不等概率抽样
- 格式:ppt
- 大小:1.37 MB
- 文档页数:59
抽样技术:7不等概率抽样1. 引言在进行数据分析和统计研究时,抽样是一种常用的技术。
抽样技术允许我们从总体中选择一个样本,以便推断总体的性质。
在抽样技术中,不等概率抽样是一种常见的方法,它允许我们以非均匀的概率抽取样本。
本文将介绍关于7种不等概率抽样方法的详细信息。
2. 简单随机抽样简单随机抽样是最根本的抽样方法之一,它要求每个个体被选中的概率相等且任意组合都是可能的。
然而,在某些情况下,简单随机抽样可能并不适用,例如当总体分布不均匀时,或者我们希望在样本中增加一定的多样性。
这时,我们可以考虑使用不等概率抽样方法。
3. 整群抽样整群抽样是一种不等概率抽样方法,它将总体划分为假设干个互不重叠的群组〔或称为簇〕,然后从每个群组中抽取样本。
整群抽样可以有效地减少抽样过程中的复杂性,并提高样本的效率。
整群抽样常用于调查社会群体或大型组织等场景。
4. 分层抽样分层抽样是一种根据总体特点进行划分的抽样方法,它将总体划分为假设干个层级或相似的子群〔层〕,然后从每个层中抽取样本。
通过分层抽样,我们可以保证样本在各层中的分布情况与总体相似,从而更为准确地推断总体的特征。
5. 系统抽样系统抽样是一种按照固定间隔选择样本的抽样方法。
它类似于简单随机抽样,但是通过定义一个间隔,我们可以按照一定的规律抽取样本。
例如,我们可以在总体中选取每隔一定数量的个体作为样本。
系统抽样在样本大小较大时表现出较高的效率。
6. 按比例分层抽样按比例分层抽样是一种常用的不等概率抽样方法,它根据总体各层的比例确定各层的样本容量。
比例分层抽样可以使得样本在各层中的分布与总体的比例相对应。
这种抽样方法适用于总体中的各个层存在不同比例的情况。
7. 两阶段抽样两阶段抽样是一种复杂的不等概率抽样方法,它将抽样过程分为两个阶段。
在第一阶段,我们从总体中选择一局部群组〔或称为簇〕,在第二阶段,我们从每个群组中抽取一定数量的样本。
两阶段抽样适用于总体较大或分布复杂的情况下,可以提高抽样的效率。
三阶段不等概率抽样设计
三阶段不等概率抽样设计是一种常用的抽样方法,用于从整体群体中选择代表性样本。
它将样本选择过程分为三个阶段,每个阶段的概率不等,具体步骤如下:
1. 第一阶段:按照一定的抽样概率,从总体中选择第一阶段的样本单元。
这可能涉及到某些抽样单元的非选择或重复选择,以达到样本的多样性。
2. 第二阶段:在第一阶段选择的样本单元中,按照一定的概率再次进行抽样,选择第二阶段的样本单元。
这个阶段的抽样概率可能与第一阶段有所不同,以达到更好的样本覆盖和精度。
3. 第三阶段:在第二阶段选择的样本单元中,按照一定的概率再次进行抽样,选择最终的样本个体。
同样,这个阶段的抽样概率可能与前两个阶段有所不同。
通过三阶段不等概率抽样设计,可以灵活地选择样本单元,并通过控制抽样概率来保证样本的代表性和可靠性。
这种设计方法在实际应用中可以更好地适应不同的调查需求和场景,提高样本选择的效果。
第6章 不等概率抽样1 不等概率抽样原理等概率抽样通常容易设计和解释,但并不总是如不等概率抽样一样的可行、实用、有效。
因为等概率抽样(psu’s)可能导致方差很大(尤其是对于无偏估计量)、管理困难以及成本难以控制。
而不等概率抽样的特点是以不等概率抽取psu’s 、m i 的数目相同,因此不等概率抽样使得每一个样本被抽取的概率相等、调查成本可控、每一个初级样本单元(psu )的样本数相等、方差急剧减小。
当采用不等概率抽样时,我们可以自由的调整选择不同初级样本单元(psu’s )作为样本的概率,并在估计中补充合适的权重。
核心是选择一个给定单元的概率已知: πi =P(psu i), ψi = P(psu i on first sample), ωi =1/πi1.1 抽取一个初级样本单元假定我们只要抽取N 个初级样本单元(psu )中的一个作为样本(n=1)。
初级样本单元i 的总值用t i 表示,我们需要估计总体总值t.用抽取一个初级样本单元的简单例子来说明不等概率抽样的思想。
先来考虑一个所有总体已知的情形。
一个城镇拥有四个超市,从100平方米到1000平方米按面积大小排列。
通过抽取一个超市,来估计四个超市上个月的总营业收入。
你可能预期大超市比小超市的营业收入多而且大超市的收入波动性也明显大于小超市。
因为仅抽取一个超市,所以在第一个回合中一个超市被抽取的概率 ψi 等于这个超市包含在样本中的概率πi 。
即,πi = ψi =P(超市i 被选取),此概率与超市的面积成比例。
超市A 占四个超市总面积的1/16,则它被抽取的概率为1/16。
为了说明性目的,假定我们已知总体的所有总值t i :我们可以以以上给定的概率选择一个容量为1的概率样本,通过洗散16张卡片并从中选择1张。
如果卡片数字为1,则选择超市A;如果卡片数字为2或3,则选择超市B;…… 在估计量中,我们通过使用 ψi 补充选取的不等概率权重。
如果超市面积与超市营业收入近似成比例,那么超市A 的营业收入在总收入的1/16,则可用超市A 的营业收入的16倍来估计四个超市的总收入。
抽样技术:不等概率抽样引言在统计学和数据分析中,抽样技术是一项重要的工具,用以从总体中选择一部分元素进行研究。
而抽样技术的核心就是如何从总体中选取样本,以保证样本能够准确地反映总体的特征。
其中一种常用的抽样技术是不等概率抽样。
不等概率抽样是指在抽取样本时,各个个体被选中的概率不相等。
与等概率抽样相比,不等概率抽样更能满足实际问题的需求,更能提高样本的效率和精确性。
本文将介绍不等概率抽样的原理、常用方法以及应用案例,希望能够帮助读者更好地理解和应用抽样技术。
不等概率抽样的原理不等概率抽样的原理基于概率论和统计学的基本原理。
在进行不等概率抽样时,需要根据总体的特征和研究目的,选择合适的抽样方法和样本选择概率,以使样本能够准确地反映总体。
不等概率抽样的核心在于赋予每个个体被选中的概率,也称为抽样概率。
抽样概率可以根据总体特征和研究目的进行选择,常见的选择方法包括:概率比例抽样、系统抽样、整群抽样等。
概率比例抽样是一种根据个体在总体中所占比例来确定抽样概率的方法。
具体而言,可以先计算出样本所需的个体数目,再根据各个个体在总体中的比例,分配相应的抽样概率。
这样可以保证样本能够按比例反映总体的特征。
系统抽样是一种按照一定规律选择样本的方法。
具体而言,可以在总体中确定一个起始点,然后以固定的间隔选择样本个体。
系统抽样具有简单方便、无需随机表和随机数的优点,常用于总体具有周期性分布的情况。
整群抽样是一种将总体划分为若干群体,然后随机选择部分群体进行抽样的方法。
这种方法适用于总体分布不均匀,但各群体内部相对均匀的情况。
通过整群抽样,可以减小样本误差,提高样本的代表性。
不等概率抽样的常用方法不等概率抽样有多种不同的方法和技术,根据实际问题的需求和样本特征的不同,可以选择合适的抽样方法。
以下将介绍几种常用的不等概率抽样方法。
简单随机抽样是不等概率抽样中最基本的方法之一。
简单随机抽样是指每个个体都有相等的被选中概率,且个体间的选择是相互独立的。
常见的非概率抽样方法非概率抽样,又称为不等概率抽样或非随机抽样,就是调查者根据自己的方便或主观判断抽取样本的方法。
它不是严格按随机抽样原则来抽取样本,所以失去了大数定律的存在基础,也就无法确定抽样误差,无法正确地说明样本的统计值在多大程度上适合于总体。
虽然根据样本调查的结果也可在一定程度上说明总体的性质、特征,但不能从数量上推断总体。
非概率抽样依抽样特点可分为方便抽样、定额抽样、立意抽样、滚雪球抽样和空间抽样。
①方便抽样样本限于总体中易于抽到的一部分。
最常见的方便抽样是偶遇抽样,即研究者将在某一时间和环境中所遇到的每一总体单位均作为样本成员。
“街头拦人法”就是一种偶遇抽样。
某些调查对被调查者来说是不愉快的、麻烦的,这时为方便起见就采用以自愿被调查者为调查样本的方法。
方便抽样是非随机抽样中最简单的方法,省时省钱,但样本代表性因受偶然因素的影响太大而得不到保证。
②定额抽样定额抽样也称配额抽样,是将总体依某种标准分层(群);然后按照各层样本数与该层总体数成比例的原则主观抽取样本。
定额抽样与分层概率抽样很接近,最大的不同是分层概率抽样的各层样本是随机抽取的,而定额抽样的各层样本是非随机的。
总体也可按照多种标准的组合分层(群),例如,在研究自杀问题时,考虑到婚姻与性别都可能对自杀有影响,可将研究对象分为未婚男性、已婚男性、未婚女性和已婚女性四个组,然后从各群非随机地抽样。
定额抽样是通常使用的非概率抽样方法,样本除所选标识外无法保证代表性。
③立意抽样立意抽样又称判断抽样,研究人员从总体中选择那些被判断为最能代表总体的单位作样本的抽样方法。
当研究者对自己的研究领域十分熟悉,对研究总体比较了解时采用这种抽样方法,可获代表性较高的样本。
这种抽样方法多应用于总体小而内部差异大的情况,以及在总体边界无法确定或因研究者的时间与人力、物力有限时采用。
④滚雪球抽样以若干个具有所需特征的人为最初的调查对象,然后依靠他们提供认识的合格的调查对象,再由这些人提供第三批调查对象,……依次类推,样本如同滚雪球般由小变大。
非概率抽样方式(三)非概率抽样方式非概率抽样,又称为不等概率抽样或非随机抽样,是调研者根据自己的方便或主观判断抽取样本的方法。
主要有偶遇抽样、主观抽样、滚雪球抽样、、定额抽样等类型。
1.偶遇抽样,也称就近抽样、方便抽样或自然抽样。
它是指研究者根据现实情况,以自己方便的形式抽取偶然遇到的人作为调查对象,或者仅仅选择那些离得最近的、最容易找到的人作为调查对象。
其优点是方便省力,其缺点是样本的代表性差,,有很大的偶然性。
2.主观抽样,也称目标式抽样、判断式抽样或立意抽样。
它是调查者根据自己的主观分析,来选择和确定调查对象的方法;。
主观抽样取得的样本.其代表性取决于研究者对总体的了解程度和判断能力。
主观抽样的优点是,可以充分发挥研究人员的主观能动性,其缺点是,样本的代表性难以判断,不能推论。
3.滚雪球抽样。
当我们无法了解总体情况时,可以从总体中的少数成员入手。
对他们进行调查向他们询问还知道哪些符合条件的人,再去找那些人并询问他们知道的人,如同滚雪球一样。
我们可以找到越来越多具有相同性质的群体成员。
4.定额抽样。
定额抽样从对总体性质的了解开始,在某一总体中考虑具有某种属性的人数所占的比例,然后从具有这种属性的人群中收集数据,并按各类人在总体中的比例赋予它的适当的比重。
这样收集数据,从理论上讲应当能够代表总体。
这种方法存在的问题是:定额的比例必须精确,但由于最新的关于总体性质变化的信息并不容易得到,往往造成抽样中的偏差。
(四)抽样中的误差问题进行抽样调查可产生两类误差,一类是抽样误差,另一类是非抽样误差。
1.抽样误差:由抽样的随机性产生,属于随机误差抽样误差是指主要指样本平均数与总体平均数之差、样本比率与总体比率之差。
抽样误差中通常运用最多的抽样平均误差,即指样本平均数或样本比率的标准差。
在重复抽样条件下,(1)样本平均数的抽样平均误差公式为其中, 为总体标准差,n为样本个案数。
(2)样本比率的抽样平均误差公式为:其中,P为总体比率,n为样本个案数实际计算时,则以样本标准差代替总体标准差,以样本比率代替总体比率。