高中数学 人教A版 必修3 优秀教案 2示范教案(112 弧度制)
- 格式:doc
- 大小:201.01 KB
- 文档页数:7
12学过程及方法程序框图包含下面三种逻辑结构可以用如下程序框图表示:顺序结构条件结构循环结构探究(三):顺序结构任何一个算法各步骤之间都有明确的顺序性,在算法的程序框图中,由若干个依次执行的步骤组成的逻辑结构,称为顺序结构。
顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
【例3】已知一个三角形三条边的边长分别为a,b,c,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示. 算法分析:这是一个简单的问题,只需先算出p的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法.算法步骤如下:第一步,输入三角形三条边的边长a,b,c.第二步,计算p=2cba++.第三步,计算S=))()((cpbpapp---.第四步,输出S.程序框图如下:点评:很明显,顺序结构是由若干个依次执行的步骤组成的,它是教问题与情境及教师活动学生活动学过程及方法用程序框图表示条件结构如下.图1 图2 条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构(或分支结构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.注:无论条件是否成立,只能执行A、B之一,不可能两个框都执行.A、B两个框中,可以有一个是空的,即不执行任何操作,如图2. 条件结构的两种形式的区别:一种是在两个“分支”中均包含算法的步骤,符合条件就执行“步骤A”,否则执行“步骤B”;另一种是在一个“分支”中均包含算法的步骤A,而在另一个“分支”上不包含算法的任何步骤,符合条件就执行“步骤A”,否则执行这个条件结构后的步骤【例4】任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法分析:判断以3个任意给定的正实数为三条边边长的三角形是否存在,只需验证这3个数中任意两个数的和是否大于第3个数.这个验证需要用到条件结构.算法步骤如下:第一步,输入3个正实数a,b,c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:教问题与情境及教师活动学生活动问题与情境及教师活动学生活动(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.显然,循环结构中一定包含条件结构。
新人教A版数学必修3全套教案教案一:平面向量教学目标:1.理解平面向量的概念及基本性质。
2.掌握平面向量的加法、减法、数量乘法及向量的线性运算。
3.利用向量的性质解决实际问题。
教学重点:1.向量的基本概念和性质。
2.向量的加法和减法。
3.向量的数量乘法和线性运算。
教学难点:1.向量的线性运算和应用。
2.解决实际问题的向量运算方法。
教学步骤:一、引入新知识(20分钟)教师通过引入平面向量的概念和基本性质,以及向量的几何表示和坐标表示,引发学生对向量的兴趣。
二、向量的加法和减法(30分钟)1.向量的几何表示和坐标表示。
2.向量加法和减法的定义和性质。
3.通过例题讲解向量加法和减法的具体运算方法。
三、向量的数量乘法和线性运算(30分钟)1.向量数量乘法的定义和性质。
2.讲解向量的数乘和向量的线性运算。
3.通过例题加深学生对向量数量乘法和线性运算的理解。
四、应用实例(30分钟)1.结合实际问题讲解向量运算在解决实际问题中的应用。
2.利用向量运算解决实际问题的步骤和方法。
五、巩固练习(20分钟)教师布置一些巩固练习,让学生运用所学知识解决一些相关问题。
教学反思:通过本节课的教学,学生对平面向量的概念和基本性质有了初步的了解,并且掌握了向量的加法、减法、数量乘法及向量的线性运算。
通过实际应用例题的解析,学生对向量运算在解决实际问题中的应用有了更深入的理解。
整个教学过程中,教师注重启发式教学,通过提问和引导,激发学生的思维和创造力,培养学生的问题解决能力。
同时,教师还通过巩固练习,对学生所学知识进行巩固和拓展,帮助学生更好地掌握和应用向量的相关知识。
高中数学弧度制角教案
一、教学目标
1. 了解弧度制角的概念;
2. 掌握角度与弧度的相互转换方法;
3. 能够运用弧度制角解决实际问题。
二、教学内容
1. 弧度制角的定义及表示方法;
2. 角度与弧度的转换关系;
3. 利用弧度解决三角函数和圆的相关问题。
三、教学步骤
1. 引入:通过展示一个圆的半径为1,绕圆心旋转的弧长为1所对应的角度,介绍弧度的概念;
2. 探究:让学生自己尝试将角度转换为弧度,并找出两者之间的关系;
3. 拓展:通过解决一些实际问题,引导学生掌握如何运用弧度解决相关问题;
4. 练习:让学生完成一些练习题,巩固所学的知识;
5. 总结:总结弧度制角的重点知识,强化学生的理解。
四、教学设计
1. 课堂活动设计:
(1)小组讨论:让学生分组讨论角度与弧度之间的转换方法;
(2)实际应用:请学生在实际问题中运用弧度解决相关计算;
(3)互动讨论:通过互动讨论,梳理弧度制角的重要知识点。
2. 学生作业设计:
(1)完成课堂练习题,巩固所学知识;
(2)解答一些弧度制角相关的实际问题;
(3)预习下节课内容,准备讨论。
五、教学评估
1. 学生表现评估:通过学生的课堂表现和作业完成情况,评估学生对弧度制角的掌握情况;
2. 教学效果评价:通过学生的考试成绩和课后反馈,评价本节课的教学效果,及时调整教
学方法。
(以上为高中数学弧度制角教案范本,仅供参考)。
1.1.2弧度制教学目的:认识弧度制,并能解决实际问题。
教学重点:理解弧度制的意义,并能进行弧度与角度的换算。
教学难点:弧度的概念及其与角度的关系。
教学方法:启发式。
教具:多媒体。
教学过程:一问题提出1.角是由平面内一条射线绕其端点从一个位置旋转到另一个位置所组成的图形,其中正角、负角、零角分别是怎样规定的?2.在直角坐标系内讨论角,象限角是什么概念?3.与角α终边相同的角的一般表达式是什么?4.长度可以用米、厘米、英尺、码等不同的单位度量,物体的重量可以用千克、磅等不同的单位度量.不同的单位制能给解决问题带来方便,以度为单位度量角的大小是一种常用方法,为了进一步研究的需要,我们还需建立一个度量角的单位制.探究1:弧度的概念思考1:在平面几何中,1°的角是怎样定义的?思考2:在半径为r的圆中,圆心角n°所对的圆弧长如何计算?思考3:如图,把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1rad,读作1弧度. 那么,1弧度圆心角的大小与所在圆的半径的大小是否有关?为什么?思考4:约定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为0.如果将半径为r圆的一条半径OA,绕圆心顺时针旋转到OB,若弧AB长为2r,那么∠AOB的大小为多少弧度?思考5:如果半径为r的圆的圆心角α所对的弧长为l,那么,角α的弧度数的绝对值如何计算?思考6:半径为r的圆的圆心与原点重合,角的始边与x轴的非负半轴重合,交圆于点A,终边与圆交于点B,下表中∠AOB的弧度数分别是多少?-1-2探究(二):度与弧度的换算思考1:一个圆周角以度为单位度量是多少度?以弧度为单位度量是多少弧度?由此可得度与弧度有怎样的换算关系?思考2:根据上述关系,1°等于多少弧度?1rad等于多少度?思考3:根据度与弧度的换算关系,下表中各特殊角对应的弧度数分别是多少?今后用弧度制表示角时,“弧度”二字或“rad”通常略去不写,而只写该角所对应的弧度数.如α=2表示α是2rad的角.思考4:在弧度制下,角的集合与实数集R之间可以建立一个一一对应关系,这个对应关系是如何理解的?思考5:在弧度制下,与角α终边相同的角如何表示?终边在坐标轴上的角如何表示?知识迁移例1 按照下列要求,把67°30′化成弧度:(1)精确值;(2)精确到0.001的近似值.例2 (1) 已知扇形的圆心角为72°,半径等于20cm,求扇形的弧长和面积;(2)已知扇形的周长为10cm,面积为4cm2,求扇形的圆心角的弧度数.小结作业1.用度为单位来度量角的单位制叫做角度制,用弧度为单位来度量角的单位制叫做弧度制.3.利用弧度制,使得弧长公式和扇形的面积公式得以简化,这体现了弧度制优点.作业:P10 习题1.1 A组:6,7,8,9,10.板书设计弧度制1探究1:弧度的概念例12探究(二):度与弧度的换算例2。
《弧度制》教学设计一、教学目标:(一)核心素养通过本节课的学习,了解引入弧度制的必要性,理解弧度制的定义,熟练角度制与弧度制的换算,掌握并运用弧度制的弧长公式和扇形的面积公式;在类比和数学运算过程中,更好的形成弧度的概念,建立角的集合与实数集的一一对应的关系.(二)教学目标1.“为什么”——为什么要引入弧度制,理解引入弧度制的必要性;2.“是什么”——弧度是什么,理解弧度的定义;3.“如何化”——如何进行弧度与角度的转化,掌握弧度与角度之间的相互转化;4.“怎么用”——如何使用弧度制,学会使用弧度制下的新的弧长与扇形面积公式求解有关问题(三)学习重点1.理解弧度“是什么”;2.熟练弧度和角度之间“如何化”;3.掌握弧度制来计算弧长和扇形面积“怎么用”;(四)学习难点1.理解弧度“是什么”;2.理解角的集合与实数之间一一对应的关系二、教学过程(一)课前设计1.预习任务(1)读一读:阅读教材第6页至第11页.(2)想一想:弧度制是如何定义的?弧度制和角度制之间是如何让转化的?如何将弧度制应用于弧长公式和扇形的面积公式中?2.预习自测=____________(1)已知圆O的半径为2,弧AB的长为2,则AOB【答案】1rad.(2)2π rad =()A.180°B.200°C.270°D.360°【答案】D.(3)把50°化为弧度制()A.50B.5 18πC.18 5πD.9000π【答案】B.(4)扇形的圆心角为72°,半径为5,则它的弧长为______,面积为________ 【答案】2π;5π(二)课堂设计1.知识回顾(1)角的概念的推广;(2)终边相同的角的表示2.问题探究探究一结合实例,引入弧度制,理解引入弧度制的必要性;●活动结合实例,引入弧度制有人问:海口到三亚有多远时,有人回答约270.4公里,但也有人回答约169英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.【设计意图】从生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程.探究二 弧度是什么,理解弧度的定义 ●活动① 回顾角度制的定义1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等. 【设计意图】从1角度过度到1弧度,更加的自然. ●活动② 探究弧度制的定义弧度制的定义:长度等于半径长的圆弧所对的圆心角叫做1弧度角, 记作1rad ,或1弧度,或1(单位可以省略不写).A【设计意图】让学生掌握弧度制的定义 探究三 探究如何进行弧度与角度的转化●活动① 通过具体的数据,探究弧度制和角度制之间的关系如图,半径为r 的圆的圆心与原点重合,角α的终边与x 轴的正半轴重合,交圆于点A,终边与圆交于点B.请完成表格.xyαBOA【答案】我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.【设计意图】一方面可以让学生加深对弧度制的理解,也为接下来推导弧度制和角度制的转化公式做准备.●活动② 在掌握了弧度制定义的基础上推导弧长,半径,和圆心角(弧度制)之间的关系思考:如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么α的弧度数是多少? 角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径. 【设计意图】既是对弧度制定义的巩固强化,加深学生对于弧长,半径以及圆心角(弧度数)三者关系的理解.●活动③ 通过活动①中表格的数据,推导出弧度制和角度制的转化公式.'360=2rad 180rad 1801rad 1rad=57.3=5718180ππππ︒∴︒=⎛⎫∴︒=︒≈︒︒ ⎪⎝⎭反过来【设计意图】通过已有的数据推出角度制和弧度制相互转化的公式更容易被学生理解和接受. ●活动④ 快速抢答抢答特殊角的度数与弧度数的对应表:【答案】【设计意图】通过抢答环节,让学生迅速掌握弧度制和角度制的相互转换,也让学生熟悉特殊角对应的角度制和弧度制.探究四 探究弧度制下的弧长与扇形面积公式求解有关问题.●活动① 回顾初中已学的用角度制表示的弧长公式和扇形的面积公式.已知扇形的圆心角为n °,半径为R则弧长180n Rl π=,扇形的面积公式为2360n R S π=【设计意图】通过对已有知识的回顾,对接下来推出弧度制下的弧长与扇形面积公式做准备.●活动② 利用弧度制证明下列关于扇形的公式:(1)l R α=; (2)212S R α=; (3)12S lR =.其中R 是半径,l 是弧长,(02)ααπ<<为圆心角,S 是扇形的面积.lRl R αα==立即可得:证明:由公式 2ππ=360180n R n S α=又,221121802n S R R πα∴=⋅⋅= 1122l R S R R lRαα=∴=⋅⋅=又【设计意图】以证明题的形式将弧度制应用于弧长和扇形的面积公式,有了推导过程,学生更容易理解和记忆.●活动③ 利用计算器比较sin1.5和sin85°的大小.【设计意图】弧度制定义的理解与应用,以及角度与弧度的区别. ●活动④ 巩固基础,检查反馈 例1 下列说法不正确的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1度的角是圆周角的1360,1弧度的角是圆周角的12πC . 根据弧度的定义,180°一定等于π弧度D .大圆中1弧度角比小圆中1弧度角大【知识点】考察了弧度制和角度制的相互转换,弧度制的定义,以及弧度制和角度制都是度量角的两种方式 【数学思想】转换的思想【解题过程】当圆心角一定时,它所对的弧长与半径的比值是一定的,与所取圆的半径大小无关【思路点拨】通过弧度制的定义去判断 【答案】D同类训练 若扇形的半径变为原来的2倍,而弧长也扩大到原来的2倍,则( ) A .扇形的面积不变 B .扇形的圆心角不变C . 扇形的面积扩大到原来的2倍D .扇形的圆心角扩大到原来的2倍【知识点】扇形的圆心角,弧长,半径三者之间的关系 【数学思想】【解题过程】由公式lRα=,因此圆心角应该不变 【思路点拨】所对的弧长与半径的比值是一定值,则圆心角就不变 【答案】B例2:(1)将下列各角化为弧度:①'11230︒;②315-︒(2)将下列各弧度化为角度:①512rad π-;②193rad π【知识点】弧度制和角度制换算公式的应用 【数学思想】【解题过程】'511230112.5112.51808rad rad ππ︒=︒=⨯= 7315(315)1804551807512121919180114033rad radrad rad ππππππππ-︒=-⨯=-⎛⎫-=-⨯︒=-︒⎪⎝⎭⎛⎫=⨯︒=︒ ⎪⎝⎭【思路点拨】公式 1801 1=180rad rad ππ⎛⎫︒=︒ ⎪⎝⎭的应用 【答案】58rad π,74rad π-,75-︒,1140︒同类训练 将下列各角度与弧度互化'9(1)67.5; (2)15730; (3); (4)34π︒-︒ 【知识点】弧度制和角度制换算公式的应用 【数学思想】【解题过程】367.567.51808rad rad ππ︒=⨯= '715730157.5(157.5)1808991804054418054033()rad rad rad πππππππ-︒=-︒=-⨯=-⎛⎫=⨯︒=︒ ⎪⎝⎭⎛⎫=⨯︒=︒ ⎪⎝⎭【思路点拨】公式 1801 1=180rad rad ππ⎛⎫︒=︒ ⎪⎝⎭的应用 【答案】38rad π;78rad π-;405︒;540()π︒例3 半径为1cm ,圆心角为56π的弧长为( )A .23cmB .23cm πC .56cmD .56cm π【知识点】弧度制在弧长公式的应用 【数学思想】【解题过程】55166l aR cm ππ==⨯= 【思路点拨】公式l R α=的应用 【答案】D同类训练 若2rad 的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是( )A .tan 2B .1sin1 C .21sin 1 D .2cos1【知识点】圆中垂径定理的应用和三角函数以及弧度在扇形面积公式中的应用 【数学思想】【解题过程】半径1sin1R =,22112221sin1S R α⎛⎫==⨯⨯ ⎪⎝⎭【思路点拨】公式212S R α=的应用●活动5 强化提升、灵活应用例4 与1°角终边相同的角的集合为( )A .360,180k k Z παα⎧⎫=⋅︒+∈⎨⎬⎩⎭B .360,180k k Z παα⎧⎫=⋅︒+∈⎨⎬︒⎩⎭C .2,180k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭D .2,180k k Z πααπ⎧⎫=+∈⎨⎬︒⎩⎭【知识点】终边相同角的表示,同一个式子中角度制和弧度制不能混用 【数学思想】 【解题过程】1180π︒=,3602π︒=,13602180k k ππ∴︒+︒=+【思路点拨】将角度制转换为弧度制:1180π︒=【答案】C同类训练 第四象限角的集合可写为( )A .360360,2k k k Z πααα⎧⎫=⋅︒-<<⋅︒∈⎨⎬⎩⎭B .{}2902,k k k Z ααπαπ=-︒<<∈C .,2k k k Z πααπαπ⎧⎫=-<<∈⎨⎬⎩⎭D .22,2k k k Z πααπαπ⎧⎫=-<<∈⎨⎬⎩⎭【知识点】第四象限角的表示,同一个式子中角度制和弧度制不能混用 【数学思想】 【解题过程】{}36090360,k k k Z ααα=⋅︒-︒<<⋅︒∈3602,π︒=902π︒= 22,2k k k Z πααπαπ⎧⎫∴=-<<∈⎨⎬⎩⎭【思路点拨】将角度制转换为弧度制:1180π︒=【答案】D 3.课堂总结(1)长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写).(2)弧度制和角度制之间的转换公式为:1801rad 1rad=180ππ⎛⎫︒=︒ ⎪⎝⎭(3)弧度制在扇形相关公式中的应用为:l R α= ;212S R α=; 12S lR =.重难点归纳(1)生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程. (2)当圆心角一定时,它所对的弧长与半径的比值是一定的,与所取圆的半径大小无关.(3)同一个式子中角度制和弧度制不能混用.(4)在选择弧长和扇形的面积公式时,一定要理清楚题目所给圆心角是弧度制还是角度制. (三)课后作业 基础型 自主突破1.在半径不相等的两个圆内,1弧度的圆心角( ) A .所对的弧长相等 B .所对的弦长相等C .所对的弦长等于各自的半径D .所对的弧长等于各自的半径 【知识点】弧长的定义【解题过程】长度等于半径长的圆弧所对的圆心角叫做1弧度角 【思路点拨】1弧度的圆心角所对的弧长始终等于半径 【答案】D2.把'5615︒化为弧度是( )A .58πB .54πC .56πD .516π 【知识点】角度制和弧度制的相互换算 【解题过程】'5561556.2556.2518016rad rad ππ︒=︒=⨯= 【思路点拨】先将角度的单位化为“°”【答案】D3.若=4α-,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【知识点】了解每个象限角对应的范围【数学思想】数形结合 【解题过程】342ππ-<-<- 【思路点拨】342ππ-<-<- 【答案】B4.若角α与β的终边互相垂直,则α与β的关系是( )A .2πβα=+B .2πβα=±C .2()2k k Z πβαπ=++∈ D .2()2k k Z πβαπ=±+∈ 【知识点】对于角的表示【数学思想】【解题过程】B 选项忽略了终边相同应该加上圆周角2π的整数倍【思路点拨】角α与β的终边互相垂直的本质是将角α的终边绕着原点顺时针或者逆时针旋转90°,即2π±,但要注意终于边相同要加圆周角2π的整数倍【答案】D5.已知一扇形的圆心角3πα=,扇形所在圆的半径10R =,则这个扇形的弧长为____________,该扇形对应的弓形的面积为_________.【知识点】弧度制在弧长公式中的应用【数学思想】转化的思想,将弓形的面积转化为扇形的面积—三角形的面积 【解题过程】1010,33l R ππα==⨯= 110150==10102323S S S ππ-⨯⨯-⨯⨯=-弓扇三角形 【思路点拨】弓形的面积=扇形的面积—三角形的面积【答案】103π;503π- 6.在单位圆上有两个动点P Q ,,它们同时从(10)A ,出发沿圆周运动,已知点P 按逆时针方向每秒转3π,点Q 按顺时针方向每秒转6π,试求它们从出发后到第五次相遇时各自走过的弧长.【知识点】行程问题中的相遇问题【数学思想】数形结合 【解题过程】102036t t t πππ+=∴=201020203363P Q l l ππππ∴=⨯==⨯=, 【思路点拨】第五次相遇即两点的路程和恰好是圆周2π的5倍【答案】201033P Q l l ππ==, 能力型 师生共研7.已知扇形的周长为6cm ,面积为22cm 则扇形的圆心角的弧度数为( )A .1B .4C .1或4D .2或4【知识点】12,2C l R S lR =+= 【数学思想】【解题过程】12,2C l R S lR =+=26121(62)2142222l R R R R R l l lR +=⎧==⎧⎧⎪∴∴⋅-⋅=∴⎨⎨⎨===⎩⎩⎪⎩或 =4(=1απα∴>舍)或【思路点拨】一定要考虑最终求出的圆心角的弧度数不能超过π【答案】A8.集合{}{}2(21),,44P k k k Z Q απαπαα=≤≤+∈=-≤≤,则P Q =( )A .∅B .{}40ααπαπ-≤≤-≤≤或C .{}44αα-≤≤D .{}0ααπ≤≤【知识点】交集的定义【数学思想】【解题过程】P 集合中的k 分别取0或1-,0απ≤≤或2παπ-≤≤-分别和Q 取公共部分【思路点拨】要找出P Q ,P 集合中的k 只能取0和1-【答案】B探究型 多维突破9.圆弧长等于其圆内接正方形的边长,则其所对的圆心角的弧度数为______ 【知识点】rl =α的应用 【数学思想】数形结合【解题过程】α==【思路点拨】有图有真相自助餐1.35π弧度化为角度是( ) A .110°B .160°C .108°D .218°【知识点】弧度制化为角度制的应用【数学思想】 【解题过程】33180()10855πππ=⨯︒=︒ 【思路点拨】1801=rad π⎛⎫︒ ⎪⎝⎭【答案】C2.时钟的分针在1点到3点20分这段时间里转过的弧度数为( )A .143π B .143π- C .718π D .718π- 【知识点】分针每走一分钟,走过的弧度数为30π 【解题过程】14140303ππ⨯= 【思路点拨】分针走60分钟走过的弧度数为2π【答案】B3.角的集合2A x x k k Z ππ⎧⎫==+∈⎨⎬⎩⎭,与集合22B x x k k Z ππ⎧⎫==±∈⎨⎬⎩⎭,之间的关系为_____________【知识点】根据集合看角的终边所处的位置【解题过程】A ,B 集合表示的都是终边在y 轴上的角【思路点拨】注意“k π+”和“2k π+”的区别【答案】A B =4.若角α的终边与角6π的终边关于直线y x =对称,且(44)αππ∈-,,则α=_______【知识点】轴对称的特征以及终边相等的角的特征【数学思想】数形结合【解题过程】在0~2π中与角6π的终边关于直线y x =对称的是3π 在2~4ππ中与角3π终边相同的角是7233πππ+=在2~0π-中与角3π终边相同的角是5233πππ-=- 在4~2ππ--中与角3π终边相同的角是11433πππ-=- 【思路点拨】(44)αππ∈-,有4个圆周【答案】7511,,,3333ππππ-- 5.如图,圆上一点A 以逆时针方向作匀速圆周运动,已知点A 每分钟转过θ角(0)θπ<≤,经过2分钟到达第三象限,经过14分钟回到原来位置,求θ的大小. xyO A【知识点】象限角的范围【数学思想】【解题过程】14=2,,7k k k Z k Z πθπθ∈∴=∈3332224274721,24454577k k k Z k πππππππθθππθθ<<∴<<<<∴<<∈∴=∴==又即或或 【思路点拨】回到原位,即所走的角度是圆周2π的整数倍 【答案】4577ππθθ==或 6.在扇形AOB 中,90AOB ∠=°,弧AB 的长为l ,求此扇形内切圆的面积.【知识点】勾股定理,弧长公式l R α=以及圆的面积公式2S R π=【数学思想】数形结合【解题过程】设扇形AOB 所在圆半径为R ,此扇形内切圆的半径为r ,则有R r =,π2AB l R ==·.由此可得r =.则内切圆的面积22πS r ==. 【思路点拨】将内切圆的半径r 用弧长l 表示2。
人教版高中数学弧度制教案
教学内容:弧度制
教学目标:
1. 理解弧度制的概念及与角度制的转换关系;
2. 掌握弧度制的计算方法;
3. 能够运用弧度制解决相关问题。
教学重点:
1. 弧度制的概念及运用;
2. 弧度制和角度制的转换。
教学难点:
1. 弧度制与角度制的转换;
2. 弧度制的计算方法。
教学过程:
一、导入新知识(5分钟)
教师引导学生回顾角度制的概念及计算方法,并提出弧度制的定义。
二、讲解弧度制的概念及计算方法(15分钟)
1. 教师讲解弧度制的定义及计算方法,强调弧度制的优势和应用范围;
2. 带领学生进行弧度制与角度制的转换练习,并解释计算过程。
三、练习与讨论(20分钟)
1. 学生自主练习弧度制计算方法,并相互讨论解题思路;
2. 教师布置相关练习题,让学生在课后进行巩固练习。
四、检测与总结(10分钟)
1. 教师让学生进行弧度制的应用题练习,并及时纠正;
2. 学生合作讨论,总结本节课的知识点,提出问题并解决。
五、作业布置(5分钟)
布置相关作业,要求学生巩固掌握弧度制的概念和计算方法。
教学反思:
本节课主要围绕弧度制展开教学,通过讲解、练习和讨论,让学生充分理解弧度制的概念和计算方法,提高学生的数学运算能力和分析问题的能力。
在课后作业中,学生可以继续巩固弧度制的知识,提高解题的能力和速度。
《弧度制》教学设计1.根据函数概念中强调函数必须是实数集到实数集的对应,体会弧度制引入的背景及必要性,明白同一个量可以用不同的单位制来度量.2.在半径不同但圆心角相同的的扇形中,利用初中所学的扇形的弧长公式能够发现弧长与半径之比不变,从而体会用该比值作为弧度制定义的合理性,加深弧度制概念的理解.在此过程中,学生可以感悟数学抽象的层次性及逻辑推理的严谨性.3.体会弧度制是度量角的一种方式,并能利用180°=π rad进行弧度制与角度制的互化,利用单位圆中弧长等于半径的圆心角,直观感受用长度度量1弧度的大小,能证明并灵活运用一些关于扇形的公式,同时能理解角与实数之间的一一对应关系.教学重点:在了解弧度制引入的背景下,理解弧度制的概念,能进行角度制与弧度制的互化.教学难点:弧度制概念的理解.Geogebra、计算器、PPT课件.用Geogebra作动画来反映扇形的弧长、半径、圆心角之间的关系;在角度制与弧度制换算时,计算器可以解决近似值问题.资源引用:【数学探究】认识弧度制、【知识点解析】角度制与弧度制的换算、【知识点解析】扇形的弧长及面积公式(一)创设情境问题1:我们知道:篮球明星姚明的身高是2.26米,但在NBA官方数据中却是7.5英尺,为什么?你还知道哪些量有不同的度量制?举例说明.预设的师生活动:学生针对老师提出的问题进行思考与回答.预设答案:因为用了不同的单位.再如,度量重量可以用千克、斤、磅等不同的单位制,度量体积可以用立方米、升等不同的单位制.设计意图:通过生活中的发现,度量长度可以用米、尺、码等不同的单位制,让学生体会度量一样东西可以有多种度量制.(二)新知探究1.弧度制问题2:度量角除了角度制,还有什么单位制呢?追问1:如图1,射线OA绕端点O旋转到OB形成角α.在旋转过程中,射线OA上的点P(不同于点O)的轨迹是一条圆弧,这条圆弧对应于圆心角α.设α=n°,OP=r,点P所形成的圆弧1PP的长为l.回忆初中所学知识,弧长l如何用圆心角α来表示?预设的师生活动:学生经过观察、讨论得出结论.预设答案:180πrnl=.追问2:如图2,在射线OA上任取一点Q(不同于点O和P),OQ=r1.在旋转过程中,点Q所形成的的圆弧1QQ的长为l1,那么l1与r1的比值是多少?你能得出什么结论?预设的师生活动:学生经过观察、讨论得出结论.预设答案:180π11nrl=;圆心角α所对的弧长与半径的比值,与半径的大小无关,只与α的大小有关,也就是说,这个比值随α的确定而唯一确定.因此可以用弧长和半径的比值表示圆心角.★资源名称:【数学探究】认识弧度制★使用说明:本资源为“认识弧度制”知识探究,通过交互式动画的方式,运用了本资图1图2源,可以吸引学生的学习兴趣.辅助教师教学,加深学生对于知识的理解和掌握.注:此图片为“动画”缩略图,如需使用资源,请于资源库调用.设计意图:通过复习初中所学知识可知,使学生得到弧长与半径的比只与角的大小有关,推广到一般也成立,因此我们可以利用这个比值来度量角,引出新概念,使学生明白新概念的由来和定义的合理性.追问3:结合上面的探索过程,你能试着说一说什么是1弧度角吗?预设的师生活动:学生用自己的语言表述清楚即可,教师在学生表述的基础上进行完善. 预设答案:我们规定:长度等于半径的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad 表示,读作弧度.设计意图:引导学生得出定义,体会定义产生的背景、原由及过程.追问4:(1)我们把半径为1的圆叫做单位圆.既然角的大小与半径无关,那么在单位圆中如何确定1 rad 的角呢?(2)在半径为r 的圆中,弧长为l 的弧所对的圆心角α的弧度数是多少? (3)角有正、负、零角之分,它的弧度数呢? 预设的师生活动:学生思考后回答.预设答案:得出单位圆中长度为1的弧所对的圆心角就是1 rad (如图3);在半径为r 的圆中rl =α;类比角度制,α的正负由角α的终边的旋转方向决定.设计意图:深化理解弧度的定义.在单位圆中,直观感受1 rad 的角的大小,体会1 rad 角的几何表示;进一步能在一般圆中求得角的弧度数,使学生通过图形获取对新概念的直观印象,培养学生数形结合的能力.追问5:请你说说弧度制与角度制有哪些不同? 预设的师生活动:学生展开讨论之后总结提炼.预设答案:第一,弧度制以线段长度来度量角,角度制是“以角量角”; 第二,弧度制是十进制,角度制是六十进制;第三,1弧度是等于半径长的弧所对的圆心角的大小,而1°的角是周角的3601; 第四,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值,等等.图3设计意图:概念辨析,深化理解. 2.角度制与弧度制的换算问题3 既然角度制、弧度制都是角的度量制,那么,它们之间如何换算?你认为在换算的过程中最为关键的是什么?预设的师生活动:学生思考后回答,得出答案.★资源名称: 【知识点解析】角度制与弧度制的换算★使用说明:本资源展现“角度制与弧度制的换算”,辅助教师教学,加深学生对于知识的理解和掌握.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用.预设答案:这两种角度度量制之间的关系是:360°=2π rad .其中,最为基础也是最为关键的是180°=π rad ,即1°=180π rad ,1 rad =°180π⎪⎭⎫ ⎝⎛≈57.30°.设计意图:通过思考,让学生掌握弧度和角度换算的方法.体会同一个数学对象用不同方式表示时,它们之间的内在联系.认识这种联系性是数学研究的重要内容之一.例1 按照下列要求,把67°30′化成弧度: (1)精确值; (2)精确到0.001的近似值. 预设的师生活动:学生自行完成并回答问题.预设答案:(1)因为67°30′=°2135⎪⎭⎫ ⎝⎛,所以67°30′=2135×⎪⎭⎫ ⎝⎛180π rad =83π rad .(2)利用计算器有1.178097245.因此,67°30′≈1.178rad.设计意图:在换算中学会根据要求的精度不同,选择不同的计算方式.例2将3.14 rad换算成角度(用度数表示,精确到0.001).预设的师生活动:使用计算器完成.预设答案:利用计算器有179.9087477.因此,3.14rad≈179.909°.设计意图:学会利用计算器完成这种繁杂的计算问题.追问:(1)67°30′能直接化成弧度吗?你是怎么做的?应该注意什么问题?(2)相互交流一下,如何使用计算机完成弧度制与角度制的换算?预设的师生活动:学生独立完成角度制与弧度制的换算的精确值,之后交流展示用计算机完成弧度制与角度制换算的近似值.设计意图:通过简单应用,熟悉弧度制、熟悉弧度制与角度制的换算.学生可能出现的问题:第一,进行角度制与弧度制的换算不够熟练;第二,角度转化弧度时需要把含分或秒的角度统一为度的单位;第三,计算机完成弧度制与角度制换算的近似值时,操作需要一个熟悉的过程.练习填写特殊角的角度数与弧度数的对应表.预设的师生活动:快问快答,进行训练.预设答案:设计意图:这些角是今后常用的特殊角,不仅要求学生会换算,而且要让学生记住这些特殊角的度数与弧度数的对应值.另外,熟练角度和弧度的换算,进一步加深对180°=πrad 的理解和掌握.同时进一步体会角的概念推广后,无论用角度制还是弧度制,都能在角的集合与实数集R 之间建立一一对应关系.例3 利用弧度制证明下列关于扇形的公式: (1)l =αR ;(2)S =21αR 2;(3)S =21lR . 其中R 是圆的半径,α(0<α<π)为圆心角,l 是扇形的弧长,S 是扇形的面积. 预设的师生活动:学生学生利用弧度制证明关于扇形的公式,教师进行点评及板书.★资源名称: 【知识点解析】扇形的弧长及面积公式★使用说明:本资源展现“扇形的弧长及面积公式”,辅助教师教学,加深学生对于知识的理解和掌握.注:此图片为“知识卡片”缩略图,如需使用资源,请于资源库调用. 预设答案:(1)由公式|α|=rl可得l =αR . 下面证明(2)(3).由于半径为R ,圆心角为n °的扇形的弧长公式和面积公式分别是l =180πRn ,S =360π2R n ,将n °转换为弧度,得α=180πn ,于是S =21αR 2.将l =αR 代入上式,即得S =21lR .设计意图:体会弧度制下的扇形弧长、面积公式的简洁美,这是引入弧度制的一个理由. (三)归纳小结问题4 通过本节课的学习,你学会用弧度制度量角了吗?追问:你觉得这样定义弧度制合理吗?在度量角的时候你觉得需要注意哪些问题?你现在觉得用弧度制度量角有什么好处?为什么会出现这种情况?你能画一个知识结构图来反映本节课的研究内容与路径吗?预设的师生活动:学生自主总结,并作出回答.预设答案:圆心角α所对的弧长与半径的比值随α的确定而唯一确定,因此,利用圆的弧长与半径的关系度量圆心角的是合理的;在度量角的时候需要注意:联系两种度量制的桥梁是360°=2 rad ;要注意防止出现角的两种度量制混用的现象,等等;用弧度制度量角的好处:弧度制下的扇形弧长、面积公式非常简单,这是引入弧度制带来的一个便利.实际上,角度制下角的度量制是六十进制,与长度、面积的度量进位制不一样,于是在公式中要有“换算因子”180π.而弧度制下角度与长度、面积一样,都是十进制,就可以去掉这个“换算因子”了.设计意图:帮助学生梳理所学知识,并让学生清楚引入弧度制的必要性,以及这样定义的合理性,逐步提升学生逻辑推理的核心素养.(四)布置作业: 1.课本练习;2.习题5.1A 组1—9题. (五)目标检测设计 1.把下列角度化成弧度:(1)22°30′; (2)-210°; (3)1 200°. 2.把下列弧度化成角度: (1)12π; (2)-3π4; (3)10π3. 3.已知半径为120 mm 的圆上,有一条弧的长是144 mm ,求该弧所对的圆心角(正角)的弧度数.预设答案: 1.(1)8π;(2)―6π7;(3)3π20.2.(1)15°;(2)-240°;(3)54°. 3.弧度数为1.2. 设计意图:巩固所学知识.。
人教版高中数学必修3教材全套教案(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版高中数学必修3教材全套教案(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版高中数学必修3教材全套教案(2)(word版可编辑修改)的全部内容。
第一章算法初步1。
1 算法与程序框图1。
1.1 算法的概念授课时间:第周年月日(星期)教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法。
教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2。
通过例题教学,使学生体会设计算法的基本思路。
3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用。
教学难点:写出解决一类问题的算法.教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊。
该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法.思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念。
新课标人教A版高中数学必修3优质教案全册合集完整版第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
1.1.2 弧度制 整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单位进行度量,并且一度的角等于周角的3601,记作1°. 通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性.这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础.通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的.进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点. 三维目标1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣. 重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算. 教学难点:弧度的概念及其与角度的关系. 课时安排 1课时教学过程导入新课思路1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路2.(情境导入)利用古代度量时间的一种仪器——日晷,或者利用普遍使用的钟表.实际上我们使用的钟表是用时针、分针和秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法——弧度制.要使学生真正了解弧度制,首先要弄清1弧度的含义,并能进行弧度与角度换算的关键.在引入弧度制后,可以引导学生建立弧与圆心角的联系——弧的度数等于圆心角的度数.随着角的概念的推广,圆心角和弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角,相应的,弧也就有正弧、零弧、负弧;从“数”上讲,圆心角与弧的度数有正数、0、负数.圆心角和弧的正负实际上表示了“角的不同方向”,就像三角函数值的正负可以用三角函数线(有向线段)的方向来表示一样.每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反之亦然.推进新课 新知探究 提出问题问题①:在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢?问题②:我们从度量长度和重量上知道,不同的单位制能给我们解决问题带来方便.那么角的度量是否也能用不同单位制呢?图1活动:教师先让学生思考或讨论问题,并让学生回忆初中有关角度的知识,提出这是认识弧度制的关键,为更好地理解角度弧度的关系奠定基础.讨论后教师提问学生,并对回答好的学生及时表扬,对回答不准确的学生提示引导考虑问题的关键.教师板书弧度制的定义:规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度为单位来度量角的制度叫做弧度制;在弧度制下,1弧度记作1 rad.如图1中,的长等于半径r,AB 所对的圆心角∠AOB 就是1弧度的角,即rl =1. 讨论结果: ①1°的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1°.它是一个定值,与所取圆的半径大小无关. ②能,用弧度制. 提出问题问题①:作半径不等的甲、乙两圆,在每个圆上作出等于其半径的弧长,连结圆心与弧的两个端点,得到两个角,将乙图移到甲图上,两个角有什么样的关系?问题②:如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数是多少?既然角度制、弧度制都是角的度量制,那么它们之间如何换算?活动:教师引导学生学会总结和归纳角度制和弧度制的关系,提问学生归纳的情况,让学生找出区别和联系.教师给予补充和提示,对表现好的学生进行表扬,对回答不准确的学生提示和鼓励.引入弧度之后,应与角度进行对比,使学生明确:第一,弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;第二,1弧度是等于半径长的弧所对的圆心角(或这条弧)的大小,而1°的角是周角的3601;第三,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值.教师要强调为了让学生习惯使用弧度制,本教科书在后续的内容中尽量采用弧度制.讨论结果:①完全重合,因为都是1弧度的角. ②α=r 1;将角度化为弧度:360°=2π rad,1°=180πrad≈0.017 45 rad,将弧度化为角度:2π rad=360°,1 rad=(π180)°≈57.30°=57°18′.弧度制与角度制的换算公式:设一个角的弧度数为αrad=(πa180)°,n°=n180π(rad). 提出问题问题①:引入弧度之后,在平面直角坐标系中,终边相同的角应该怎么用弧度来表示?扇形的面积与弧长公式用弧度怎么表示?的长一些特殊角填表,然后概括出一般情况.教师让学生互动起来,讨论并总结出规律,提问学生的总结情况,让学生板书,教师对做正确的学生给予表扬,对没有总结完全的学生进行简单的提示.检查完毕后,教师做个总结.由上表可知,如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数的绝对值是a1这里,应当注意从数学思想的高度引导学生认识“换算”问题,即角度制、弧度制都是角的度量制,那么它们一定可以换算.推而广之,同一个数学对象用不同方式表示时,它们之间一定有内在联系,认识这种联系性也是数学研究的重要内容之一.教师给学生指出,角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.值得注意的是:今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k·360°+3π或者2kπ+60°一类的写法.在弧度制中,与角α终边相同的角,连同角α在内,可以写成β=α+2kπ(k ∈Z )的形式.如图2为角的集合与实数集R 之间的一一对应关系.图2讨论结果:①与角α终边相同的角,连同角α在内,可以写成β=α+2kπ(k ∈Z )的形式.弧度制下关于扇形的公式为l=αR,S=21αR 2,S=21lR. ②的长 应用示例例1 下列诸命题中,真命题是( ) A.一弧度是一度的圆心角所对的弧 B.一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D.一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位活动:本例目的是让学生在教师的指导下理解弧度制与角度制的联系与区别,以达到熟练掌握定义.从实际教学上看,弧度制不难理解,学生结合角度制很容易记住.根据弧度制的定义:我们把长度等于半径长的弧和所对的圆心角叫做一弧度的角.对照各项,可知D 为真命题. 答案:D点评:本题考查弧度制下角的度量单位:1弧度的概念. 变式训练下列四个命题中,不正确的一个是( ) A.半圆所对的圆心角是π rad B.周角的大小是2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度 答案:D例 2 将下列用弧度制表示的角化为2kπ+α(k ∈Z ,α∈[0,2π))的形式,并指出它们所在的象限:①-415π;②332π;③-20;④-32. 活动:本题的目的是让学生理解什么是终边相同的角,教师给予指导并讨论归纳出一般规律.即终边在x 轴、y 轴上的角的集合分别是:{β|β=kπ,k ∈Z },{β|β2π=kπ,k ∈Z }.第一、二、三、四象限角的集合分别为: {β|2kπ<β<2kπ+2π,k ∈Z }, {β|2kπ+2π<β<2kπ+π,k ∈Z }, {β|2kπ+π<β<2kπ+23π,k ∈Z },{β|2kπ+23π<β<2kπ+2π,k ∈Z }.解:①415π-=-4π+4π,是第一象限角. ②432π=10π+32π,是第二象限角.③-20=-3×6.28-1.16,是第四象限角. ④-23≈-3.464,是第二象限角.点评:在这类题中对于含有π的弧度数表示的角,我们先将它化为2kπ+α(k ∈Z ,α∈[0,2π))的形式,再根据α角终边所在的位置进行判断,对于不含有π的弧度数表示的角,取π=3.14,化为k×6.28+α,k ∈Z ,|α|∈[0,6.28)的形式,通过α与2π,π,23π比较大小,估计出角所在的象限.变式训练(1)把-1 480°写成2kπ+α(k ∈Z ,α∈[0,2π))的形式; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β.解:(1)∵-1 480°=-974π=-10π+916π,0≤916π<2π, ∴-1 480°=2(-5)π+916π.(2)∵β与α终边相同,∴β=2kπ+916π,k ∈Z .又∵β∈[-4π,0),∴β1=92π-,β2=920π-.例3 已知0<θ<2π,且θ与7θ相同,求θ.活动:本例目的是让学生在教师的指导下会用弧度制求终边相同的角,并通过独立完成课后练习真正领悟弧度制的要领,最终达到熟练掌握.从实际教学来看,用弧度制解决角的问题要很容易却难掌握,很有可能记错或者混淆或者化简错误,学生需多做些这方面的题来练基本功.可先让学生多做相应的随堂练习,在黑板上当场演练,教师给予批改指导,对易出错的地方特别强调.对学生出现的种种失误,教师不要着急,在学生的练习操作中一一纠正,这对以后学习大有好处.解:由已知,得7θ=2kπ+θ,k ∈Z ,即6θ=2kπ.∴θ=3k π. 又∵0<θ<2π,∴0<3kπ<2π. ∵k ∈Z ,当k=1、2、3、4、5时,θ=3π、32π、π、34π、35π.点评:本题是在一定的约束条件下,求与角α终边相同的角,一般地,首先将这样的角表示为2kπ+α(k ∈Z ,α∈[0,2π))的形式,然后在约束条件下确定k 的值,进而求适合条件的角. 例4 已知一个扇形的周长为a,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值. 活动:这是一道应用题,并且考查了函数思想,教师提示学生回顾一下用函数法求最值的思路与步骤,教师提问学生对已学知识的掌握和巩固,并对回答好的学生进行表扬,对回答不全面的学生给予一定的提示和鼓励.教师补充,函数法求最值所包括的五个基本环节:(1)选取自变量;(2)建立目标函数;(3)指出函数的定义域;(4)求函数的最值;(5)作出相应结论.其中自变量的选取不唯一,建立目标函数结合有关公式进行,函数定义域要根据题意确定,有些函数是结构确定求最值的方法,并确保在定义域内能取到最值. 解:设扇形的弧长为l,半径为r,圆心角为α,面积为S.由已知,2r+l=a,即l=a-2r.∴S=21l·r=21(a-2r)·r=-r 2+2a r=-(r-4a )2+162a .∵r>0,l=a-2r>0,∴0<r<2a. ∴当r=4a时,S max =162a .此时,l=a-2·4a =2a,∴α=r 1=2.故当扇形的圆心角为2 rad 时,扇形的面积取最大值162a .点评:这是一个最大值问题,可用函数法求解,即将扇形的面积S 表示成某个变量的函数,然后求这个函数的最大值及相应的圆心角. 变式训练已知一个扇形的周长为98π+4,圆心角为80°,求这个扇形的面积. 解:设扇形的半径为r,面积为S,由已知知道,扇形的圆心角为80×180π=94π, ∴扇形的弧长为94πr,由已知,94πr+2r=98π+4,∴r=2.∴S=21·94πr 2=98π.故扇形的面积为98π.点评:求扇形的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.相反,也可由扇形的面积结合其他条件,求扇形的圆心角、半径、弧长.解题时要注意公式的灵活变形及方程思想的运用. 知能训练课本本节练习. 解答:1.(1)8π;(2)67m -;(3)320m .点评:能进行角度与弧度的换算.2.(1)15°;(2)-240°;(3)54°.点评:能进行弧度与角度的换算. 3.(1){α|α=kπ,k ∈Z };(2){α|α=2π+kπ,k ∈Z }. 点评:用弧度制表示终边分别在x 轴和y 轴上的角的集合. 4.(1)cos0.75°>cos0.75;(2)tan1.2°<tan1.2.点评:体会同数值不同单位的角对应的三角函数值可能不同,并进一步认识两种单位制.注意在用计算器求三角函数值之前,要先对计算器中角的模式进行设置.如求cos0.75°之前,要将角模式设置为DEG(角度制);求cos0.75之前,要将角模式设置为RAD(弧度制). 5.3πm.点评:通过分别运用角度制和弧度制下的弧长公式,体会引入弧度制的必要性.6.弧度数为1.2.点评:进一步认识弧度数的绝对值公式.课堂小结由学生总结弧度制的定义,角度与弧度的换算公式与方法.教师强调角度制与弧度制是度量角的两种不同的单位制,它们是互相联系的,辩证统一的;角度与弧度的换算,关键要理解并牢记180°=π rad这一关系式,由此可以很方便地进行角度与弧度的换算;三个注意的问题,同学们要切记;特殊角的弧度数,同学们要熟记.重要的一点是,同学们自己找到了角的集合与实数集R的一一对应关系,对弧度制下的弧长公式、扇形面积公式有了深刻的理解,要把这两个公式记下来,并在解决实际问题中灵活运用,表扬学生能总结出引入弧度制的好处,这种不断总结,不断归纳,梳理知识,编织知识的网络,特别是同学们善于联想、积极探索的学习品质,会使我们终生受用,这样持之以恒地坚持下去,你会发现数学王国的许多宝藏,以服务于社会,造福于人类.作业①课本习题1.1 A组6、8、10.②课后探究训练:课本习题1.1 B组题.设计感想本节课的设计思想是:在学生的探究活动中通过类比引入弧度制这个概念并突破这个难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么以后有些题怎么做就怎么难受.通过探究让学生明确知识依附于问题而存在,方法为解决问题的需要而产生.将弧度制的概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更宽的广度.本节设计的特点是由特殊到一般、由易到难,这符合学生的认知规律;让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启迪.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续总结归纳用弧度来计量角的好处并为后续三角函数的学习奠定基础.根据本节特点可考虑分层推进、照顾全体.对优等生,重在引导他们变式思维的训练,培养他们求同思维、求异思维的能力,以及思维的灵活性、深刻性与创造性.鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.。
人教版高一数学必修第三册《弧度制及其与角度制的换算》教案及教学反思一、教学目标1.掌握弧度制。
2.熟练掌握角度制和弧度制之间的换算。
3.能够灵活运用角度制和弧度制进行计算。
二、教学重点和难点1.弧度制的概念和计算方法。
2.角度制和弧度制之间的换算。
三、教学过程1.引入(5分钟)教师通过讲述一个故事或引用一个有趣的例子,让学生了解使用角度制进行计算时可能遇到的问题。
通过这个引入,让学生对今天的学习主题——弧度制及其与角度制的换算有所了解,并对其产生兴趣。
2.概念讲解(15分钟)为了更好地让学生理解弧度制,教师应该把它和角度制进行对比,逐步介绍弧度制的概念。
教师可以在黑板上画一个圆,并解释它的周长是 $2\\pi$ 倍的半径。
然后,教师可以用同样的长度来描述圆心角的大小,这就是弧度制。
3.计算弧度制(20分钟)接下来,教师应该逐步引导学生计算弧度制。
教师可以给学生一些例子,例如求圆的周长、圆心角的大小等等。
在教师给出题目的同时,应该给出解题思路,让学生能够理解用弧度制进行计算的过程。
4.角度制和弧度制的换算(25分钟)在学生掌握了弧度制的概念和计算方法之后,教师应该指导学生如何进行角度制和弧度制之间的换算。
教师可以给学生一些例子,并通过讲解解题思路,让学生理解如何将角度制转换为弧度制,以及如何将弧度制转换为角度制。
5.练习(30分钟)为了帮助学生掌握弧度制及其与角度制的换算,教师应该给学生留出足够的练习时间。
教师可以为学生提供一系列的练习题,让他们在课堂上独自或与同伴联合解答。
6.讲解(10分钟)在讲解的过程中,教师需要重点强调角度制和弧度制之间的换算技巧,以及如何使用弧度制计算有关圆的属性的方法。
四、教学反思在教学过程中,我发现学生对于弧度制的概念和计算方法有一定的概念混淆,导致了学生在计算上出现了困难。
因此,在下一次课堂上,我会更加详细地介绍弧度制的概念,让学生能够掌握弧度制的作用以及具体的计算方法。
高中数学教案3新人教A版必修3教案教学目标:1.知识与技能:学生能够掌握函数的基本概念和特性,包括函数的图像、性质及函数间的关系。
2.过程与方法:培养学生观察、分析和解决问题的能力,以及数学建模与计算机辅助求解问题的技能。
3.情感态度价值观:培养学生对数学的兴趣和热爱,培养他们正确的数学态度和价值观,发展他们的创造性和合作精神。
教学重点:1.学习函数的基本概念和性质,包括函数的定义、函数的图像和函数的特性。
2.学习函数的基本运算,包括函数的加减乘除、复合和函数的逆运算。
3.学习函数的复合运算,包括函数的复合运算和函数的复合逆运算。
教学难点:1.学习函数的逆运算,包括函数的逆运算的定义、判定和求逆运算的方法。
2.学习函数的复合逆运算,包括函数的复合逆运算的定义、判定和求复合逆运算的方法。
教学准备:1.教学课件、黑板、白板和彩色粉笔。
2.教学实例、练习题、学生作品和教学辅助材料。
教学过程:Step 1:导入(5分钟)通过与学生的互动对话,引起学生对函数的兴趣,并鼓励他们发表自己的观点和想法。
Step 2:概念讲解(15分钟)1.函数的定义:函数是两个集合之间的一种特殊关系,通常用符号"y=f(x)"表示。
其中,x是定义域中的元素,y是值域中的元素。
在函数的定义中,定义域中的每一个元素都对应一个唯一的值域中的元素。
2.函数的图像:函数的图像是将函数的定义域中的元素与值域中的元素一一对应,并以坐标图形的方式表示。
3.函数的性质:函数的性质包括函数的单调性、奇偶性、周期性等。
通过观察函数的图像可以判断函数的性质。
Step 3:基本运算(20分钟)1.函数的加减:将两个函数的定义域相交的元素相加或相减,即得到两个函数的和或差。
2.函数的乘除:将两个函数的定义域相交的元素相乘或相除,即得到两个函数的积或商。
3.函数的复合:将一个函数的值域作为另一个函数的定义域,即可得到复合函数。
Step 4:逆运算(20分钟)1.函数的逆运算:对于函数f(x),如果存在一个函数g(x),使得g(f(x))=x,那么g(x)就是f(x)的逆函数。
人教版高一数学必修第三册《弧度制及其与角度制的换算》说课稿一、教材分析本篇说课稿是针对人教版高中数学必修第三册中的《弧度制及其与角度制的换算》这一单元进行的。
该单元是高一数学必修课的一部分,主要内容是介绍弧度制的概念以及与角度制进行换算。
通过本单元的学习,学生能够了解弧度制的基本概念和性质,并能够熟练进行弧度制与角度制的互相转换。
二、教学目标1.知识目标:–了解弧度制的定义和基本性质;–掌握弧度制与角度制的换算方法;–能够灵活运用弧度制与角度制进行角度的计算与单位转换。
2.能力目标:–培养学生观察问题、提出问题、解决问题的能力;–培养学生正确使用弧度制和角度制进行数学推理和计算的能力;–培养学生合作探究、团队合作的能力。
3.情感目标:–培养学生对数学学科的兴趣和热爱;–培养学生正确的学习态度和方法;–培养学生思维的灵活性和创造性。
三、教学重难点1.教学重点:–弧度制的定义和基本性质;–弧度制与角度制的换算方法。
2.教学难点:–弧度制与角度制的互相转换方法的理解与应用;–弧度制与角度制的思维方式转换的培养。
四、教学过程1. 导入与引导(5分钟)引导学生回顾角度的相关知识,并提出一个问题:我们平常计算角度时经常使用的是度数,但在某些情况下使用弧度制更加方便,你们知道弧度制吗?2. 教学呈现(10分钟)通过多媒体展示弧度制的定义及其基本性质,包括弧长与半径的关系、弧度与角度的换算公式等内容。
引导学生思考弧度制与角度制之间的关系。
3. 教学实践(40分钟)3.1 实践引入:教师设计一道相关练习,让学生通过计算角度的弧度表示,进一步理解弧度制的应用。
3.2 合作探究:学生分组进行小组讨论,针对给定问题,通过实践操作、尝试和讨论,探究弧度制与角度制之间的换算方法。
教师起到引导和组织学生思维的作用。
3.3 学生展示:每个小组选出一名代表,对自己的探究结果进行汇报,并由教师引导全班学生进行讨论和交流,加深对弧度制与角度制的理解和运用。
备课资料一、密位制度量角度量角的单位制,除了角度制、弧度制外,军事上还常用密位制.密位制的单位是“密位”.1密位就是圆的60001所对的圆心角(或这条弧)的大小.因为360°=6 000密位,所以 1°=3606000密位≈16.7密位,1密位=6000360 =0.06°=3.6′≈216″.密位的写法是在百位上的数与十位上的数之间画一条短线,例如7密位写成0—07,读作“零,零七”,478密位写成4—78,读作“四,七八”. 二、备用习题1.一条弦的长度等于圆的半径,则这条弦所对的圆心角的弧度数是( ) A.3 B.6C.1D.π 2.圆的半径变为原来的2倍,而弧长也增大到原来的2倍,则( ) A.扇形的面积不变 B.扇形的圆心角不变C.扇形的面积增大到原来的2倍D.扇形的圆心角增大到原来的2倍3.下列表示的为终边相同的角的是( )A.kπ+4 与2kπ+4 (k ∈Z ) B.2 k 与kπ+2(k ∈Z )C.kπ-32 与kπ+3(k ∈Z ) D.(2k +1)π与3kπ(k ∈Z ) 4.已知0<θ<2π,7θ角的终边与θ角的终边重合,则θ=________________. 5.已知扇形的周长为6 cm,面积为2 cm 2,求扇形的中心角的弧度数. 6.若α∈(-2 ,0),β∈(0,2),求α+β,α-β的范围,并指出它们各自所在的象限. 7.用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(不包括边界,如图4所示).图48.(1)角α,β的终边关于直线y=x 对称,写出α与β的关系式; (2)角α,β的终边关于直线y=-x 对称,写出α与β的关系式. 参考答案: 1.A 2.B 3.C 4.3 ,32 ,π,34 ,35 5.解:设扇形所在圆的半径为R,扇形的中心角为α,依题意有αR+2R=6,且21αR 2=2, ∴R=1,α=4或R =2,α=1. ∴α=4或1. 6.解:2<α+β<2, ∴α+β在第一象限或第四象限,或α+β的终边在x 轴的非负半轴上.-π<α-β<0,∴α-β在第三象限或第四象限,或α-β的终边在y 轴的非正半轴上.7.解:(1){θ|2kπ-6<θ<2kπ+125 ,k ∈Z };(2){θ|2kπ-43 -<θ<2kπ+43,k ∈Z }; (3){θ|2kπ+6 <θ<2kπ+2 ,k ∈Z }∪{θ|2kπ+67<θ<2kπ+23 ,k ∈Z }={θ|nπ+6 θ<nπ+2,n ∈Z }.8.解:(1)β=2-α+2kπ,k ∈Z ;(2)β=2+α+2kπ,k ∈Z .三、钟表的分针与时针的重合问题弧度制、角度制以及有关弧度的概念,在日常生活中有着广泛的应用,我们平时所见到的时钟上的时针、分针的转动,其实质都反映了角的变化.时间的度量单位时、分、秒分别与角2π(rad),30(rad),1800(rad)相对应,只是出于方便的原因,才用时、分、秒.时钟上的数学问题比较丰富,下面我们就时针与分针重合的问题加以研讨.例题 在一般的时钟上,自零时开始到分针与时针再一次重合,分针所转过的角的弧度数是多少(在不考虑角度方向的情况下)?甲生:自零时(此时时针与分针重合,均指向12)开始到分针与时针再一次重合,设时针转过了x 弧度,则分针转过了2π+x 弧度,而时针走1弧度相当于经过6 h= 360 min,分针走1弧度相当于经过30min,故有360x=30(2π+x),得x=112,∴到分针与时针再一次重合时,分针转过的弧度数是112+2π=1124 (rad).乙生:设再一次重合时,分针转过弧度数为α,则α=12(α-2π)(因为再一次重合时,时针比分针少转了一周,且分针的旋转速度是时针的12倍),得α=1124 , ∴到分针与时针再一次重合时,分针转过的弧度数是1124(rad).点评:两名同学得出的结果相同,其解答过程都是正确的,只不过解题的角度不同而已.甲同学是从时针与分针所走的时间相等方面列出方程求解,而乙同学则从时针与分针所转过的弧度数入手,当分针与时针再次重合时,分针所转过的弧度数α-2π与时针所转过的弧度数相等,利用弧度数之间的关系列出方程求解.(设计者:房增凤)。
1.1.2 弧度制 整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单位进行度量,并且一度的角等于周角的3601,记作1°. 通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性.这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础.通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的.进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点. 三维目标1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣. 重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算. 教学难点:弧度的概念及其与角度的关系. 课时安排 1课时教学过程导入新课思路1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路2.(情境导入)利用古代度量时间的一种仪器——日晷,或者利用普遍使用的钟表.实际上我们使用的钟表是用时针、分针和秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法——弧度制.要使学生真正了解弧度制,首先要弄清1弧度的含义,并能进行弧度与角度换算的关键.在引入弧度制后,可以引导学生建立弧与圆心角的联系——弧的度数等于圆心角的度数.随着角的概念的推广,圆心角和弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角,相应的,弧也就有正弧、零弧、负弧;从“数”上讲,圆心角与弧的度数有正数、0、负数.圆心角和弧的正负实际上表示了“角的不同方向”,就像三角函数值的正负可以用三角函数线(有向线段)的方向来表示一样.每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反之亦然.推进新课 新知探究 提出问题问题①:在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢?问题②:我们从度量长度和重量上知道,不同的单位制能给我们解决问题带来方便.那么角的度量是否也能用不同单位制呢?图1活动:教师先让学生思考或讨论问题,并让学生回忆初中有关角度的知识,提出这是认识弧度制的关键,为更好地理解角度弧度的关系奠定基础.讨论后教师提问学生,并对回答好的学生及时表扬,对回答不准确的学生提示引导考虑问题的关键.教师板书弧度制的定义:规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度为单位来度量角的制度叫做弧度制;在弧度制下,1弧度记作1 rad.如图1中,的长等于半径r,AB 所对的圆心角∠AOB 就是1弧度的角,即rl =1. 讨论结果: ①1°的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1°.它是一个定值,与所取圆的半径大小无关. ②能,用弧度制. 提出问题问题①:作半径不等的甲、乙两圆,在每个圆上作出等于其半径的弧长,连结圆心与弧的两个端点,得到两个角,将乙图移到甲图上,两个角有什么样的关系?问题②:如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数是多少?既然角度制、弧度制都是角的度量制,那么它们之间如何换算?活动:教师引导学生学会总结和归纳角度制和弧度制的关系,提问学生归纳的情况,让学生找出区别和联系.教师给予补充和提示,对表现好的学生进行表扬,对回答不准确的学生提示和鼓励.引入弧度之后,应与角度进行对比,使学生明确:第一,弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;第二,1弧度是等于半径长的弧所对的圆心角(或这条弧)的大小,而1°的角是周角的3601;第三,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值.教师要强调为了让学生习惯使用弧度制,本教科书在后续的内容中尽量采用弧度制.讨论结果:①完全重合,因为都是1弧度的角. ②α=r 1;将角度化为弧度:360°=2π rad,1°=180πrad≈0.017 45 rad,将弧度化为角度:2π rad=360°,1 rad=(π180)°≈57.30°=57°18′.弧度制与角度制的换算公式:设一个角的弧度数为αrad=(πa180)°,n°=n180π(rad). 提出问题问题①:引入弧度之后,在平面直角坐标系中,终边相同的角应该怎么用弧度来表示?扇形的面积与弧长公式用弧度怎么表示?的长OB 旋转的方向 ∠AOB 的弧度数∠AOB 的度数πr逆时针方向 2πr 逆时针方向R 1 2r -2 -π 0 180°360°些特殊角填表,然后概括出一般情况.教师让学生互动起来,讨论并总结出规律,提问学生的总结情况,让学生板书,教师对做正确的学生给予表扬,对没有总结完全的学生进行简单的提示.检查完毕后,教师做个总结.由上表可知,如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数的绝对值是a1这里,应当注意从数学思想的高度引导学生认识“换算”问题,即角度制、弧度制都是角的度量制,那么它们一定可以换算.推而广之,同一个数学对象用不同方式表示时,它们之间一定有内在联系,认识这种联系性也是数学研究的重要内容之一.教师给学生指出,角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.值得注意的是:今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k·360°+3π或者2kπ+60°一类的写法.在弧度制中,与角α终边相同的角,连同角α在内,可以写成β=α+2kπ(k ∈Z )的形式.如图2为角的集合与实数集R 之间的一一对应关系.图2讨论结果:①与角α终边相同的角,连同角α在内,可以写成β=α+2kπ(k ∈Z )的形式.弧度制下关于扇形的公式为l=αR,S=21αR 2,S=21lR. ②的长 OB 旋转的方向 ∠AOB 的弧度数∠AOB 的度数πr 逆时针方向 Π 180° 2πr 逆时针方向 2π 360° R 逆时针方向 1 57.3° 2r 顺时针方向 -2 -114.6° πr 顺时针方向 -π -180° 0 未旋转 0 0° πr 逆时针方向 Π 180° 2πr逆时针方向2π360°应用示例例1 下列诸命题中,真命题是( ) A.一弧度是一度的圆心角所对的弧 B.一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D.一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位活动:本例目的是让学生在教师的指导下理解弧度制与角度制的联系与区别,以达到熟练掌握定义.从实际教学上看,弧度制不难理解,学生结合角度制很容易记住.根据弧度制的定义:我们把长度等于半径长的弧和所对的圆心角叫做一弧度的角.对照各项,可知D 为真命题. 答案:D点评:本题考查弧度制下角的度量单位:1弧度的概念. 变式训练下列四个命题中,不正确的一个是( ) A.半圆所对的圆心角是π rad B.周角的大小是2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度 答案:D例 2 将下列用弧度制表示的角化为2kπ+α(k ∈Z ,α∈[0,2π))的形式,并指出它们所在的象限:①-415π;②332π;③-20;④-32. 活动:本题的目的是让学生理解什么是终边相同的角,教师给予指导并讨论归纳出一般规律.即终边在x 轴、y 轴上的角的集合分别是:{β|β=kπ,k ∈Z },{β|β2π=kπ,k ∈Z }.第一、二、三、四象限角的集合分别为: {β|2kπ<β<2kπ+2π,k ∈Z }, {β|2kπ+2π<β<2kπ+π,k ∈Z }, {β|2kπ+π<β<2kπ+23π,k ∈Z },{β|2kπ+23π<β<2kπ+2π,k ∈Z }.解:①415π-=-4π+4π,是第一象限角. ②432π=10π+32π,是第二象限角.③-20=-3×6.28-1.16,是第四象限角. ④-23≈-3.464,是第二象限角.点评:在这类题中对于含有π的弧度数表示的角,我们先将它化为2kπ+α(k ∈Z ,α∈[0,2π))的形式,再根据α角终边所在的位置进行判断,对于不含有π的弧度数表示的角,取π=3.14,化为k×6.28+α,k ∈Z ,|α|∈[0,6.28)的形式,通过α与2π,π,23π比较大小,估计出角所在的象限.变式训练(1)把-1 480°写成2kπ+α(k ∈Z ,α∈[0,2π))的形式; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β.解:(1)∵-1 480°=-974π=-10π+916π,0≤916π<2π, ∴-1 480°=2(-5)π+916π.(2)∵β与α终边相同,∴β=2kπ+916π,k ∈Z .又∵β∈[-4π,0),∴β1=92π-,β2=920π-.例3 已知0<θ<2π,且θ与7θ相同,求θ.活动:本例目的是让学生在教师的指导下会用弧度制求终边相同的角,并通过独立完成课后练习真正领悟弧度制的要领,最终达到熟练掌握.从实际教学来看,用弧度制解决角的问题要很容易却难掌握,很有可能记错或者混淆或者化简错误,学生需多做些这方面的题来练基本功.可先让学生多做相应的随堂练习,在黑板上当场演练,教师给予批改指导,对易出错的地方特别强调.对学生出现的种种失误,教师不要着急,在学生的练习操作中一一纠正,这对以后学习大有好处.解:由已知,得7θ=2kπ+θ,k ∈Z ,即6θ=2kπ.∴θ=3k π. 又∵0<θ<2π,∴0<3kπ<2π. ∵k ∈Z ,当k=1、2、3、4、5时,θ=3π、32π、π、34π、35π.点评:本题是在一定的约束条件下,求与角α终边相同的角,一般地,首先将这样的角表示为2kπ+α(k ∈Z ,α∈[0,2π))的形式,然后在约束条件下确定k 的值,进而求适合条件的角.例4 已知一个扇形的周长为a,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值. 活动:这是一道应用题,并且考查了函数思想,教师提示学生回顾一下用函数法求最值的思路与步骤,教师提问学生对已学知识的掌握和巩固,并对回答好的学生进行表扬,对回答不全面的学生给予一定的提示和鼓励.教师补充,函数法求最值所包括的五个基本环节:(1)选取自变量;(2)建立目标函数;(3)指出函数的定义域;(4)求函数的最值;(5)作出相应结论.其中自变量的选取不唯一,建立目标函数结合有关公式进行,函数定义域要根据题意确定,有些函数是结构确定求最值的方法,并确保在定义域内能取到最值. 解:设扇形的弧长为l,半径为r,圆心角为α,面积为S.由已知,2r+l=a,即l=a-2r.∴S=21l·r=21(a-2r)·r=-r 2+2a r=-(r-4a)2+162a .∵r>0,l=a-2r>0,∴0<r<2a. ∴当r=4a时,S max =162a .此时,l=a-2·4a =2a ,∴α=r1=2. 故当扇形的圆心角为2 rad 时,扇形的面积取最大值162a .点评:这是一个最大值问题,可用函数法求解,即将扇形的面积S 表示成某个变量的函数,然后求这个函数的最大值及相应的圆心角. 变式训练已知一个扇形的周长为98π+4,圆心角为80°,求这个扇形的面积. 解:设扇形的半径为r,面积为S,由已知知道,扇形的圆心角为80×180π=94π, ∴扇形的弧长为94πr,由已知,94πr+2r=98π+4,∴r=2. ∴S=21·94πr 2=98π.故扇形的面积为98π.点评:求扇形的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.相反,也可由扇形的面积结合其他条件,求扇形的圆心角、半径、弧长.解题时要注意公式的灵活变形及方程思想的运用. 知能训练课本本节练习. 解答:1.(1)8π;(2)67m -;(3)320m .点评:能进行角度与弧度的换算.2.(1)15°;(2)-240°;(3)54°.点评:能进行弧度与角度的换算. 3.(1){α|α=kπ,k ∈Z };(2){α|α=2π+kπ,k ∈Z }. 点评:用弧度制表示终边分别在x 轴和y 轴上的角的集合. 4.(1)cos0.75°>cos0.75;(2)tan1.2°<tan1.2.点评:体会同数值不同单位的角对应的三角函数值可能不同,并进一步认识两种单位制.注意在用计算器求三角函数值之前,要先对计算器中角的模式进行设置.如求cos0.75°之前,要将角模式设置为DEG(角度制);求cos0.75之前,要将角模式设置为RAD(弧度制). 5.3πm.点评:通过分别运用角度制和弧度制下的弧长公式,体会引入弧度制的必要性.6.弧度数为1.2.点评:进一步认识弧度数的绝对值公式.课堂小结由学生总结弧度制的定义,角度与弧度的换算公式与方法.教师强调角度制与弧度制是度量角的两种不同的单位制,它们是互相联系的,辩证统一的;角度与弧度的换算,关键要理解并牢记180°=π rad这一关系式,由此可以很方便地进行角度与弧度的换算;三个注意的问题,同学们要切记;特殊角的弧度数,同学们要熟记.重要的一点是,同学们自己找到了角的集合与实数集R的一一对应关系,对弧度制下的弧长公式、扇形面积公式有了深刻的理解,要把这两个公式记下来,并在解决实际问题中灵活运用,表扬学生能总结出引入弧度制的好处,这种不断总结,不断归纳,梳理知识,编织知识的网络,特别是同学们善于联想、积极探索的学习品质,会使我们终生受用,这样持之以恒地坚持下去,你会发现数学王国的许多宝藏,以服务于社会,造福于人类.作业①课本习题1.1 A组6、8、10.②课后探究训练:课本习题1.1 B组题.设计感想本节课的设计思想是:在学生的探究活动中通过类比引入弧度制这个概念并突破这个难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么以后有些题怎么做就怎么难受.通过探究让学生明确知识依附于问题而存在,方法为解决问题的需要而产生.将弧度制的概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更宽的广度.本节设计的特点是由特殊到一般、由易到难,这符合学生的认知规律;让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启迪.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续总结归纳用弧度来计量角的好处并为后续三角函数的学习奠定基础.根据本节特点可考虑分层推进、照顾全体.对优等生,重在引导他们变式思维的训练,培养他们求同思维、求异思维的能力,以及思维的灵活性、深刻性与创造性.鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.。