2
我们可以用四个全等的直角三角形拼成一 个“风车”图案?
创设情境、体会感知:
2002年国际数学家大会会标
一 、探究
问题1:在正方形ABCD中,设AE=a,BE=b,
则AB=
a2则 b正2 方形的面积为S= a2 。b2
问题2:Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等
三
角形,它们的面积2a总b和是S’=—
所以a2 b2≥2ab.
合作探究,问题解决
探究二:若 a 0,b 0 用 a , b 去替换 a2 b2 2a b
中的 a,b ,能得到什么结论?
替换后得到: ( a )2 ( b )2≥2 a b
即: a b≥2 ab
即: ab a b (a 0,b 0) 2
(当且仅当a=b时,等号成立)
名称
重要不等式
基本不等式
公式
a2 b2 2ab
等号成立条件
ab
a,b的取值范围 a, b R
ab a b 2
ab
a 0,b 0
常见变形
ab a2 b2 2
a b 2 ab
ab ( a b )2 2
ቤተ መጻሕፍቲ ባይዱ
典例探究 例1.试判断x+ 1 (x 0)与2的大小关系? x
学案72页例1、2
变式:若x<0,求f(x)=4x+ 9 的最值,并求取得最值时x的值. x
(2)求函数y 1 x(x 3)的最小值. x3
(3)已知:x 3,求x+ 4 的最小值. x
学案75页例2、3
课堂小结
1、 主要内容:
2. 数形结合,换元的数学思想方法。 3、不等式的简单应用:求最值。特别要注意公式适用 的条件。