化等原因,导线可能会出现断裂。
导线断裂会导致电能传输中断,影响光伏组件的正常运行。
3. 背板老化:光伏组件的背板是保护电池片的重要组成部分,它需要具有耐久性和耐候性。
然而,长时间的暴露在太阳光和恶劣环境中,背板可能会发生老化,导致其性能下降或出现裂纹。
4. 渗水:光伏组件中的渗水问题一直是一个令人头疼的难题。
渗水会导致光伏组件内部的电气部件受潮,进而引起短路或电池片腐蚀,严重影响光伏组件的发电效率和寿命。
5. 灰尘积累:光伏组件表面的灰尘积累是影响其发电效率的重要因素之一。
灰尘会降低组件表面的反射率,减少光能的吸收。
因此,定期清洁光伏组件表面对于维持其高效发电至关重要。
6. 火灾风险:光伏组件在工作过程中会产生热量,如果组件的散热不良或存在电气故障,就有可能引发火灾。
因此,光伏组件的安全性能和防火措施非常重要。
7. 逆变器故障:光伏组件中的逆变器用于将直流电转换为交流电,逆变器的故障会导致光伏组件无法正常输出电能。
逆变器的可靠性和稳定性对光伏系统的运行至关重要。
光伏组件的系列缺陷对其性能和寿命产生重要影响。
为了提高光伏组件的可靠性和发电效率,制造商和研究人员需要持续改进制造工艺和材料,提高光伏组件的质量和可靠性。
同时,定期维护和检查光伏组件也是保证其正常运行的重要措施。
通过解决这些系列缺陷,我们可以更好地利用太阳能资源,推动可持续能源的发展。
光伏组件在生产过程中难免会有一些不良现象和问题,如何保证组件较高质量和合格率是每个生产厂家关心的问题。
下面PVtrade光伏交易网为您汇总了一些组件在生产过程中容易产生的问题及解决方案。
一、光伏组件中有碎片。
原因分析:1、由于在焊接过程中没有焊接平整,有堆锡或锡渣,在抽真空时将电池片压碎。
2、本来电池片都已经有暗伤,再加上层压过早,EVA 还具有很良好的流动性。
3、在抬组件的时候,手势不合理,双手压到电池片。
解决办法:1、首先要在焊接区对焊接质量进行把关,加强对员工的一些针对性培训,确保焊接一次成型。
2、调整层压工艺,增加抽真空时间,并减小层压压力(通过层压时间来调整)。
3、控制好各个环节,提高层压人员素质并确保抬板手势的正确性。
二、组件中有气泡。
原因分析:1-EVA胶膜已裁剪,放置时间过长,已受潮。
2-EVA胶膜材料本身品质不高,如有些EVA厂家部分或完全采用国产原料。
3-太阳能背板放置时间过长或储存环境不好而受潮。
4-抽真空过短,加压已不能把气泡赶出。
5-层压的压力不够。
6-加热板温度不均,使局部提前固化。
7-层压时间过长或温度过高,使有机过氧化物分解,产出氧气。
8-有异物存在,而湿润角又大于90°,使异物旁边有气体存在。
解决办法:1-控制好每天所用的EVA 的数量,要让每个员工了解每天的生产任务。
2-材料是由厂家所决定的,所以尽量选择较好的材料。
3-将分切好的太阳能背板放置烘箱内预烘烤1-2分钟,使其潮气赶出。
4-调整层压工艺参数,使抽真空时间适量。
5-增大层压压力。
(可通过层压时间来调整也可以通过再垫一层高温布来实现。
)6-垫高温布,使组件受热均匀(最大温差小于4°)。
7-根据厂家所提供的参数,确定层压总的时间,避免时间过长。
8-应注重6S 管理,尤其是在叠层这道工序,尽量避免异物的掉入。
三、组件中有毛发及垃圾。
原因分析:1-由于EVA、太阳能背板(如3M、兆丰)、小车子等有静电的存在,把飘着空的头发,灰尘及一些小垃圾吸到表面。
光伏组件常见的质量问题有:热斑、隐裂和功率衰减。
由于这些质量问题隐藏在电池板内部,或光伏电站运营一段时间后才发生,在电池板进场验收时难以识别,需借助专业设备进行检测。
热斑形成原因及检测方法光伏组件热斑是指组件在阳光照射下,由于部分电池片受到遮挡无法工作,使得被遮盖的部分升温远远大于未被遮盖部分,致使温度过高出现烧坏的暗斑。
光伏组件热斑的形成主要由两个内在因素构成,即内阻和电池片自身暗电流。
热斑耐久试验是为确定太阳电池组件承受热斑加热效应能力的检测试验。
通过合理的时间和过程对太阳电池组件进行检测,用以表明太阳电池能够在规定的条件下长期使用。
热斑检测可采用红外线热像仪进行检测,红外线热像仪可利用热成像技术,以可见热图显示被测目标温度及其分布。
隐裂形成原因及检测方法隐裂是指电池片中出现细小裂纹,电池片的隐裂会加速电池片功率衰减,影响组件的正常使用寿命,同时电池片的隐裂会在机械载荷下扩大,有可能导致开路性破坏,隐裂还可能会导致热斑效应。
隐裂的产生是由于多方面原因共同作用造成的,组件受力不均匀,或在运输、倒运过程中剧烈的抖动都有可能造成电池片的隐裂。
光伏组件在出厂前会进行EL 成像检测,所使用的仪器为EL 检测仪。
该仪器利用晶体硅的电致发光原理,利用高分辨率的CCD 相机拍摄组件的近红外图像,获取并判定组件的缺陷。
EL 检测仪能够检测太阳能电池组件有无隐裂、碎片、虚焊、断栅及不同转换效率单片电池异常现象。
功率衰减分类及检测方法光伏组件功率衰减是指随着光照时间的增长,组件输出功率逐渐下降的现象。
光伏组件的功率衰减现象大致可分为三类:第一类,由于破坏性因素导致的组件功率衰减;第二类,组件初始的光致衰减;第三类,组件的老化衰减。
其中,第一类是在光伏组件安装过程中可控制的衰减,如加强光伏组件卸车、倒运、安装质量控制可降低组件电池片隐裂、碎裂出现的概率等。
第二类、第三类是光伏组件生产过程中亟需解决的工艺问题。
光伏组件功率衰减测试可通过光伏组件I-V 特性曲线测试仪完成。
太阳能光伏系统质量问题处理记录一、问题描述在使用太阳能光伏系统的过程中,我们发现了一些质量问题,现进行记录如下:1. 组件损坏:在安装太阳能光伏系统的过程中,有部分组件出现损坏,表现为玻璃板破损、电池片脱落等问题。
2. 连接线松动:有些系统出现了连接线松动的情况,导致光伏组件与电汇箱之间的连接不牢固,影响了系统的正常发电。
3. 不稳定输出:部分太阳能光伏系统在运行期间出现了电压波动、频繁的断电等问题,造成系统发电不稳定。
二、问题分析与原因针对上述问题,我们进行了详细的分析,并找到了以下原因:1. 运输与安装:在运输和安装过程中,组件可能受到了外力的挤压和碰撞,导致组件损坏。
2. 连接线安装不牢固:连接线在安装过程中可能没有正确固定,或者存在接触不良的情况,导致线路不稳定。
3. 设备质量问题:有些组件或其他设备本身存在质量问题,导致系统运行异常。
三、问题处理措施为解决以上质量问题,我们制定了以下处理措施:1. 更换损坏组件:对于损坏的组件,我们将进行更换,并严格要求供应商提供质量保证。
2. 固定连接线:重新检查连接线的安装情况,确保连接牢固,并进行适当的扎紧和固定。
3. 设备质量把关:加强对组件和其他相关设备的质量把关,与供应商建立长期合作关系,并进行定期的设备检查与维护。
4. 增强监控系统:完善太阳能光伏系统的监控设备,实时监测系统运行情况,及时发现并处理异常情况。
5. 健全售后服务:建立健全的售后服务体系,为用户提供及时的技术支持和问题解决。
四、效果评估经过以上处理措施的实施,我们对太阳能光伏系统的质量问题取得了一定的改善效果:1. 组件损坏降低:新组件不再出现损坏的情况,系统使用寿命得到了有效延长。
2. 连接线稳固:经过重新固定连接线后,系统运行稳定,断电情况大大减少。
3. 输送稳定性提升:系统电压波动情况明显下降,整体发电稳定性得到了提升。
五、结论通过以上的质量问题处理记录,我们更加深刻认识到太阳能光伏系统质量问题的重要性。
光伏组件故障分析报告1 引言1.1 光伏组件概述光伏组件,又称太阳能电池板,是光伏发电系统中的核心部件,其作用是将太阳光能转化为电能。
光伏组件主要由硅电池片、玻璃、EVA胶膜、背板、边框等部分组成。
在过去的几十年里,随着光伏技术的不断发展和成熟,光伏组件的转换效率得到了显著提高,成本也在逐渐降低,光伏发电已成为全球新能源的重要组成部分。
我国光伏产业经过多年的发展,已形成了从硅料生产、电池片制造、组件组装到系统集成的完整产业链。
然而,在光伏组件的长期运行过程中,各种故障问题也逐渐凸显出来,对光伏发电系统的稳定性和发电效率产生了影响。
1.2 故障分析的目的和意义对光伏组件进行故障分析,旨在找出故障产生的原因,为故障诊断、防范和维护提供依据。
故障分析的目的和意义如下:1.提高光伏发电系统的稳定性和可靠性,降低故障率。
2.延长光伏组件的使用寿命,降低运维成本。
3.提高光伏发电效率,增加发电收益。
4.为光伏组件的设计、制造和安装提供改进方向。
通过对光伏组件故障的深入分析,有助于推动我国光伏产业的健康发展,提高光伏发电在能源结构中的比重,为实现能源转型和可持续发展贡献力量。
2 光伏组件故障类型及原因2.1 故障类型光伏组件的故障类型多样,主要包括以下几种:1.电池片损坏:电池片是光伏组件的核心部分,其损坏主要包括隐裂、破片、电极脱落等。
2.电路问题:如接线盒内部接线松动、接触不良,或电缆老化导致电阻增大等。
3.封装材料老化:长期受紫外线、温度变化等影响,EVA胶膜、背板等材料会出现老化、变色、龟裂等现象。
4.热斑效应:由于电池片自身或外部阴影导致局部温度升高,影响组件性能。
5.PID效应(潜在诱导性降解):由于组件长期在湿度较大环境下工作,导致电池片出现性能下降。
2.2 故障原因光伏组件故障的原因可以分为以下几类:1.内在因素:–电池片质量:电池片在生产过程中可能存在微裂纹、掺杂不均等问题。
–组件设计:设计不合理,如电池片间距过小,可能导致热膨胀时电池片相互挤压。
光伏组件爆板原因一、引言光伏组件是太阳能发电系统中的核心部件,其性能直接影响到整个系统的稳定性和效率。
然而,在实际使用过程中,光伏组件可能会出现各种问题,其中爆板现象是比较常见的一种。
本文将对光伏组件爆板的原因进行分析,并提出相应的预防措施。
二、光伏组件爆板现象光伏组件爆板是指在正常工作状态下,光伏组件的玻璃表面突然出现裂纹或破裂的现象。
这种爆板现象通常伴随着声音和烟雾,严重时会导致组件内部电路短路,甚至引发火灾。
三、光伏组件爆板原因分析1. 质量问题:光伏组件的质量问题是导致爆板的主要原因之一。
一些劣质组件在生产过程中可能存在缺陷,如玻璃强度不足、边框材料不均匀等,这些缺陷在使用过程中容易引发爆板。
2. 外部因素:外部因素如风切变、温度变化等也可能导致光伏组件爆板。
风切变可能导致组件表面产生应力集中,而温度变化可能导致组件内部应力分布不均,从而引发爆板。
3. 安装问题:光伏组件的安装不当也可能导致爆板。
例如,安装过程中对组件的过度弯曲、安装角度不合适等都可能对组件产生过大的应力,从而引发爆板。
4. 维护不当:光伏组件的维护不当也可能导致爆板。
例如,长时间不清洁组件表面、使用不合适的清洁剂等都可能对组件产生损害,从而引发爆板。
四、预防措施1. 选择优质组件:在购买光伏组件时,应选择质量可靠的品牌和生产厂家,确保组件的质量符合标准。
2. 合理安装:在安装光伏组件时,应按照厂家提供的安装指南进行操作,避免对组件产生过大的应力。
同时,应定期检查安装角度和紧固件是否松动。
3. 定期维护:应定期对光伏组件进行清洁和维护,避免灰尘和污垢对组件产生损害。
同时,应避免使用不合适的清洁剂或工具。
4. 监控和维护:应建立完善的监控和维护体系,及时发现和处理光伏组件的问题。
对于出现问题的组件,应及时更换或修复。
五、结论光伏组件爆板现象是太阳能发电系统中比较常见的问题之一,其产生的原因包括质量问题、外部因素、安装问题和维护不当等。
太阳能光伏系统的故障排除太阳能光伏系统作为一种可再生和清洁能源发电系统,在近年来逐渐得到广泛应用。
然而,如同其他发电系统一样,太阳能光伏系统也会遇到各种故障问题。
本文将介绍太阳能光伏系统常见的故障类型及其排除方法,帮助读者更好地了解和维护太阳能光伏系统。
一、组件故障排除太阳能光伏系统的核心组件是光伏组件,通常由多个太阳能电池组成。
组件故障是太阳能光伏系统中最常见的问题之一。
以下是一些常见的组件故障及其排除方法:1.光伏组件损坏光伏组件可能会由于自然灾害、机械损坏或老化等原因而损坏。
当发现光伏组件存在损坏时,应立即停止系统运行,并找到损坏的组件。
然后,将损坏的组件更换为新的光伏组件,并确保其连接正常。
2.光伏组件灰尘和污垢长时间使用后,光伏组件表面可能会积累灰尘和污垢,影响光伏效率。
清洁光伏组件时,应先关闭系统,并使用适当的清洁工具和清洁液清洁组件表面。
注意使用软刷和清洁液时要保持轻柔,避免损坏组件表面。
3.电池连接问题太阳能光伏系统中的电池连接问题也可能导致组件故障。
检查电池之间的连接是否紧固,确保连接牢固并无松动。
若存在松动的连接,应立即重新连接或更换电池接线。
二、逆变器故障排除逆变器是太阳能光伏系统中的另一个重要组件,主要用于将直流电转换为交流电。
以下是一些常见的逆变器故障及其排除方法:1.逆变器故障代码逆变器可能会显示故障代码,帮助我们了解故障原因。
查阅逆变器的说明书,查找相应的故障代码和解决方法。
若无法解决故障,应及时联系专业技术人员进行修复。
2.电网连接问题逆变器与电网之间的连接问题也很常见。
检查逆变器和电网之间的连接线路是否连接稳固,避免松动或脱落。
如果存在连接问题,立即重新连接并确保连接可靠。
3.过载保护逆变器在负载过大时会启动过载保护,停止供电。
此时应检查负载是否合理,并根据负载需求调整逆变器的输出功率。
如果问题仍未解决,可能需要更换适合的逆变器。
三、电池故障排除电池是储备能量的重要设备,用于太阳能光伏系统的储能。