锐角三角函数的难题汇编及解析
- 格式:doc
- 大小:981.50 KB
- 文档页数:20
人教版初中数学锐角三角函数的全集汇编含答案解析一、选择题1.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 为半径作弧,两弧交于点M ,N ;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE ,则下列说法错误的是( )A .60ABC ∠=︒B .2ABE ADE S S ∆=VC .若AB=4,则7BE =D .21sin 14CBE ∠= 【答案】C【解析】【分析】 由作法得AE 垂直平分CD ,则∠AED=90°,CE=DE ,于是可判断∠DAE=30°,∠D=60°,从而得到∠ABC=60°;利用AB=2DE 得到S △ABE =2S △ADE ;作EH ⊥BC 于H ,如图,若AB=4,则可计算出CH=12CE=1,337 ;利用正弦的定义得sin ∠CBE=21EH BE =. 【详解】解:由作法得AE 垂直平分CD ,∴∠AED=90°,CE=DE ,∵四边形ABCD 为菱形,∴AD=2DE ,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,所以A 选项的说法正确;∵AB=2DE ,∴S △ABE =2S △ADE ,所以B 选项的说法正确;作EH ⊥BC 于H ,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,CH=12CE=1,EH=3CH=3,在Rt△BEH中,BE=22(3)527+=,所以C选项的说法错误;sin∠CBE=3211427EHBE==,所以D选项的说法正确.故选C.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了菱形的性质和解直角三角形.2.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°,A、B、C都是格点,则tan ABC∠=()A 3B3C3D3【答案】A【解析】【分析】直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用ECtan ABCBE∠=得出答案.【详解】解:连接DC ,交AB 于点E .由题意可得:∠AFC=30°, DC ⊥AF,设EC=x,则EF=x =3x tan 30︒, ∴BF AF 2EF 23x ===EC 3tan ABC BE 923x 3x 33====+∠,故选:A【点睛】此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键.3.在半径为1的O e 中,弦AB 、AC 的长度分别是3,2,则BAC ∠为( )度. A .75 B .15或30 C .75或15 D .15或45【答案】C【解析】【分析】根据题意画出草图,因为C 点位置待定,所以分情况讨论求解.【详解】利用垂径定理可知:AD=32AE =, .sin ∠AOD=32,∴∠AOD=60°;sin ∠AOE=22,∴∠AOE=45°;∴∠BAC=75°.当两弦共弧的时候就是15°.故选:C .【点睛】此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形.4.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为( )A.833B.433C.8 D.83【答案】A 【解析】【分析】根据折叠性质可得BE=12AB,A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,可得∠EA′B=30°,根据直角三角形两锐角互余可得∠EBA′=60°,进而可得∠ABM=30°,在Rt△ABM 中,利用∠ABM的余弦求出BM的长即可.【详解】∵对折矩形纸片ABCD,使AD与BC重合,AB=4,∴BE=12AB=2,∠BEF=90°,∵把纸片展平,再一次折叠纸片,使点A落在EF上的点A’处,并使折痕经过点B,∴A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,∴∠EA′B=30°,∴∠EBA′=60°,∴∠ABM=30°,∴在Rt△ABM中,AB=BM⋅cos∠ABM,即4=BM⋅cos30°,解得:BM=833,故选A.【点睛】本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.5.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF 为折痕,则sin ∠BED 的值是( )A 5B .35C .22D .23【答案】B【解析】【分析】先根据翻折变换的性质得到DEF AEF ∆≅∆,再根据等腰三角形的性质及三角形外角的性质可得到BED CDF ∠=,设1CD =,CF x =,则2CA CB ==,再根据勾股定理即可求解.【详解】解:∵△DEF 是△AEF 翻折而成,∴△DEF ≌△AEF ,∠A =∠EDF ,∵△ABC 是等腰直角三角形,∴∠EDF =45°,由三角形外角性质得∠CDF +45°=∠BED +45°,∴∠BED =∠CDF ,设CD =1,CF =x ,则CA =CB =2,∴DF =FA =2﹣x ,∴在Rt △CDF 中,由勾股定理得,CF 2+CD 2=DF 2,即x 2+1=(2﹣x )2, 解得:34x =, 3sin sin 5CF BED CDF DF ∴∠=∠==. 故选:B .【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.6.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于( )A .8(31)+mB .8(31)-mC .16(31)+mD .16(31)-m 【答案】A【解析】设MN=xm ,在Rt △BMN 中,∵∠MBN=45∘,∴BN=MN=x ,在Rt △AMN 中,tan ∠MAN=MN AN , ∴tan30∘=16x x+ =3√3, 解得:x=8(3 +1),则建筑物MN 的高度等于8(3 +1)m ;故选A.点睛:本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角,哪个角是俯角,知道仰角是向上看的视线与水平线的夹角,俯角是向下看的视线与水平线的夹角,并与三角函数相结合求边的长.7.如图,已知圆O 的内接六边形ABCDEF 的边心距2OM =,则该圆的内接正三角形ACE 的面积为( )A .2B .4C .63D .43【答案】D【解析】【分析】 连接,OC OB ,过O 作ON CE ⊥于N ,证出COB ∆是等边三角形,根据锐角三角函数的定义求解即可.【详解】解:如图所示,连接,OC OB ,过O 作ON CE ⊥于N ,∵多边形ABCDEF 是正六边形,∴60COB ∠=o ,∵OC OB =,∴COB ∆是等边三角形,∴60OCM ∠=o ,∴sin OM OC OCM =•∠, ∴43()sin 603OM OC cm ︒==. ∵30OCN ∠=o , ∴123,223ON OC CN ===, ∴24CE CN ==, ∴该圆的内接正三角形ACE 的面积12334432=⨯⨯⨯=, 故选:D .【点睛】本题考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OC 是解决问题的关键.8.如图,ABC ∆是一张顶角是120︒的三角形纸片,,6AB AC BC ==现将ABC ∆折叠,使点B 与点A 重合,折痕DE ,则DE 的长为( )A .1B .2C 2D 3【答案】A【解析】【分析】 作AH ⊥BC 于H ,根据等腰三角形的性质求出BH ,根据翻折变换的性质求出BD ,根据正切的定义解答即可.【详解】解:作AH ⊥BC 于H ,∵AB=AC ,AH ⊥BC ,BH=12BC=3, ∵∠BAC=120°,AB=AC ,∴∠B=30°,∴AB=30BH cos ︒=23, 由翻折变换的性质可知,DB=DA=3,∴DE=BD •tan30°=1,故选:A .【点睛】此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B=60°,则c a a b c b+++的值为( )A .12B 2C .1D 2【答案】C【解析】【分析】先过点A 作AD ⊥BC 于D ,构造直角三角形,结合∠B=60°,利用3sin60︒=cos60°=12,可求13,,22DB c AD c ==把这两个表达式代入到另一个Rt △ADC 的勾股定理表达式中,化简可得即a 2+c 2=b 2+ac ,再把此式代入通分后所求的分式中,可求其值等于1.【详解】解:过A 点作AD ⊥BC 于D ,在Rt △BDA 中,由于∠B=60°, ∴13,,22DB c AD c == 在Rt △ADC 中,DC 2=AC 2﹣AD 2, ∴2221324a c b c ⎛⎫-=- ⎪⎝⎭, 即a 2+c 2=b 2+ac ,∴()()2222222 1.c a c cb a ab a c ab bc b ac ab bc a b c b a b c b ac ab bc b ac ab bc b ++++++++++====++++++++++ 故选C .【点睛】本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.10.cos60tan45+o o 的值等于( )A .32B .22C .3D .1【答案】A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:原式13122=+=. 故选A .【点睛】本题考查了特殊角的三角函数值,解题的关键是熟练掌握特殊角的三角函数值.11.如图,一架飞机在点A 处测得水平地面上一个标志物P 的俯角为α,水平飞行m 千米后到达点B 处,又测得标志物P 的俯角为β,那么此时飞机离地面的高度为( )A .cot cot m αβ-千米B .cot cot m βα-千米C .tan tan m αβ-千米 D .tan tan m βα-千米 【答案】A【解析】【分析】根据锐角三角函数的概念进行作答.【详解】在P 点做一条直线垂直于直线AB 且交于点O ,由锐角三角函数知,AO=PO cot α,BO=PO cot β,又AB=m=AO-BO= PO cot α- PO cot β=cot cot m αβ-. 所以答案选A. 【点睛】本题考查了锐角三角函数的概念,熟练掌握锐角三角函数是本题解题关键.12.将一副直角三角板如图放置,点C 在FD 的延长上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,则CD 的长为( )A .3B .12﹣3C .12﹣3D .3【答案】B【解析】【分析】 过点B 作BM ⊥FD 于点M ,根据题意可求出BC 的长度,然后在△EFD 中可求出∠EDF =60°,进而可得出答案.【详解】解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =2,∴BC =AC =2.∵AB ∥CF ,∴BM =BC ×sin45°=2122122= CM =BM =12,在△EFD 中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM ÷tan60°=43∴CD =CM ﹣MD =12﹣43.故选B .【点睛】本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答.13.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )A .(30)B .(3,0)C .(4035233D .(30) 【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=, ∴2019673(123)20196733OC =+=+,∴2019C (20196733,0)+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.14.已知圆锥的底面半径为5cm ,侧面积为60πcm 2,设圆锥的母线与高的夹角为θ,则sinθ的值为( )A .313B .513C .512D .1213 【答案】C【解析】【分析】先求出圆锥底面周长可得到圆锥侧面展开图扇形的弧长,再利用扇形面积公式12S lr =可求出母线的长,最后利用三角函数即可求出答案.【详解】解:∵圆锥底面周长为2510ππ⨯=,且圆锥的侧面积为60π,∴圆锥的母线长为2601210ππ⨯=, ∴sin θ=512. 故选C.【点睛】本题考查了圆锥和三角函数的相关知识.利用所学知识求出圆锥母线的长是解题的关键.15.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(23)2--B .33(2222---C .3(3,22--D .(3,3)- 【答案】D 【解析】 【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M =,'1A M =,∴OM=2+1=3,∴'B 的坐标为(3,3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.16.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m【答案】D【解析】【分析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D .【详解】 解:214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 72∶7=1∶2,∴A 正确; 小球落地点距O 点水平距离为7米,C 正确;2142y x x =- 21(4)82x =--+, 则抛物线的对称轴为4x =,∴当4x >时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,当7.5y =时,217.542x x =-, 整理得28150x x -+=,解得,13x =,25x =,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.17.如图,△ABC 的顶点是正方形网格的格点,则cos A =( )A.12B.22C.3D.5【答案】B【解析】【分析】构造全等三角形,证明△ABD是等腰直角三角形,进行作答.【详解】过A作AE⊥BE,连接BD,过D作DF⊥BF于F.∵AE=BF,∠AEB=∠DFB,BE=DF,∴△AEB≌△BFD,∴AB=DB.∠ABD=90°,∴△ABD是等腰直角三角形,∴cos∠DAB=2 2.答案选B.【点睛】本题考查了不规则图形求余弦函数的方法,熟练掌握不规则图形求余弦函数的方法是本题解题关键.18.如图,基灯塔AB建在陡峭的山坡上,该山坡的坡度i=1:0.75.小明为了测得灯塔的高度,他首先测得BC=20m,然后在C处水平向前走了34m到达一建筑物底部E处,他在该建筑物顶端F处测得灯塔顶端A的仰角为43°.若该建筑物EF=20m,则灯塔AB的高度约为(精确到0.1m,参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)()A .46.7mB .46.8mC .53.5mD .67.8m【答案】B【解析】【分析】 根据山坡的坡度i =1:0.75,可得BD CD =43,设BD =4x ,CD =3x ,然后利用勾股定理求得BD =4x =16m ,CD =3x =12m ;再利用矩形的性质求出FG =DE =46m ,BG =DG ﹣DB =4m ,最后利用三角函数解直角三角形即可.【详解】解:如图,∵∠ADC =90°,i =1:0.75,即BD CD =43, ∴设BD =4x ,CD =3x ,则BC =22(4)(3)x x =5x =20m ,解得:x =4,∴BD =4x =16m ,CD =3x =12m ,易得四边形DEFG 是矩形,则EF =DG =20m ,FG =DE =DC+CE =12+34=46(m ),∴BG =DG ﹣DB =4m ,在Rt △AFG 中,AG =FG·tan ∠AFG =46·tan43°≈46×0.93=42.78(m ), ∴AB =AG+BG =42.78+4≈46.8(m ),故选:B .【点睛】本题考查了解直角三角形的应用—仰角和俯角问题、坡度坡比问题,灵活运用三角函数是解答本题的关键..19.如图,点E 是矩形ABCD 的边AD 的中点,且BE ⊥AC 于点F ,则下列结论中错误的是( )A.AF=12 CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD【答案】D【解析】【分析】由AE=12AD=12BC,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】解:A、∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFFC,∵AE=12AD=12BC,∴AFFC=12,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意.D、设AD=a,AB=b由△BAE∽△ADC,有ba=2a.∵tan∠CAD=CDAD=ba=22,故D错误,符合题意.故选:D.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.20.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=25,则线段AC的长为()A.1 B.2 C.4 D.5【答案】C【解析】【分析】首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB=25,即可求得答案.【详解】解:连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,∵∠B和∠D所对的弧都为弧AC,∴∠B=∠D,即sinB=sinD=25,∵半径AO=5,∴CD=10,∴2 sin105AC ACDCD===,∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.。
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为AC 上的动点,且10cos B =. (1)求AB 的长度;(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由.(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.【答案】(1) 10AB ;(2) 10AD AE ⋅=;(3)证明见解析.【解析】【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=13,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,∵AB=AC ,AF ⊥BC ,∴BF=CF=12BC=1, 在RtΔAFB 中,BF=1,∴AB=10cos 10BF B == (2)连接DG ,∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG ,连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3,∴FG=13,∴AD•AE=AF•AG=AF•(AF+FG)=3×10=10;3(3)连接CD,延长BD至点N,使DN=CD,连接AN,∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,∴∠ADC=∠ADN,∵AD=AD,CD=ND,∴△ADC≌△ADN,∴AC=AN,∵AB=AC,∴AB=AN,∵AH⊥BN,∴BH=HN=HD+CD.【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.2.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.3.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.【答案】(1)∠BME=15°;(2BC=4;(3)h≤2时,S=﹣h2+4h+8,当h≥2时,S=18﹣3h.【解析】试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.试题解析:解:(1)如图2,∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).∴OA=OB,∴∠OAB=45°,∵∠CDE=90°,CD=4,DE=4,∴∠OCE=60°,∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,∴∠BME=∠CMA=15°;如图3,∵∠CDE=90°,CD=4,DE=4,∴∠OBC=∠DEC=30°,∵OB=6,∴BC=4;(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,∵CD=4,DE=4,AC=h,AN=NM,∴CN=4﹣FM,AN=MN=4+h﹣FM,∵△CMN∽△CED,∴,∴,解得FM=4﹣,∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.考点:1、三角形的外角定理;2、相似;3、解直角三角形4.兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB与水平桥面的夹角是31°,拉索AB的长为152米,主塔处桥面距地面7.9米(CD的长),试求出主塔BD的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【答案】主塔BD的高约为86.9米.【解析】【分析】根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.【详解】在Rt△ABC中,∠ACB=90°,sin BCAAB=.∴sin152sin311520.5279.04BC AB A︒=⨯=⨯=⨯=.79.047.986.9486.9BD BC CD=+=+=≈(米)答:主塔BD的高约为86.9米.【点睛】本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.5.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN=45°,理由见解析;(3)当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.理由见解析.【解析】【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=8,∴CH=BE,∴EH FH FHAB BE CH==;在Rt△FEH中,tan∠FCN=8463 FH EHCH AB===,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.6.如图,正方形OABC的顶点O与原点重合,点A,C分别在x轴与y轴的正半轴上,点A的坐标为(4,0),点D在边AB上,且tan∠AOD=12,点E是射线OB上一动点,EF⊥x轴于点F,交射线OD于点G,过点G作GH∥x轴交AE于点H.(1)求B,D两点的坐标;(2)当点E在线段OB上运动时,求∠HDA的大小;(3)以点G为圆心,GH的长为半径画⊙G.是否存在点E使⊙G与正方形OABC的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E的坐标.【答案】(1)B(4,4),D(4,2);(2)45°;(3)存在,符合条件的点为(8﹣42,8﹣42)或(8+42,8+42)或42164216,⎛⎫++ ⎪⎪⎝⎭或16421642,77⎛⎫-- ⎪ ⎪⎝⎭,理由见解析 【解析】 【分析】(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B (4,4),再由tan ∠AOD= 12得AD=12OA=2,据此可得点D 坐标; (2)由1tan 2GF GOF OF ∠==知GF=12OF ,再由∠AOB=∠ABO=45°知OF=EF ,即GF=12EF ,根据GH ∥x 轴知H 为AE 的中点,结合D 为AB 的中点知DH 是△ABE 的中位线,即HD ∥BE ,据此可得答案;(3)分⊙G 与对角线OB 和对角线AC 相切两种情况,设PG=x ,结合题意建立关于x 的方程求解可得. 【详解】解:(1)∵A (4,0), ∴OA =4,∵四边形OABC 为正方形, ∴AB =OA =4,∠OAB =90°, ∴B (4,4),在Rt △OAD 中,∠OAD =90°, ∵tan ∠AOD =12, ∴AD =12OA =12×4=2, ∴D (4,2);(2)如图1,在Rt △OFG 中,∠OFG =90°∴tan∠GOF=GFOF =12,即GF=12OF,∵四边形OABC为正方形,∴∠AOB=∠ABO=45°,∴OF=EF,∴GF=12EF,∴G为EF的中点,∵GH∥x轴交AE于H,∴H为AE的中点,∵B(4,4),D(4,2),∴D为AB的中点,∴DH是△ABE的中位线,∴HD∥BE,∴∠HDA=∠ABO=45°.(3)①若⊙G与对角线OB相切,如图2,当点E在线段OB上时,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2x,OF=EF=2x,∵OA=4,∴AF=4﹣2,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=12AF=12×(4﹣2)=22,则x=22x,解得:x=22,∴E(8﹣2,8﹣2如图3,当点E在线段OB的延长线上时,x=2x﹣2,解得:x=2+2,∴E(8+42,8+42);②若⊙G与对角线AC相切,如图4,当点E在线段BM上时,对角线AC,OB相交于点M,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2,OF=EF=2x,∵OA=4,∴AF=4﹣2,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=12AF=12×(4﹣2)=22,过点G作GQ⊥AC于点Q,则GQ=PM=3x﹣2∴3x﹣2=22x,∴227x=,∴42164216,77E⎛⎫⎪ ⎪⎝⎭;如图5,当点E在线段OM上时,GQ=PM=22﹣3x,则22﹣3x=2﹣2x,解得422x-=,∴16421642,77E⎛⎫--⎪ ⎪⎝⎭;如图6,当点E在线段OB的延长线上时,3x﹣22x﹣2,解得:4227x=(舍去);综上所述,符合条件的点为(8﹣2,8﹣2)或(2,2)或42164216++⎝⎭或16421642--⎝⎭.【点睛】本题是圆的综合问题,解题的关键是掌握正方形和直角三角形的性质、正切函数的定义、三角形中位线定理及分类讨论思想的运用.7.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO)的距离为120米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为5秒且∠APO=60°,∠BPO=45°.(1)求A、B之间的路程;(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数≈≈).据:2 1.414,3 1.73【答案】【小题1】73.2【小题2】超过限制速度.【解析】AB=-73.2 (米).…6分解:(1)100(31)(2) 此车制速度v==18.3米/秒8.现有一个“Z“型的工件(工件厚度忽略不计),如图所示,其中AB为20cm,BC为60cm,∠ABC=90,∠BCD=60°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm.【解析】【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ=BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP =AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.9.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米).(2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形10.如图,AB 为O 的直径,C 、D 为O 上异于A 、B 的两点,连接CD ,过点C作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O 的切线.②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】 【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】 解:(1)AB 是O 的直径,且D 为O 上一点,90ADB ∴∠=︒, CE DB ⊥, 90DEC ∴∠=︒, //CF AD ∴,180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =,12∴∠=∠. 312∠=∠+∠, 321∴∠=∠.42BDC ∠=∠,1BDC ∠=∠, 421∴∠=∠, 43∴∠=∠, //OC DB ∴. CE DB ⊥, OC CF ∴⊥.又OC 为O 的半径, CF ∴为O 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠, 3tan tan 4BAD F ∴∠==,34BD AD ∴=. 6BD =483AD BD ∴==,10AB ∴==,5OB OC ==.OC CF ⊥, 90OCF ∴∠=︒,3tan 4OC F CF ∴==,解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.。
专题01 锐角三角函数和特殊角的三角函数(六大类型)【题型1锐角三角函数的概念】【题型2 锐角三角函数的增减性】【题型3特殊角三角函数值】【题型4 同角三角函数的关系】【题型5 互余两角三角函数的关系】【题型6 三角函数的计算】【题型1锐角三角函数的概念】1.(2022秋•道县期末)在Rt△ABC中,∠C=90°,AC=5,BC=12,则tan A 的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,∠C=90°,AC=5,BC=12,∴tan A=.故选:B.2.(2023•南岗区校级开学)在Rt△ABC中,∠C=90°,AB=2BC,则tan B 等于( )A.B.C.D.【答案】D【解答】解:∵∠C=90°,AB=2BC,∴AC===BC,∴tan B===.故选:D.3.(2022秋•路北区校级期末)在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos B的值等于( )A.B.C.D.【答案】A【解答】解:∵∠C=90°,AB=10,AC=8,∴BC==6,∴cos B===.故选:A.4.(2023•新华区校级模拟)在Rt△ABC中,∠C=90°,若c为斜边,a、b 为直角边,且a=5,b=12,则sin A的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,c===13,sin A=.故选:B.5.(2023•陈仓区模拟)如图,在Rt△ABC中,∠A=90°,AB=8,BC=10,则sin B的值是( )A.B.C.D.【答案】C【解答】解:∵在Rt△ABC中,∠A=90°,AB=8,BC=10,∴AC=,∴sin B===,故选:C .6.(2023•虹口区一模)如图,在Rt △ABC 中,∠C =90°,AC =1,BC =2,那么cos A 的值为( )A .B .2C .D .【答案】C【解答】解:在Rt △ABC 中,∠C =90°,AC =1,BC =2,由勾股定理,得AB ==.由锐角的余弦,得cos A ===.故选:C .7.(2023•金山区一模)在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,则∠B 的正切值等于( )A .B .C .D .【答案】A【解答】解:∵∠ACB =90°,AC =4,BC =3,∴tan B ==.故选:A .8.(2023•长宁区一模)在△ABC 中,∠C =90°,已知AC =3,AB =5,那么∠A 的余弦值为( )A .B .C .D .【答案】C【解答】解:在Rt △ABC 中,AC =3,AB =5,故选:C.【题型2 锐角三角函数的增减性】9.(2023•未央区校级三模)若tan A=2,则∠A的度数估计在( )A.在0°和30°之间B.在30°和45°之间C.在45°和60°之间D.在60°和90°之间【答案】D【解答】解:∵tan45°=1,tan60°=,而tan A=2,∴tan A>tan60°,∴60°<∠A<90°.故选:D.10.(2022秋•惠山区校级期中)已知∠A为锐角,且tan A=3,则∠A的取值范围是( )A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【答案】D【解答】解:tan30°=,tan45°=1,tan60°=,∵tan A=3,∴3,又∵一个锐角的正切值随锐角度数的增大而增大,∴60°<∠A<90°,故选:D.11.(2021秋•淮北月考)已知角α为△ABC的内角,且cosα=,则α的取值范围是( )A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°【答案】C【解答】解:∵cos60°=,cos45°=,∴cos60°<cosα<cos45°,∴45°<α<60°,故选:C.【题型3特殊角三角函数值】12.(2022秋•嵊州市期末)已知tan A=,∠A是锐角,则∠A的度数为( )A.30°B.45°C.60°D.90°【答案】A【解答】解:∵,且∠A是锐角,∴∠A=30°,故选:A.13.(2023•河西区模拟)计算2cos30°的结果为( )A.B.1C.D.【答案】C【解答】解:∵cos30°=,∴2cos30°=2×=.故选:C.14.(2023•肃州区三模)sin60°的相反数( )A.B.C.D.【答案】C【解答】解:∵sin60°=,∴sin60°的相反数是﹣.故选:C.15.(2023•高州市一模)在Rt△ABC中,∠C=90°,若cos A=,则∠A的大小是( )A.30°B.45°C.60°D.75°【答案】C【解答】解:∵在Rt△ABC中,∠C=90°,∴∠A为锐角,∵cos A=,∴∠A=60°,故选:C.16.(2023•南开区二模)下列三角函数中,结果为的是( )A.cos30°B.tan30°C.sin60°D.cos60°【答案】D【解答】解:A.cos30°=,不符合题意;B.tan30°=,不符合题意;C.sin60°=,不符合题意;D.cos60°=sin30°=,符合题意.故选:D.17.(2023•河西区一模)cos60°的值等于( )A.B.C.D.【答案】D【解答】解:cos60°=,故选:D.18.(2023•东莞市校级一模)已知∠A为锐角且tan A=,则∠A=( )A.30°B.45°C.60°D.不能确定【答案】C【解答】解:∵∠A为锐角,tan A=,∴∠A=60°.故选:C.19.(2023•迎泽区校级二模)在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是( )A.15°B.45°C.30°D.60°【答案】D【解答】解:在Rt△ABC中,∠C=90°,∵tan B===,∴∠B=60°,故选:D.【题型4 同角三角函数的关系】20.(2023•泉港区模拟)已知∠A是锐角△ABC的内角,,则cos A的值是( )A.B.C.D.【答案】C【解答】解:由勾股定理可得sin2A+cos2A=1,∵,∴()2+cos2A=1,∴cos2A=,∴cos A=或cos A=﹣(舍去),故选:C.21.(2022秋•日照期末)若α为锐角,且sinα=,则tanα为( )A.B.C.D.【答案】D【解答】解:由α为锐角,且sinα=,得cosα===,tanα===,故选:D.22.(2022秋•桐柏县期末)已知在Rt△ABC中,∠C=90°.若sin A=,则cos A等于( )A.B.C.D.1【答案】A【解答】解:∵sin2A+cos2A=1,sin A=,∴+cos2A=1,∵∠A为锐角,∴cos A=.故选:A.23.(2022秋•滦州市期中)在Rt△ABC中,∠C=90°,,则cos A=( )A.B.C.D.【答案】C【解答】解:在Rt△ABC中,∠C=90°,=,可设BC=4k,则AB=5k,由勾股定理得,AC==3k,∴cos A==,故选:C.24.(2023•钟楼区校级模拟)在Rt△ABC中,∠C=90°,tan A=,则cos A 等于( )A.B.C.D.【答案】D【解答】解:如图:设BC=5x,∵tan A=,∴AC=12x,AB==13x,∴cos A===.故选:D.25.(2023秋•二道区校级月考)在Rt△ABC中,∠C=90°,若cos A=,则sin A的值为 .【答案】.【解答】解:∵sin2A+cos2A=1,又∵,∴,∴sin A=或(舍去),故答案为:.【题型5 互余两角三角函数的关系】26.(2023秋•肇源县校级月考)已知在Rt△ABC中,∠C=90°,sin A=,则tan B的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∵∠C=90°,,∴,设BC=12x,则AB=13x,,∴,故选:D.27.(2023•二道区校级模拟)在Rt△ABC中,AC≠BC,∠C=90°,则下列式子成立的是( )A.sin A=sin B B.sin A=cos B C.tan A=tan B D.cos A=tan B 【答案】B【解答】解:A、sin A=,sin B=,sin A≠sin B,故不符合题意;B、sin A=,cos B=,sin A=cos B,故B符合题意;C、tan A=,tan B=,tan A≠tan B,故不符合题意;D、cos A=,tan B=,则cos A≠tan B,故不符合题意;故选:B.28.(2023秋•东阿县校级月考)在Rt△ABC中,∠C=90°,sin A=,则cos B 的值为( )A.B.C.D.【答案】B【解答】解:∵cos B=,sin A==,∴cos B=.故选:B.29.(2022秋•双牌县期末)已知在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=4a,AB=5a,∴AC===3a,∴tan B==,故选:D.30.(2023•新邵县校级一模)已知△ABC中,∠A=90°,tan B=,则sin C= .【答案】.【解答】解:如图.∵∠A=90°,tan B=,∴设AC=x,则AB=2x.∴BC==.∴sin C=.故答案为:.31.(2023•未央区校级二模)在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为 .【答案】.【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=3a,AB=5a,∴AC===4a,∴tan B===.故答案为:.【题型6 三角函数的计算】32.(2023春•江岸区校级月考)计算:.【答案】1.【解答】解:==2﹣1=1.33.(2022秋•蜀山区校级期末)计算:sin245°+tan60°•cos30°.【答案】2.【解答】解:原式=()2+×=+=2.34.(2023春•朝阳区校级期末)计算:.【答案】见试题解答内容【解答】解:=2×﹣+1﹣×=﹣+1﹣=.35.(2022秋•武功县期末)计算:sin45°+2cos30°﹣tan60°.【答案】见试题解答内容【解答】解:原式=+2×﹣=+﹣=.36.(2022秋•南通期末)计算:tan45°﹣2sin30°+4cos230°.【答案】3.【解答】解:原式==1﹣1+3=3.37.(2022秋•辛集市期末)计算:sin60°•tan30°+.【答案】1.【解答】解:原式==+=1.。
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定3.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(215-+;(3758+【解析】试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°, ∵∠CBD=∠A=36°,∠C=∠C , ∴△ABC ∽△BCD ; (2)∵∠A=∠ABD=36°, ∴AD=BD , ∵BD=BC , ∴AD=BD=CD=1,设CD=x ,则有AB=AC=x+1, ∵△ABC ∽△BCD ,∴AB BC BD CD =,即111x x +=, 整理得:x 2+x-1=0,解得:x 1=15-+,x 2=15--(负值,舍去),则x=15-+; (3)过B 作BE ⊥AC ,交AC 于点E ,∵BD=CD ,∴E 为CD 中点,即DE=CE=154-+, 在Rt △ABE 中,cosA=cos36°=151514151AE AB -+++==-++ 在Rt △BCE 中,cosC=cos72°=1515414EC BC -+-+==, 则cos36°-cos72°=51+=15-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.4.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.5.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为 cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.【答案】(1);(2)12cm;(3)cm.【解析】试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).∵点E为CD边上的中点,∴AE=DC=cm.(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.试题解析:解:(1).(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.∴点E,D′关于直线AC对称.如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.∵△ADE是等边三角形,AD=AE=,∴,即DP+EP最小值为12cm.(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=.在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.设D′G长为xcm,则CG长为cm,在Rt△GD′C中,由勾股定理得,解得:(不合题意舍去).∴点D′到BC边的距离为cm.考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.6.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.BE【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG⊥AC,∴∠EGC =90°,∴△CEG 是等腰直角三角形,EG =GC , ∴∠GEC =∠GCE =45°, ∴∠BEG =∠GCF =135°, 由平移的性质得:BE =CF ,在△BEG 和△GCF 中,BE CF BEG GCF EG CG =⎧⎪∠=∠⎨⎪=⎩,∴△BEG ≌△GCF (SAS ), ∴BG =GF ,∵G 在正方形ABCD 对角线上, ∴BG =DG , ∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°, ∴∠CGF+∠AGB =90°, ∴∠AGD+∠CGF =90°, ∴∠DGF =90°, ∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示, 在Rt △ADG 中, ∵∠DAC =45°, ∴DH =AH =2在Rt △DHG 中,∵∠AGD =60°, ∴GH 33236,∴DG =2GH =6, ∴DF 2DG =3 在Rt △DCF 中,CF ()22436-3∴BE =CF =3.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.7.在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在C A′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ=72;(3)存在,S四边形PA'B′Q=33【解析】【分析】(1)由旋转可得:AC=A'C=2,进而得到BC3=∠A'BC=90°,可得cos∠A'CB3'BCA C==∠A'CB=30°,∠ACA'=60°;(2)根据M为A'B'的中点,即可得出∠A=∠A'CM,进而得到PB3=32=,依据tan∠Q=tan∠A32=BQ=BC3=2,进而得出PQ=PB+BQ72=;(3)依据S四边形PA'B'Q=S△PCQ﹣S△A'CB'=S△PCQ3-S四边形PA'B'Q最小,即S△PCQ最小,而S△PCQ12=PQ×BC3=,利用几何法即可得到S△PCQ的最小值=3,即可得到结论.【详解】(1)由旋转可得:AC =A 'C =2.∵∠ACB =90°,AB 7=,AC =2,∴BC 3=. ∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'BC A C ==,∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 3=,∴PB 3=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=,∴BQ =BC 3⨯=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=PQ , 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =33-;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.在Rt △ABC 中,∠ACB =90°,CD 是AB 边的中线,DE ⊥BC 于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果∠A =30°,①如图1,∠DCB 等于多少度;②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;(2)如图3,若点P 在线段CB 的延长线上,且∠A =α(0°<α<90°),连结DP ,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②如图1,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠DCB=60°,∴△CDB为等边三角形.∴∠CDB=60°∵线段DP绕点D逆时针旋转60°得到线段DF,∵∠PDF=60°,DP=DF,∴∠FDB=∠CDP,在△DCP和△DBF中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.9.如图,正方形ABCD+1,对角线AC 、BD 相交于点O ,AE 平分∠BAC 分别交BC 、BD 于E 、F ,(1)求证:△ABF ∽△ACE ;(2)求tan ∠BAE 的值;(3)在线段AC 上找一点P ,使得PE+PF 最小,求出最小值.【答案】(1)证明见解析;(2)tan∠EAB=2﹣1;(3)PE+PF的最小值为 .22【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH⊥AC于H.首先证明BE=EH=HC,设BE=EH=HC=x,构建方程求出x 即可解决问题;(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF+PE的值最小,最小值为线段EH的长;【详解】(1)证明:∵四边形ABCD是正方形,∴∠ACE=∠ABF=∠CAB=45°,∵AE平分∠CAB,∴∠EAC=∠BAF=22.5°,∴△ABF∽△ACE.(2)解:如图1中,作EH⊥AC于H.∵EA平分∠CAB,EH⊥AC,EB⊥AB,∴BE=EB,∵∠HCE=45°,∠CHE=90°,∴∠HCE=∠HEC=45°,∴HC=EH,∴BE=EH=HC,设BE=HE=HC=x,则EC2,∵BC2+1,∴x+x2+1,∴x=1,在Rt△ABE中,∵∠ABE=90°,∴tan ∠EAB =1221BE AB ==+﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =22, ∵AC =22AB BC +=2+2,∴OA =OC =OB =12AC =22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =222+ •(2﹣1)=22, ∴HM =OH+OM =222+, 在Rt △EHM 中,EH =2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭= =22+.. ∴PE+PF 的最小值为22+..【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.10.小明坐于堤边垂钓,如图①,河堤AC 的坡角为30°,AC 长米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.。
初中数学锐角三角函数的专项训练解析含答案一、选择题1.如图,在平面直角坐标系中,四边形ABCD是菱形,点B的坐标是(0,4),点D的坐标是(83,4),点M和点N是两个动点,其中点M从点B出发,沿BA以每秒2个单位长度的速度做匀速运动,到点A后停止,同时点N从点B出发,沿折线BC→CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设M,N两点的运动时间为x,△BMN的面积为y,下列图象中能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】D【解析】【分析】根据两个点的运动变化,写出点N在BC上运动时△BMN的面积,再写出当点N在CD上运动时△BMN的面积,即可得出本题的答案;【详解】解:当0<x⩽2时,如图1:连接BD,AC,交于点O′,连接NM,过点C作CP⊥AB垂足为点P,∴∠CPB=90°,∵四边形ABCD是菱形,其中点B的坐标是(0,4),点D的坐标是3,4),∴BO′3,CO′=4,∴228',O B O C+'=∵AC=8,∴△ABC是等边三角形,∴∠ABC=60°,∴CP=BC×sin60°=8×32=43,BP=4,BN=4x,BM=2x,242BM x xBP==,2BN xBC=,∴=BM BNBP BC,又∵∠NBM=∠CBP,∴△NBM∽△CBP,∴∠NMB=∠CPB=90°,∴114438322CBPS BP CP=⨯⨯=⨯⨯=V;∴2NBMCBPS BNS BC⎛⎫= ⎪⎝⎭VV,即y=22283=232NBM CBPBN xS S xBC⎛⎫⎛⎫=⨯=⨯⎪ ⎪⎝⎭⎝⎭V V,当2<x⩽4时,作NE⊥AB,垂足为E,∵四边形ABCD是菱形,∴AB∥CD,∴3BM=2x,∴y=11=2434322BM NE x x⨯⨯=g g;故选D.【点睛】本题主要考查了动点问题的函数图象,掌握动点问题的函数图象是解题的关键. 2.在Rt△ABC中,∠C=90°,如果AC=2,cosA=23,那么AB的长是()A.3 B.43C.5D.13【答案】A 【解析】根据锐角三角函数的性质,可知cosA=ACAB=23,然后根据AC=2,解方程可求得AB=3.故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=A∠的邻边斜边,然后带入数值即可求解.3.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为( )A 83B43C.8 D.83【答案】A 【解析】【分析】根据折叠性质可得BE=12AB,A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,可得∠EA′B=30°,根据直角三角形两锐角互余可得∠EBA′=60°,进而可得∠ABM=30°,在Rt△ABM 中,利用∠ABM的余弦求出BM的长即可.【详解】∵对折矩形纸片ABCD,使AD与BC重合,AB=4,∴BE=12AB=2,∠BEF=90°,∵把纸片展平,再一次折叠纸片,使点A落在EF上的点A’处,并使折痕经过点B,∴A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,∴∠EA′B=30°,∴∠EBA′=60°,∴∠ABM=30°,∴在Rt△ABM中,AB=BM⋅cos∠ABM,即4=BM⋅cos30°,解得:BM=83,故选A.【点睛】本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.4.如图,在矩形ABCD中,AB=23,BC=10,E、F分别在边BC,AD上,BE=DF.将△ABE,△CDF分别沿着AE,CF翻折后得到△AGE,△CHF.若AG、CH分别平分∠EAD、∠FCB,则GH长为()A.3 B.4 C.5 D.7【答案】B【解析】【分析】如图作GM⊥AD于M交BC于N,作HT⊥BC于T.通过解直角三角形求出AM、GM的长,同理可得HT、CT的长,再通过证四边形ABNM为矩形得MN=AB=3BN=AM=3,最后证四边形GHTN为平行四边形可得GH=TN即可解决问题.【详解】解:如图作GM⊥AD于M交BC于N,作HT⊥BC于T.∵△ABE沿着AE翻折后得到△AGE,∴∠GAM=∠BAE,AB=AG=3∵AG分别平分∠EAD,∴∠BAE=∠EAG,∵∠BAD=90°,∴∠GAM=∠BAE=∠EAG=30°,∵GM⊥AD,∴∠AMG=90°,∴在Rt△AGM中,sin∠GAM=GMAG,cos∠GAM=AMAG,∴GM=AG•sin30°3AM=A G•cos30°=3,同理可得HT3CT=3,∵∠AMG=∠B=∠BAD=90°,∴四边形ABNM为矩形,∴MN=AB=23,BN=AM=3,∴GN=MN﹣GM=3,∴GN=HT,又∵GN∥HT,∴四边形GHTN是平行四边形,∴GH=TN=BC﹣BN﹣CT=10﹣3﹣3=4,故选:B.【点睛】本题考查翻折变换,解直角三角形,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.5.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米【答案】C【解析】【分析】根据正切函数可求小河宽PA的长度.【详解】∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选:C.【点睛】此题考查解直角三角形的应用,解题关键在于掌握解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.6.如图,ABC ∆是一张顶角是120︒的三角形纸片,,6AB AC BC ==现将ABC ∆折叠,使点B 与点A 重合,折痕DE ,则DE 的长为( )A .1B .2C .2D .3【答案】A【解析】【分析】 作AH ⊥BC 于H ,根据等腰三角形的性质求出BH ,根据翻折变换的性质求出BD ,根据正切的定义解答即可. 【详解】解:作AH ⊥BC 于H ,∵AB=AC ,AH ⊥BC ,BH=12BC=3, ∵∠BAC=120°,AB=AC ,∴∠B=30°,∴AB=30BH cos ︒3 由翻折变换的性质可知,3∴DE=BD •tan30°=1,故选:A .【点睛】此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.如图,菱形ABCD 中,AC 交BD 于点O ,DE ⊥BC 于点E ,连接OE ,∠DOE =120°,DE =1,则BD =( )A.3B.23C.63D.33【答案】B【解析】【分析】证明△OBE是等边三角形,然后解直角三角形即可.【详解】∵四边形ABCD是菱形,∴OD=OB,CD=BC.∵DE⊥BC,∴∠DEB=90°,∴OE=OD=OB.∵∠DOE=120°,∴∠BOE=60°,∴△OBE是等边三角形,∴∠DBC=60°.∵∠DEB=90°,∴BD=23 sin60DE=︒.故选B.【点睛】本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,点O为△ABC边 AC的中点,连接BO并延长到点D,连接AD、CD,若BD=12,AC=8,∠AOD=120°,则四边形ABCD的面积为()A.3B.2C10D.243【答案】D【解析】【分析】分别过点A、C作BD的垂线,垂足分别为M、N,通过题意可求出AM、CN的长度,可计算三角形ABD和三角形CBD的面积,相加即为四边形ABCD的面积.【详解】解:分别过点A、C作BD的垂线,垂足分别为M、N,∵点O 为△ABC 边 AC 的中点,AC=8,∴AO=CO=4,∵∠AOD =120°,∴∠AOB=60°,∠COD=60°, ∴34AM AM sin AOB AO ===∠, 34CN CN sin COD CO ===∠, ∴AM=23,CN=23,∴122312322ABD BD AM S ⨯===g △, 122312322BD CN S ⨯===g △BCD , ∴=123123243ABD BCD ABCD S S S +=+=△△四边形故选:D.【点睛】本题考查了三角函数的内容,熟练掌握特殊角的三角函数值是解题的关键.9.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B=60°,则c a a b c b+++的值为( )A .12B .22C .1D 2【答案】C【解析】【分析】先过点A 作AD ⊥BC 于D ,构造直角三角形,结合∠B=60°,利用3sin602︒=cos60°=12,可求13,,22DB c AD c ==把这两个表达式代入到另一个Rt △ADC 的勾股定理表达式中,化简可得即a 2+c 2=b 2+ac ,再把此式代入通分后所求的分式中,可求其值等于1.【详解】解:过A 点作AD ⊥BC 于D ,在Rt △BDA 中,由于∠B=60°,∴13,,22DB c AD c == 在Rt △ADC 中,DC 2=AC 2﹣AD 2, ∴2221324a c b c ⎛⎫-=- ⎪⎝⎭, 即a 2+c 2=b 2+ac ,∴()()2222222 1.c a c cb a ab a c ab bc b ac ab bc a b c b a b c b ac ab bc b ac ab bc b++++++++++====++++++++++ 故选C .【点睛】本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.10.如图,在扇形OAB 中,120AOB ∠=︒,点P 是弧AB 上的一个动点(不与点A 、B 重合),C 、D 分别是弦AP ,BP 的中点.若33CD =,则扇形AOB 的面积为( )A .12πB .2πC .4πD .24π【答案】A【解析】【分析】 如图,作OH ⊥AB 于H .利用三角形中位线定理求出AB 的长,解直角三角形求出OB 即可解决问题.【详解】解:如图作OH ⊥AB 于H .∵C 、D 分别是弦AP 、BP 的中点.∴CD 是△APB 的中位线,∴AB =2CD =63, ∵OH⊥AB ,∴BH =AH =33,∵OA =OB ,∠AOB =120°,∴∠AOH =∠BOH =60°, 在Rt △AOH 中,sin ∠AOH =AH AO, ∴AO =336sin 3AH AOH ==∠, ∴扇形AOB 的面积为:2120612360ππ=g g , 故选:A .【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11.如图,在Rt △ABC 内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是( )A .b=a+cB .b=acC .b 2=a 2+c 2D .b=2a=2c【答案】A【解析】【分析】 利用解直角三角形知识.在边长为a 和b 两正方形上方的两直角三角形中由正切可得a b c b a c-=-,化简得b =a +c ,故选A. 【详解】请在此输入详解!12.如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,将Rt△AOB绕点O顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2x的图象上,OA'交反比例函数y=kx的图象于点C,且OC=2CA',则k的值为()A.4 B.72C.8 D.7【答案】C【解析】【详解】解:设将Rt△AOB绕点O顺时针旋转至Rt△A'OB'的旋转角为α,OB=a,则OA=3a,由题意可得,点B′的坐标为(acosα,﹣asinα),点C的坐标为(2asinα,2acosα),∵点B'在反比例函数y=﹣2x的图象上,∴﹣asinα=﹣2acosα,得a2sinαcosα=2,又∵点C在反比例函数y=kx的图象上,∴2acosα=k2asinα,得k=4a2sinαcosα=8.故选C.【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C的坐标,再通过反比例函数的性质求解即可.13.如图,有一个边长为2cm的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是()A .3cmB .2cmC .23cmD .4cm【答案】A【解析】【分析】 根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可.【详解】解:如图所示,正六边形的边长为2cm ,OG ⊥BC ,∵六边形ABCDEF 是正六边形,∴∠BOC=360°÷6=60°,∵OB=OC ,OG ⊥BC ,∴∠BOG=∠COG=12∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG=12BC=12×2=1cm , ∴OB=sin 30BG o=2cm , ∴OG=2222213OB BG -=-=,∴圆形纸片的半径为3cm ,故选:A .【点睛】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.14.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得60BAC ∠=︒,70DAC ∠=︒,则竹竿AB 与AD 的长度之比为( ).A.2sin70︒B.2cos70︒C.2tan70︒D.2 tan70︒【答案】B【解析】【分析】直接利用锐角三角函数关系分别表示出AB,AD的长,即可得出答案.【详解】解:∵∠BAC=60°,∠DAC=70°,∴cos60°=12ACAB=,则AB=2AC,∴cos70°=ACAD,∴AC=AD•cos70°,AD=cos70AC︒,∴2cos70ACACABAD=︒=2cos70°.故选:B.【点睛】此题主要考查了解直角三角形的应用,正确表示出各边长是解题关键.15.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m【答案】D【解析】【分析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D .【详解】 解:214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 72∶7=1∶2,∴A 正确; 小球落地点距O 点水平距离为7米,C 正确;2142y x x =- 21(4)82x =--+, 则抛物线的对称轴为4x =,∴当4x >时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,当7.5y =时,217.542x x =-, 整理得28150x x -+=,解得,13x =,25x =,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.16.如图 ,矩形 ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点 M ,CN ⊥AN 于点 N .则 DM +CN 的值为(用含 a 的代数式表示)( )A .aB .45 aC .2aD .3a 【答案】C【解析】【分析】 根据“AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N”得∠MDC=∠NCD=45°,cos45°=DM CN DE CE= ,所以DM+CN=CDcos45°;再根据矩形ABCD ,AB=CD=a ,DM+CN 的值即可求出.【详解】∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,∴∠ADM=∠MDC=∠NCD=45°,∴00cos 4545D CNMcos +=CD ,在矩形ABCD 中,AB=CD=a ,∴DM+CN=acos45°=2a. 故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =17.如图,点E 是矩形ABCD 的边AD 的中点,且BE ⊥AC 于点F ,则下列结论中错误的是( )A .AF =12CF B .∠DCF =∠DFCC .图中与△AEF 相似的三角形共有5个D .tan ∠CAD =2 【答案】D【解析】【分析】由AE=12AD=12BC ,又AD ∥BC ,所以12AE AF BC FC ==,故A 正确,不符合题意; 过D 作DM ∥BE 交AC 于N ,得到四边形BMDE 是平行四边形,求出BM=DE=12BC ,得到CN=NF ,根据线段的垂直平分线的性质可得结论,故B 正确,不符合题意;根据相似三角形的判定即可求解,故C 正确,不符合题意;由△BAE ∽△ADC ,得到CD 与AD 的大小关系,根据正切函数可求tan ∠CAD 的值,故D 错误,符合题意.【详解】解:A 、∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE BC =AF FC, ∵AE =12AD =12BC , ∴AF FC =12,故A 正确,不符合题意; B 、过D 作DM ∥BE 交AC 于N ,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC , ∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DF =DC ,∴∠DCF =∠DFC ,故B 正确,不符合题意;C 、图中与△AEF 相似的三角形有△ACD ,△BAF ,△CBF ,△CAB ,△ABE 共有5个,故C 正确,不符合题意.D 、设AD =a ,AB =b 由△BAE ∽△ADC ,有b a =2a .∵tan ∠CAD =CD AD =b a ,故D 错误,符合题意.故选:D .【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.18.已知在 Rt ABC 中, ∠C = 90°,AC = 8, BC = 15 ,那么下列等式正确的是( )A .8sin 17A =B .cosA=815C .tan A =817D .cot A=815 【答案】D【解析】【分析】 根据锐角三角函数的定义进行作答.【详解】 由勾股定理知,AB=17;A.15sin 17BC A AB == ,所以A 错误;B.8cos 17AC A AB ==,所以,B 错误;C.15tan 8BC A AC ==,所以,C 错误;D.cot AC A BC ==815,所以选D. 【点睛】 本题考查了锐角三角函数的定义,熟练掌握锐角三角函数的定义是本题解题关键.19.如图,在边长为8的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )A .183π-B .183πC .32316πD .1839π-【答案】C【解析】【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】解:∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°-60°=120°,∵DF是菱形的高,∴DF⊥AB,∴DF=AD•sin60°=38432⨯=,∴图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积=2120(43)84332316360ππ⨯⨯-=-.故选:C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.20.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=25,则线段AC的长为()A.1 B.2 C.4 D.5【答案】C【解析】【分析】首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB=25,即可求得答案.【详解】解:连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,∵∠B和∠D所对的弧都为弧AC,∴∠B=∠D,即sinB=sinD=25,∵半径AO=5,∴CD=10,∴2 sin105AC ACDCD===,∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.。
专题11锐角的三角函数重难点题型专训(7大题型)【题型目录】题型一正弦、余弦与正切的概念辨析题型二求角的正弦值题型三已知正弦值求边长题型四求角的余弦值题型五已知余弦值求边长题型六求角的正切值题型七已知正切值求边长【知识梳理】知识点1:正切与余切1.正切直角三角形中一个锐角的对边与邻边的比叫做这个锐角的正切(tangent ).锐角A 的正切记作tan A .tan A BC a A A AC b锐角的对边锐角的邻边.2.余切直角三角形中一个锐角的邻边与对边的比叫做这个锐角的余切(cotangent ).锐角A 的余切记作cot A .cot A AC b A A BC a锐角的邻边锐角的对边.ac A BC b知识点2:正弦与余弦1.正弦直角三角形中一个锐角的对边与斜边的比叫做这个锐角的正弦(sine ).锐角A 的正弦记作sin A .sin A BC a A AB c锐角的对边斜边.2.余弦直角三角形中一个锐角的邻边与斜边的比叫做这个锐角的余弦(cosine ).锐角A 的余弦记作cos A .cos A AC b A AB c 锐角的邻边斜边.a c A BC b【经典例题一正弦、余弦与正切的概念辨析】1.(2023上·福建泉州·九年级校考期中)若A 是锐角,下列说法正确的是()A .tan sin A AB . 2sin 1sin 1A AC . cos tan 90A AD .sin cos 1A A 【答案】A【分析】本题考查三角函数.根据三角函数的定义和性质,逐一进行判断即可.【详解】解:如图,90C ,则:tan ,sin a a A A b c,∵b c ,∴tan sin A A ;故A 正确;∵0sin 1A ,∴ 2sin 11sin A A ;故B 错误;∵ cos ,tan 90tan b b A A B c a,∴ cos tan 90A A ;故C 错误;∵sin ,cos a b A A c c ,35BC AB ,设3BC k ,由勾股定理得:cos AC A AB 故选:C .【点睛】本题考查了锐角三角函数,勾股定理,熟练掌握锐角三角函数的定义是解题关键.3.(2021上格点上,则,得出∵CD是斜边AB∴A ACD(1)利用锐角三角函数的定义求证:(2)若tan 2 ,求sin cos sin cos 【答案】(1)见解析(2)3【经典例题二求角的正弦值】A.12【答案】B【分析】本题考查网格中求三角函数值,三角函数定义,勾股定理及其逆定理,连接设小正方形边长为22AB24A .34【答案】C【分析】本题考查圆周角定理,求角的正弦值.连接OBF ACD ,得到∵F 为弦BC 的中点,∴,OF BC BOF ∴90OBF BOF ∵CD AB ,是解题的关键.由题意知,22AC BC AB ∴222222sin sin BC AC A B AB AB 故答案为:1.4.(2023上·广西贵港·九年级统考期中)如图,在【答案】55/155【分析】本题考查正方形的性质,E 、C 、B 共线,再根据角三角形解决问题.【详解】解:如图,连接设正方形的边长为a ,由题意得∴AEC AEF ∴E 、C 、B 共线,【经典例题三已知正弦值求边长】A.2【答案】C【分析】连接OB、OC求出【点睛】本题考查了圆周角定理,等腰三角形的性质,特殊角的三角函数,解题关键是利用圆周角定理和等腰三角形的性质求出 3.(2023上·重庆万州·九年级重庆市万州第二高级中学校考期中)则cos A 的值为.【答案】215【分析】本题考查了三角函数:则5AB k ,由勾股定理可求得【详解】解:如图,∵sin 52BC A AB,∴设2BC k ,其中k 由勾股定理得AC AB =54.(2023下·九年级课时练习)在【答案】21或11【详解】如下图,过点AD AB Bsin满足的条件是两边一角,【易错点分析】条件中ABC所以对三角形的形状、大小进行确定性判断是不漏解的重要方法.5.(2023上·上海崇明·九年级校联考期中)如图,在(1)求BC的长.(2)若点D在BC边上,且在Rt ABE △中,∵3sin 5AE B AB,AB ∵:3:2BD CD ,BC ∴6BD ,4CD ,在Rt DHC △中,tan C【经典例题四求角的余弦值】则23BC AC ,23BC AC ,∴22223AB AC AC B C∵ 1,2A,【答案】2 2【分析】连接AF,由矩形的性质可得中点可得DE CE∵四边形ABCD是矩形,2AB CD,AD∵点E是CD的中点,11DE CE CD(1)求AC的长;(2)求cos OCA与tan B 的值.【答案】(1)AC的长为12(2)12cos13OCA,tan B【分析】本题考查了直角三角形中,斜边的上的中线等于斜边的一半,勾股定理,求角的余弦和正切等知识点.熟记相关几何结论是解题关键.(1)由“斜边的上的中线等于斜边的一半(2)由“斜边的上的中线等于斜边的一半定义即可求解.【详解】(1)解:ACB∵213AB CO.5BC∵,【经典例题五已知余弦值求边长】A.212B.9【答案】C【分析】根据题意得出CD边上一点,A .94B .125【答案】A【分析】根据4AC ,4cos 5A,可求出【详解】∵Rt ABC △,4AC ,cos A【点睛】本题考查了锐角三角函数,勾股定理,圆周的侧面积,熟练掌握圆锥的侧面积公式是解题关键.4.(2022秋·九年级单元测试)如图所示,在四边形2BE ,则sin DBE【答案】255/255【分析】先根据余弦的定义可得AD AB AE BE可求出x的值,从而可得(1)求证;BEA ADC∽(2)求证:··CD AD AC BE(3)若2AD 5,cos ABE 【答案】(1)见解析【经典例题六求角的正切值】A .27【答案】C【分析】证明ABE △A.13B【答案】A【分析】根据题意,先证明CDE ADE ADC,【答案】12/0.5【分析】根据折叠的性质可得Rt AED△,再利用正切函数的定义求解.【答案】1174【分析】由题意可知,90CAH ACB,可得,∵EF BC,∴AH EF∴CAH CEF ,∴BCD CEF ,ABCD (1)求证:CDE CBF △△≌;(2)求CF 的长;(3)求tan BCF 的值.【答案】(1)见解析(2)35CF∵CDE CBF △△≌,∴45FBR EDC ,∴BRF △是等腰直角三角形,RF RB ,【经典例题七已知正切值求边长】在边AD A .53B .2【答案】A【分析】连接AP ,根据折叠的性质和平行线的性质,求得DF 的长度,根据勾股定理即可求得答案.【详解】如图所示,连接AP 根据折叠的性质可知AE EF ∴1tan 3EF FBE BF .∵FP AD ∥,∴AEB EPF .∴FEB EPF .∴PF EF .∴AE EF AP PF .∵180DEF DFE D ∴DEF BFC .又D C ,∴DEF CFB △∽△.∴13EF DF BF BC .A.4033B.3340【答案】A【分析】作BH AD于H,延长∵4tan 3BH BAD AH ,∴令4BH x ,3AH x ,∴255AB BH DH x ,【答案】313【分析】点G 为求出AD ,利用正切的定义求出∵点G 为ABC ∴BD 是中线,∴132AD AC ∵1tan ABG90PQO ,∵4tan 3O ,43PQ OQ , 设4PQ x ,则3OQ x ,同理可求3OQ ,1MQ ,4OM OQ MQ ;综上所述:2OM 或4.故答案:2或4.(1)求证:四边形BCEF (2)BG CE 于点G ,连结①求CG 的长.②求平行四边形BCEF 【答案】(1)见解析BG的结论,勾股定理求得∵是CE的中点,GEC EG CG,22∵四边形BCEF是平行四边形,,EF BCFB EC设EG CG x,则FB【重难点训练】九年级校考阶段练习)如图,融创乐园彩虹滑梯的高度为A .cos h【答案】D∵90,BCA CD 是∴5CD AD BD ∴10,AB ACD ∵6BC ,A .BDBC B .BCAB 【答案】C【分析】此题主要考查了锐角三角函数的定义,得出【详解】解:∵AC BC CD AB ,∵四边形ABCD 是菱形,∴AC BD AB BC ,∴22OB AB AO∵3PC AP ,∴118422AP AC ,∴448OP AO AP ,∴3tan 8OB BPC OP,【答案】55/155【分析】题目主要考查勾股定理解三角形及其逆定理,余弦函数的定义,先根据勾股定理的逆定理判断出ABC 的形状,再由锐角三角函数的定义即可得出结论.【详解】解:∵由图可知,【答案】2【分析】本题考查了三角形内角和定理,作垂线,正弦.熟练掌握作垂线,由作图可知,CF是BD的垂直平分线,根据【答案】5 8【分析】此题主要考查了正方形性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形,求出BM是解本题的关键.根据正方形性质,证明(1)tan FEC(2)若15AB ,则CF【答案】377/37【答案】②③【分析】本题考查了三角形综合.交BD于点H,由2sin3D 即可求出由勾股定理即可求解,④过点在PDC中,利用三角形的三边关系即可求出∵2sin 3D ,2AD ,∴24sin 233AH AD D∴1144223ABD S BD AH △③∵2AD ,4BD ,1AD ∵90ABC ,1tan 2BAC ∴1tan tan 2DAP BAC,∴12DP AD ,【答案】菱形的边长为26cm 【分析】本题考查菱形的性质、,得出(1)以O 点为旋转中心,将ABC 逆时针方向旋转(2)画出A 关于直线1BB 的对称点D ;(3)在1AC 上画点P ,使1tan 3ACP【答案】(1)画图见解析,131C , (2)画图见解析(3)画图见解析,延长∴ 131C , ;(2)如图,D 即为所求,(3)如图,P 即为所求;【点睛】本题考查的是复杂作图,旋转的性质,轴对称的性质,全等三角形的判定与性质,平行线分线段成比例的应用,锐角三角函数的应用,掌握扎实的基础知识并应用于作图是解本题的关键.15.(2023上·安徽六安·九年级统考阶段练习)如图,于E ,点M 在AC 上,且AM AD ,连接(1)求证:2CF GE AE (2)求FM MG的值;(3)求tan CMF 的值.【答案】(1)证明见解析(2)222FM MG,再由等腰三角形的性质得。
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,BE=33PE=33x米,∵AB=AE-BE=6米,则3,解得:3则BE=(33+3)米.在直角△BEQ中,QE=33BE=33(33+3)=(3+3)米.∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ的高度约9米.考点:解直角三角形的应用-仰角俯角问题.2.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数3.如图13,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.【答案】(1)详见解析;(2)①②和走完全程所需时间为【解析】试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.试题解析:解:(1)证明:四边形是矩形.与交于点O,且关于对称四边形是菱形.(2)①连接,直线分别交于点,交于点关于的对称图形为在矩形中,为的中点,且O为AC的中点为的中位线同理可得:为的中点,②过点P作交于点由运动到所需的时间为3s由①可得,点O以的速度从P到A所需的时间等于以从M运动到A即:由O运动到P所需的时间就是OP+MA和最小.如下图,当P运动到,即时,所用时间最短.在中,设解得:和走完全程所需时间为考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置4.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【答案】(1)tan∠DBC=;(2)P(﹣,).【解析】试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).试题解析:(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,解得 x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).当x=3时,y=﹣32+3×3+4=4,∴D(3,4).如图,连接CD,过点D作DE⊥BC于点E.∵C(0,4),∴CD//AB,∴∠BCD=∠ABC=45°.在直角△OBC中,∵OC=OB=4,∴BC=4.在直角△CDE中,CD=3.∴CE=ED=,∴BE=BC﹣DE=.∴tan∠DBC=;(2)过点P作PF⊥x轴于点F.∵∠CBF=∠DBP=45°,∴∠PBF=∠DBC,∴tan∠PBF=.设P(x,﹣x2+3x+4),则=,解得 x1=﹣,x2=4(舍去),∴P(﹣,).考点:1、二次函数;2、勾股定理;3、三角函数5.如图,矩形OABC中,A(6,0)、C(0,23)、D(0,33),射线l过点D且与x轴平行,点P、Q分别是l和x轴的正半轴上的动点,满足∠PQO=60º.(1)点B的坐标是,∠CAO= º,当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.【答案】(1)(6,3). 30.(3,3)(2)()()()()243x 430x 3331333x x 3x 5232S {23x 1235x 93543x 9x +≤≤-+-<≤=-+<≤>【解析】解:(1)(6,23). 30.(3,33). (2)当0≤x≤3时, 如图1,OI=x ,IQ=PI•tan60°=3,OQ=OI+IQ=3+x ; 由题意可知直线l ∥BC ∥OA , 可得EF PE DC 31==OQ PO DO 333==,∴EF=13(3+x ), 此时重叠部分是梯形,其面积为:EFQO 14343S S EF OQ OC 3x x 43233==+⋅=+=+梯形()()当3<x≤5时,如图2,)HAQ EFQO EFQO 221S S S S AH AQ243331333 3x 3=∆=-=-⋅⋅=+---梯形梯形当5<x≤9时,如图3,12S BE OAOC 312x 2323 =x 1233=+⋅=--+()()。
2021-2022学年北师大版数学九年级下册压轴题专题精选汇编专题01 锐角三角函数一.选择题1.(2021春•金台区期末)如图,在Rt△ABC中∠C=90°,直线MN垂直平分AB交AB于M,交BC于N,且∠B=15°,AC=3,则BC的长为( )A.6B.6+3C.6+2D.9【思路引导】如图,连接AN.证明AN=BN,推出∠B=∠NAB=15°,推出∠ANC=30°,再求出AN,CN,可得结论.【完整解答】如图,连接AN.∵MN垂直平分线段AB,∴NA=NB,∴∠B=∠BAN=15°,∴∠ANC=∠B+∠NAB=30°,∵AC=3,∠C=90°,∴AN=2AC=6,CN===3,∴BC=CN+BN=3+6,故选:B.2.(2020秋•南召县期末)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的格点上,那么tan∠ABC的值为( )A.B.C.4D.【思路引导】过点A作AE⊥BC于E.根据,tan∠ABC=,求解即可.【完整解答】过点A作AE⊥BC于E.在Rt△ABE中,tan∠ABC===4,故选:C.3.(2020秋•仁寿县期末)等腰三角形底边与底边上的高的比是2:,则它的顶角为( )A.30°B.45°C.60°D.120°【思路引导】证明△ABC是等边三角形,可得结论.【完整解答】如图,AB=AC,AD⊥BC,∴BD=CD,∵BC:AD=2:,∴tan B==,∴∠B=60°,∵AB=AC,∴△ABC是等边三角形,∴∠BAC=60°,故选:C.4.(2020秋•紫金县期末)如图,点A(3,4)在第一象限,OA与x轴所夹的锐角为α,则cosα=( )A.B.C.D.【思路引导】过点A作AE⊥x轴于E.利用勾股定理求出OA,再根据cosα=,可得结论.【完整解答】如图,过点A作AE⊥x轴于E.∵A(3,4),∴OE=3,AE=4,∴OA===5,∴cosα==,故选:B.5.(2021•淄博)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB交AC 于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为( )A.B.C.D.【思路引导】根据直角三角形的斜边中线等于斜边一半可得CE =AE =BE =AB ,进而得到∠BEC =2∠A =∠BFC ,从而有∠CEF =∠CBF ,根据三角形的面积公式求出AF ,由勾股定理,在Rt △BCF 中,求出CF ,再根据锐角三角函数的定义求解即可.【完整解答】连接BF ,∵CE 是斜边AB 上的中线,EF ⊥AB ,∴EF 是AB 的垂直平分线,∴S △AFE =S △BFE =5,∠FBA =∠A ,∴S △AFB =10=AF •BC ,∵BC =4,∴AF =5=BF ,在Rt △BCF 中,BC =4,BF =5,∴CF ==3,∵CE =AE =BE =AB ,∴∠A =∠FBA =∠ACE ,又∵∠BCA =90°=∠BEF ,∴∠CBF =90°﹣∠BFC =90°﹣2∠A ,∠CEF =90°﹣∠BEC =90°﹣2∠A ,∴∠CEF =∠FBC ,∴sin ∠CEF =sin ∠FBC ==,故选:A .6.(2021•宜兴市模拟)如图,在△ABC 中,∠ABC =90°,tan ∠BAC =,AD =2,BD =4,连接CD ,则CD 长的最大值是( )A .2+B .2+1C .2+D .2+2【思路引导】如图,在AD 的下方作Rt △ADT ,使得∠ADT =90°,DT =1,连接CT ,则AT =,证明△DAB ∽△TAC ,推出==,推出TC =2,再根据CD ≤DT +CT ,可得CD ≤1+2,由此即可解决问题.【完整解答】如图,在AD 的下方作Rt △ADT ,使得∠ADT =90°,DT =1,连接CT ,则AT =,∵==2,∴=,∵∠ADT =∠ABC =90°,∴△ADT ∽△ABC ,∴∠DAT =∠BAC ,=∴∠DAB =∠TAC ,∵=,∴△DAB ∽△TAC ,∴==,∴TC =2,∵CD≤DT+CT,∴CD≤1+2,∴CD的最大值为1+2,故选:B.7.(2020秋•北碚区校级期末)北碚区政府计划在缙云山半山腰建立一个基站AB,其设计图如图所示,BF,ED与地面平行,CD的坡度为i=1:0.75,EF的坡角为45°,小王想利用所学知识测量基站顶部A 到地面的距离,若BF=ED,CD=15米,EF=3米,小王在山脚C点处测得基站底部B的仰角为37°,在F点处测得基站顶部A的仰角为60°,则基站顶部A到地面的距离为( )(精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.21.5米B.21.9米C.22.0米D.23.9米【思路引导】延长AB交过点C的水平线于M,交DE延长线于点N,作DG⊥MC于G,FH⊥DN于H,根据锐角三角函数即可求出结果.【完整解答】如图,延长AB交过点C的水平线于M,交DE延长线于点N,作DG⊥MC于G,FH⊥DN于H,∵CD的坡度为i=1:0.75=,∴=,设DG=4k,CG=3k,则CD=5k,∴5k=15,∴k=3,∴DG=12,CG=9,∵EF的坡角为45°,EF=3,∴EH=FH=3,∵四边形BNHF和四边形DGMN是矩形,∴BF=NH=DE,BN=FH=3,DN=MG,NM=DG=12,∴BM=BN+NM=15,在Rt△BCM中,∠BCM=37°,MC=MG+CG=DN+CG=NH+HE+DE+CG=2BF+3+9=2BF+12,∴BM=CM•tan∠BCM,∴15=(2BF+12)×0.75,∴BF=4,在Rt△ABF中,∠AFB=60°,∴AB=BF•tan60°=4≈6.92(米),∴AM=AB+BM=6.92+15≈21.9(米).故选:B.8.(2021•渝中区校级二模)如图,旗杆AB竖立在斜坡CB的顶端,斜坡CB长为65米,坡度为i=.小明从与点C相距115米的点D处向上爬12米到达建筑物DE的顶端点E,在此测得旗杆顶端点A的仰角为39°,则旗杆的高度AB约为( )米.(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A.12.9B.22.2C.24.9D.63.1【思路引导】通过作高,构造直角三角形,利用直角三角形的边角关系和坡度即可求出答案.【完整解答】过点B作BF⊥CD,垂足为F,过点E作EG⊥BF,垂足为G,在Rt△BCF中,由斜坡BC的坡度i=,得,=,又BC=65,设BF=12x,FC=5x,由勾股定理得,(12x)2+(5x)2=652,∴x=5,∴BF=60,FC=25,又∵DC=115,∴DF=DC﹣FC=115﹣25=90=EG,在Rt△AEG中,AG=EG•tan39°≈90×0.81=72.9,∴AB=AG+FG﹣BF=72.9+12﹣60=24.9(米),故选:C.二.填空题(共11小题)9.(2021春•沙河口区期末)如图,从一艘船A上测得海岸上高为42米的灯塔顶部B的仰角∠BAC=30°,求船离灯塔的水平距离AC的长度是 71 米(参考数据:≈1.7,≈2.2,结果取整数).【思路引导】由含30°角的直角三角形的性质得AB=2BC=84(米),再由勾股定理即可求解.【完整解答】由题意得:∠ACB=90°,∠BAC=30°,BC=42米,∴AB=2BC=84(米),∴AC===42≈71(米),故答案为:71.10.(2020秋•肥城市期末)如图,在正方形网格中,△ABC的顶点都在格点上,则cos B+sin B的值为 .【思路引导】如图,过点A作AE⊥BC交BC的延长线于E.利用勾股定理求出AB,可得结论.【完整解答】如图,过点A作AE⊥BC交BC的延长线于E.在Rt△ABE中,∠E=90°,AE=3,BE=4,∴AB===5,∴cos B==,sin B==,∴cos B+sin A=+=,故答案为:.11.(2020秋•崇川区期末)如图,若A,B,C,D都在格点处,AB与CD相交于O,则∠BOD的余弦值为 .【思路引导】如图,取格点T,连接CT.DT.利用平行线的性质证明∠BOD=∠TCD,求出CT,CD,可得结论.【完整解答】如图,取格点T,连接CT.DT.观察图象可知,CT∥AB,CT⊥DT,∴∠BOD=∠TCD,∠CTD=90°,∵CT==,CD==5,∴cos∠BDO=cos∠TCD===,故答案为:.12.(2020秋•锡山区期末)如图的正方形网格中,△ABC的顶点都在格点上,则tan∠ACB的值为 .【思路引导】如图,过点A作AH⊥BC于H.利用面积法求出AH,再利用勾股定理求出BH,CH,可得结论.【完整解答】如图,过点A作AH⊥BC于H.∵AB=2,BC=5,=×2×4=•BC•AH,∴S△ABC∴AH=,∴BH===,∴CH=BC﹣BH=5﹣=,∴tan∠ACB===,故答案为:.13.(2020秋•龙口市期末)如图,在Rt△ABC中,∠C=90°,D为边AC上一点,∠A=∠CBD,若AC=8cm,cos∠CBD=,则边AB= 10 cm.【思路引导】根据锐角三角函数即可求出AB的值.【完整解答】∵∠C=90°,∠A=∠CBD,cos∠CBD=,∴cos∠A==,∵AC=8cm,∴AB=10cm.故答案为:10.14.(2020秋•德江县期末)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=6,tan B=,则CE= 3 .【思路引导】过点F作FG⊥AB于点G,根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【完整解答】过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=6,∠ACB=90°,∴tan B==∴BC=8,AB===10,∴=,∵FC=FG,解得:FC=3,即CE的长为3.故答案为:3.15.(2020秋•新吴区期末)如图,△ABC的顶点都在正方形网格纸的格点上,则sin= .【思路引导】如图,取格点T,连接AT,BT,设BT的中点为H,连接CH.证明CB=CT,利用等腰三角形的性质求解即可.【完整解答】如图,取格点T,连接AT,BT,设BT的中点为H,连接CH.∵BC==5,CT==5,∴CB=CT,∵BH=HT,∴∠HCA=∠HCB,CH⊥BT,∵HT=,∴sin===,故答案为:.16.(2021春•瑞安市月考)如图,在河对岸有一等腰三角形场地EFG,FG=EG,为了估测场地的大小,在笔直的河岸上依次取点C,D,B,A,使FC⊥l,BG⊥l,EA⊥l,点E,G,D在同一直线上,在D观测F后,发现∠FDC=∠EDA,测得CD=12米,DB=6米,AB=12米,则FG= 8 米.【思路引导】过点G作GM⊥AE于G.GN⊥EF于N,过点D作DJ⊥l,过点F作FT⊥AE于T.利用相似三角形的性质证明DF=FG,再证明∠DEA=∠DEF,推出EN=EM=FN,证明△EGM≌△EGN (AAS),推出EM=EN,设AM=m,在Rt△ETF中,利用勾股定理求出方程求出m,即可解决问题.【完整解答】过点G作GM⊥AE于G.GN⊥EF于N,过点D作DJ⊥l,过点F作FT⊥AE于T.∵FC⊥l,BG⊥l,EA⊥l,∴∠FCD=∠EAD=90°,BG∥AE,∵∠FDC=∠EDA,∴△FCD∽△EAD,△GBD∽EAD,∴==2,==,∴DF=2DG,DE=3DG,∴EG=FG=2DG,∴FD=FG,∴∠FDG=∠FGD=∠GFE+∠GEF,∵GE=GF,∴∠GEF=∠GFE,∵∠FDJ+∠FDC=90°,∠EDJ+∠EDA=90°,∠FDC=∠EDA,∴∠FDJ=∠EDJ,∴2∠EDJ=2∠GEF,∴∠EDJ=∠DEF,∵DJ∥AE,∴∠EDJ=∠AED,∴∠DEA=∠DEF,∵GM⊥AE,GN⊥EF,∴∠EMG=∠ENG=90°,∵EG=EG,∴△EGM≌△EGN(AAS),∴EM=EN,∵GE=GF,GN⊥EF,∴FN=EN=EM,∵四边形ABGM,四边形CFTA都是矩形,∴AB=GM=CD=6(米),∵DF=EG,∠FCD=∠GME=90°,∴Rt△FCD≌Rt△EMG(HL),∴CF=EM,设AM=m米则AE=3m米,EM=CF=AT=FN=EN=2m米,∴ET=AE﹣AT=m(米),在Rt△EFT中,FT2+ET2=EF2,∴302+m2=(4m)2,∴m=2或﹣2(舍弃),∴FN=4(米),∵GN=GM=12米,∴FG===8(米),故答案为:8.17.(2021•道里区三模)△ABC中,AB=8,∠B=60°,AC=7,则∠BAC的余弦值为 或 .【思路引导】分两种情况进行解答,即当△ABC是锐角三角形和△ABC是钝角三角形,分别画出相应的图形,通过做高,利用直角三角形的边角过程求出相应的边长,再根据锐角三角函数的意义求出答案.【完整解答】(1)如图1,过点A作AD⊥BC,垂足为D,过点C作CE⊥AC,垂足为E,在Rt△ABD中,∠ABD=60°,AB=8,∴BD=AB=4,AD=AB=4,在Rt△ACD中,CD==1,由三角形的面积公式得,BC•AD=AC•BE,即(4+1)×4=7BE,∴BE=,在Rt△ABE中,AE==,∴cos∠BAC===;(2)如图2,过点A作AD⊥BC,垂足为D,过点C作CF⊥AB,垂足为F,由题意得,BC=4﹣1=3,在Rt△BCF中,∠FBC=60°,BC=3,∴BF=BC=,∴AF=AB﹣FB=8﹣=,在Rt△AFC中,cos∠BAC==;故答案为:或.18.(2021•新洲区模拟)如图,在Rt△ABC中,∠ACB=90°,AC=10,BC=5,M是射线AB上的一动点,以AM为斜边在△ABC外作Rt△AMN,且使tan∠MAN=,O是BM的中点,连接ON.则ON长的最小值为 2 .【思路引导】作NP⊥AB于点P,设AM长为x,用含x代数式表示出ON,然后通过配方求解.【完整解答】作NP⊥AB于点P,在Rt△ACB中,由勾股定理得:AB===5,设AM长为x,则BM=5﹣x,∵tan∠MAN==,∴AN=2MN,∴AM==MN,∴MN=AM=x,AN=2MN=x,同理,在Rt△ANP中可得NP==x,AP=2NP=x,∵O为BM中点,∴BO=BM=,∴AO=AB﹣BO=,∴OP=AO﹣AP=﹣x=,在Rt△ONP中,由勾股定理得ON2=OP2+NP2,即ON2=()2+(x)2=(25x2﹣150x+3125)=(x2﹣6x+125)=(x﹣3)2+20,∴当x=3时,ON2取最小值为20,∴ON最小值为2.故答案为:2.19.(2021•乐山)如图,已知点A(4,3),点B为直线y=﹣2上的一动点,点C(0,n),﹣2<n<3,AC⊥BC于点C,连接AB.若直线AB与x正半轴所夹的锐角为α,那么当sinα的值最大时,n的值为 .【思路引导】当sinα的值最大时,则tanα=值最大,即当BG最大时,sinα的值最大,设BG=y,由tan∠CAM=tan∠BCG,得到y=﹣(n﹣3)(n+2),进而求解.【完整解答】过点A作AM⊥y轴于点M,作AN⊥BN交于点N,∵直线y=﹣2∥x轴,故∠ABN=α,当sinα的值最大时,则tanα=值最大,故BN最小,即BG最大时,tanα最大,即当BG最大时,sinα的值最大,设BG=y,则AM=4,GC=n+2,CM=3﹣n,∵∠ACM+∠MAC=90°,∠ACM+∠BCG=90°,∴∠CAM=∠BCG,∴tan∠CAM=tan∠BCG,∴,即,∴y=﹣(n﹣3)(n+2),∵﹣<0,故当n=(3﹣2)=时,y取得最大值,故n=,故答案为:.三.解答题20.(2021•河池)如图,小明同学在民族广场A处放风筝,风筝位于B处,风筝线AB长为100m,从A处看风筝的仰角为30°,小明的父母从C处看风筝的仰角为50°.(1)风筝离地面多少m?(2)A、C相距多少m?(结果保留小数点后一位,参考数据:sin30°=0.5,cos30°≈0.8660,tan30°≈0.5774,sin50°≈0.7760,cos50°≈0.6428,tan50°≈1.1918)【思路引导】(1)过B作BD⊥AC于D,由含30°角的直角三角形的性质即可求解;(2)由锐角三角函数定义求出CD、AD的长,即可求解.【完整解答】(1)过B作BD⊥AC于D,如图所示:则∠ADB=∠CDB=90°,∵∠BAD=30°,∴BD=AB=50(m),即风筝离地面50m;(2)由(1)得:BD=50m,在Rt△BCD中,∠BCD=50°,∵tan∠BCD==tan50°≈1.1918,∴CD≈=≈41.95(m),在Rt△ABD中,∠BAD=30°,∵tan∠BAD==tan30°≈0.5774,∴AD≈≈86.60(m),∴AC=AD+CD≈41.95+86.60≈128.6(m),即A、C相距约128.6m.21.(2020秋•长沙期末)如图,A、B、D三点在同一水平线上,CD⊥AD,∠A=45°,∠CBD=75°,AB=60m.(1)求∠ACB的度数;(2)求线段CB的长度.【思路引导】(1)利用三角形的外角的性质求解即可.(2)如图,过点B作BH⊥AC于H,利用等腰直角三角形的性质求出BH,再根据BC=2BH,可得结论.【完整解答】(1)∵∠CBD=∠A+∠ACB,∠A=45°,∠CBD=75°,∠∠ACB=75°﹣45°=30°.(2)如图,过点B作BH⊥AC于H.∵∠BHA=90°,AB=60m,∠A=45°,∴BH=AB•sin45°=60(m),∵∠BCH=30°,∴BC=2BH=120(m).22.(2021•朝阳)一数学兴趣小组去测量一棵周围有围栏保护的古树的高,在G处放置一个小平面镜,当一位同学站在F点时,恰好在小平面镜内看到这棵古树的顶端A的像,此时测得FG=3m,这位同学向古树方向前进了9m后到达点D,在D处安置一高度为1m的测角仪CD,此时测得树顶A的仰角为30°,已知这位同学的眼睛与地面的距离EF=1.5m,点B,D,G,F在同一水平直线上,且AB,CD,EF均垂直于BF,求这棵古树AB的高.(小平面镜的大小和厚度忽略不计,结果保留根号)【思路引导】过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由锐角三角函数定义求出BD=CH=AH,再证△EFG∽△ABG,得=,求出AH=(8+4)m,即可求解.【完整解答】如图,过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由题意得:DF=9m,∴DG=DF﹣FG=6(m),在Rt△ACH中,∠ACH=30°,∵tan∠ACH==tan30°=,∴BD=CH=AH,∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由反射角等于入射角得∠EGF=∠AGB,∴△EFG∽△ABG,∴=,即=,解得:AH=(8+4)m,∴AB=AH+BH=(9+4)m,即这棵古树的高AB为(9+4)m.23.(2021•锦州)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC∥MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1:3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【思路引导】先求出BC=4.8m,再由锐角三角函数定义即可求解.【完整解答】∵山坡BM的坡度i=1:3,∴i=1:3=tan M,∵BC∥MN,∴∠CBD=∠M,∴tan∠CBD==tan M=1:3,∴BC=3CD=4.8(m),在Rt△ABC中,tan∠ACB==tan50°≈1.19,∴AB≈1.19BC=1.19×4.8≈5.7(m),即树AB的高度约为5.7m.24.(2020秋•阜宁县期末)在Rt△ABC中,∠C=90°,∠A﹣∠B=30°,a﹣b=2﹣2,解这个直角三角形.【思路引导】利用三角形内角和定理构建方程组求出∠A,∠B的值,推出a=b,解方程组求出a,b,即可解决问题.【完整解答】∵,∴,∵,∴,由,解得,∵,∴c=2b=4.25.(2021•荆门)某海域有一小岛P,在以P为圆心,半径r为10(3+)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A,P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B 处开始沿南偏东至多多少度的方向航行能安全通过这一海域?【思路引导】(1)通过作垂线构造直角三角形,求出小岛P到航线AB的最低距离PC,与暗礁的半径比较即可得出答案;(2)规划新航线BD,使小岛P到新航线的距离PE等于暗礁的半径,进而求出∠PBD,进而求出∠CBD,确定方向角.【完整解答】(1)过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠PAC=30°,∠PBC=45°,AB=20,设PC=x,则BC=x,在Rt△PAC中,∵tan30°===,∴x=10+10,∴PA=2x=20+20,答:A,P之间的距离AP为(20+20)海里;(2)因为PC﹣10(3+)=10+10﹣30﹣10=10(+1)(﹣)<0,所以有触礁的危险;设海监船无触礁危险的新航线为射线BD,作PE⊥BD,垂足为E,当P到BD的距离PE=10(3+)海里时,有sin∠PBE===,∴∠PBD=60°,∴∠CBD=60°﹣45°=15°,90°﹣15°=75°即海监船由B处开始沿南偏东至多75°的方向航行能安全通过这一海域.26.(2021•天津)如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长.(结果取整数)参考数据:tan40°≈0.84,取1.73.【思路引导】通过作垂线,构造直角三角形,利用锐角三角函数的意义列方程求解即可.【完整解答】如图,过点B作BH⊥AC,垂足为H,由题意得,∠BAC=60°,∠BCA=40°,AC=257海里,在Rt△ABH中,∵tan∠BAH=,cos∠BAH=,∴BH=AH•tan60°=AH,AB==2AH,在Rt△BCH中,∵tan∠BCH=,∴CH==(海里),又∵CA=CH+AH,∴257=+AH,所以AH=(海里),∴AB=≈=168(海里),答:AB的长约为168海里.27.(2021•资阳)资阳市为实现5G网络全覆盖,2020﹣2025年拟建设5G基站七千个.如图,在坡度为i=1:2.4的斜坡CB上有一建成的基站塔AB,小芮在坡脚C测得塔顶A的仰角为45°,然后她沿坡面CB 行走13米到达D处,在D处测得塔顶A的仰角为53°.(点A、B、C、D均在同一平面内)(参考数据:sin53°≈,cos53°≈,tan53°≈)(1)求D处的竖直高度;(2)求基站塔AB的高.【思路引导】(1)通过作垂线,利用斜坡CB的坡度为i=1:2.4,CD=13,由勾股定理可求出答案;(2)设出DE的长,根据坡度表示BE,进而表示出CF,由于△ACF是等腰直角三角形,可表示BE,在△ADE中由锐角三角函数可列方程求出DE,进而求出AB.【完整解答】(1)如图,过点C、D分别作AB的垂线,交AB的延长线于点E、F,过点D作DM⊥CF,垂足为M,∵斜坡CB的坡度为i=1:2.4,∴=,即=,设DM=5k米,则CM=12k米,在Rt△CDM中,CD=13米,由勾股定理得,CM2+DM2=CD2,即(5k)2+(12k)2=132,解得k=1,∴DM=5(米),CM=12(米),答:D处的竖直高度为5米;(2)斜坡CB的坡度为i=1:2.4,设DE=12a米,则BE=5a米,又∵∠ACF=45°,∴AF=CF=(12+12a)米,∴AE=AF﹣EF=12+12a﹣5=(7+12a)米,在Rt△ADE中,DE=12a米,AE=(7+12a)米,∵tan∠ADE=tan53°≈,∴=,解得a=,∴DE=12a=21(米),AE=7+12a=28(米),BE=5a=(米),∴AB=AE﹣BE=28﹣=(米),答:基站塔AB的高为米.28.(2021•莱芜区二模)如图,为加强对市内道路交通安全的监督,王警官利用无人机进行检测.某段限速道路AB=328米,当无人机在限速道路的正上方C处时,测得限速道路的起点A的俯角是37°,无人机继续向右水平飞行到达D处,此时又测得起点A的俯角是30°,同时测得限速道路终点B的俯角是45°.求无人机距离地面道路的高度和飞行距离各为多少米.(均精确到1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【思路引导】通过作垂线构造直角三角形,在不同的直角三角形中,利用边角关系进行计算即可.【完整解答】(1)如图,由题意得:∠ECA=37°,∠CDA=30°,∠FDB=45°,CD∥AB,AB=328米,过点C作CM⊥AB于点M,过点D作DN⊥AB于点N,则四边形CDNM是矩形,∵∠ECA=37°,∠CDA=30°,∠FDB=45°,CD∥AB,∴∠CAM=∠ECA=37°,∠DAN=∠CDA=30°,∠B=∠FDB=45°,即无人机距离地面道路的高度为120米,∴,∴CD=MN=AN﹣AM=207.6﹣160≈48米,即无人机的飞行距离为48米.29.(2021•碑林区校级模拟)学校“科技创新小团队”设计的智能照明家居(如图①)的设计方案(如图②)所示:MN为台灯底座,支架AB与MN的夹角为60°.支架AB与BC的夹角可以调节的.试用后发现,当支架AB与BC的夹角为108°时,可以达到较好的照明效果.若AB=21cm,BC=28cm.此时点C离底座MN的距离为多少?(结果精确到0.1cm.参考数据:≈1.41;≈1.73;sin48°≈0.74;cos48°≈0.67;tan48°≈1.11)【思路引导】过点C作CE⊥MN于点M,过点B作BF⊥MN于点F,作BG⊥CE于点G,得矩形EGBF,根据锐角三角函数即可求出CG和BF的值,进而可得结果.【完整解答】如图,过点C作CE⊥MN于点M,过点B作BF⊥MN于点F,作BG⊥CE于点G,得矩形EGBF,在Rt△ABF中,∵∠BAF=60°,AB=21cm,∴∠ABF=30°,∴AF=AB=cm,∴BF=AF=≈18.165(cm),∴GE=BF≈18.165(cm),在Rt△CGB中,∵∠CBG=108°﹣60°=48°,BC=28cm.∴CG=BC×sin48°≈28×0.74≈20.72(cm),∴CE=CG+GE=20.72+18.165≈38.9(cm),答:此时点C离底座MN的距离为38.9cm.。