南通市2014届高三第三次模拟考试数学试题
- 格式:doc
- 大小:1.44 MB
- 文档页数:23
专题函数常见题型归纳三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号.(2)a ,b ∈R +,a +b ≥2,当且仅当a =b 时取等号.ab (3)a ,b ∈R ,≤()2,当且仅当a =b 时取等号.a 2+b 22a +b2上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系.其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2(或ab ≤()2),当且仅当ab a +b2a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值.利用基本不等式求最值:一正、二定、三等号.【题型一】利用拼凑法构造不等关系【典例1】(扬州市2015—2016学年度第一学期期末·11)已知且1,,b a ,则的最小值为 .7log 3log 2=+a b b a 112-+b a 【解析】∵且∴,解得1,,b a 7log 3log 2=+a b b a 32log 7log a a b b+=或,∵∴,即.1log 2a b =log 3a b =1,,b a 1log 2a b =2a b =2111111a ab a +=-++--.13≥=练习:1.(南京市、盐城市2015届高三年级第一次模拟·10)若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为.解析:由log 2x+log 2y=1可得log 2xy=1=log 22,则有xy=2,那么y x y x -+22=y x xy y x -+-2)(2=(x -y )+y x -4≥2y x y x -⋅-4)(=4,当且仅当(x -y )=yx -4,即x=3+1,y=3-1时等号成立,故y x y x -+22的最小值为4.2.(苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)若实数满足,x y,则的最小值为 .133(02xy x x +=<<313x y +-3.(无锡市2017届高三上学期期末)已知,且,则0,0,2a b c >>>2a b +=的最小值为 .2ac c c b ab +-+【典例2】(南京市2015届高三年级第三次模拟·12)已知x ,y 为正实数,则+4x4x +y 的最大值为 .yx +y 解析:由于+==4x 4x +y yx +y ))(4()4()(4y x y x y x y y x x +++++22225484yxy x y xy x ++++=1+=1+≤1+=,22543y xy x xy ++345x y y x ⋅++5423+⋅xy y x 43当且仅当4=,即y=2x 时等号成立.y x xy【典例3】若正数、满足,则的最小值为__________.a b 3ab a b =++a b +解析:由,得,解得,a b R +∈223(),()4()1202a b ab a b a b a b +=++≤+-+-≥(当且仅当且,即时,取等号).6a b +≥a b =3ab a b =++3a b ==变式:1.若,且满足,则的最大值为_________.,a b R +∈22a b a b +=+a b +解析:因为,所以由,,a b R +∈22222()2a b a b a b a b a b ++=+⇒+=+≥2()a b +-,解得(当且仅当且,即时,取等号).2()0a b +≤02a b <+≤a b =22a b a b +=+1a b ==2.设,,则的最小值为_______ 40,0>>y x 822=++xy y x y x 2+3.设,,则的最大值为_________R y x ∈,1422=++xy y x y x +210524.(苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)已知正数,满a b 足,则的最小值为 195a b+=-ab 【题型二】含条件的最值求法【典例4】(苏州市2017届高三上期末调研测试)已知正数满足,则y x ,1=+y x的最小值为 1124+++y x 练习1.(江苏省镇江市高三数学期末·14)已知正数满足,则y x ,111=+yx 的最小值为 .1914-+-y yx x 解析:对于正数x ,y ,由于+=1,则知x>1,y>1,那么x 1y1+=(+)(1+1--)=(+)(+)≥(14-x x 14-y y 14-x x 14-y y x 1y 114-x x 14-y y x x 1-yy 1-+)2=25,当且仅当·=·时等号成x x x x 114-⋅-y y y y 114-⋅-14-x x y y 1-14-y y x x 1-立.2.(2013~2014学年度苏锡常镇四市高三教学情况调查(一)·11)已知正数,x y 满足22x y +=,则8x yxy+的最小值为 .解析:8181828145922x y x y x y xy y x y x y x ⎛⎫++⎛⎫=+=+⋅=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当82x yy x=时,取等号.故答案为:9.3.(南通市2015届高三第一次调研测试·12)已知函数的图像经过点(0)xy a b b =+>,如下图所示,则的最小值为 .(1,3)P 411a b+-解析:由题可得a+b=3,且a>1,那么+=(a -1+b )(+)=(4+14-a b 12114-a b 121++1)≥(2+5)=,当且仅当=时等号成立.b a 1-14-a b 21141-⋅-a b b a 29b a 1-14-a b4.(江苏省苏北四市2015届高三第一次模拟考试·12)己知a ,b 为正数,且直线60ax by +-=与直线2(3)50x b y +-+=互相平行,则2a+3b 的最小值为________.【解析】由于直线ax+by -6=0与直线2x+(b -3)y+5=0互相平行,则有2a =3-b b ,即3a+2b=ab ,那么2a+3b=(2a+3b )·ab b a 23+=(2a+3b )(b 3+a 2)=b a 6+ab6+13≥2a b b a 66⋅+13=25,当且仅当b a 6=ab6,即a=b 时等号成立.5.常数a ,b 和正变量x ,y 满足ab =16,+=.若x +2y 的最小值为64,则ax 2by 12a b =________.答案:64;(考查基本不等式的应用).6.已知正实数满足,则的最大值为.,a b ()()12122a b b b a a +=++ab 答案:2【题型三】代入消元法【典例5】(苏州市2016届高三调研测试·14)已知,,则的14ab =,(0,1)a b ∈1211ab+--最小值为 .解析:由得 ,14ab =14a b=2221211424122711411451451a b b b b b b b b b bb +---+--=+==+---+--+-令 则当且仅当71b t -=227149*********5142718427b t b bt t t t-+=+=-≥+-+--+-+- 等号成立.t =练习1.(江苏省扬州市2015届高三上学期期末·12)设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .解析:由x 2+2xy -1=0可得y=,那么x 2+y 2=x 2+=x 2+-≥2212x x -222(1)4x x -54214x 12-,当且仅当x 2=,即x 4=时等号成立. 121254214x 152.(苏州市2014届高三调研测试·13)已知正实数x ,y 满足,则x + y 的最小值为.解析:∵正实数x ,y 满足xy+2x+y=4,∴(0<x <2).∴x+y=x+==(x+1)+﹣3,当且仅当时取等号.∴x+y 的最小值为.故答案为:.3.(南通市2014届高三第三次调研测试·9)已知正实数满足,则,x y (1)(1)16x y -+=的最小值为.x y +解析:∵正实数x ,y 满足(x ﹣1)(y+1)=16,∴,∴x+y=1116++=y x ,当且仅当y=3,(x=5)时取等号.∴x+y 的最小值为()8116121116=+⋅+≥+++y y y y 8.故答案为:8.4.(扬州市2017届高三上学期期中)若,且,则使得取2,0>>b a 3=+b a 214-+b a 得最小值的实数=。
2014年江苏省南通市高考数学三模试卷学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共14小题,共70.0分)1.已知集合A={x|1≤x≤2},B={1,2,3,4},则A∩B= ______ .【答案】{1,2}【解析】解:∵A={x|1≤x≤2},B={1,2,3,4},∴A∩B={1,2}.故答案为:{1,2}由A与B,找出两集合的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知复数z满足z•i=1+i(i是虚数单位),则z= ______ .【答案】1-i【解析】解:由z•i=1+i,得.故答案为:1-i.把给出的等式两边同时乘以i,然后由复数代数形式的除法运算化简求值.本题考查了复数代数形式的除法运算,是基础的计算题.3.袋中有2个红球,2个蓝球,1个白球,从中一次取出2个球,则取出的球颜色相同的概率为______ .【答案】【解析】解:从五个球中取出2球,共有=10种不同情况,而且这些情况是等可能发生的,其中取出的球颜色相同,共有+=2种不同情况,∴取出的球颜色相同的概率为P==,故答案为:先计算从五个球中取出2球的基本事件总数,再计算所取2球球颜色相同的基本事件个数,代入古典概型公式,可得答案.此题考查了古典概型概率计算公式,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键.4.平面α截半径为2的球O所得的截面圆的面积为π,则球心O到平面α的距离为______ .【答案】【解析】解:∵截面圆的面积为π,∴截面圆的半径是1,∵球O半径为2,∴球心到截面的距离为.故答案为:.先求截面圆的半径,然后求出球心到截面的距离.本题考查球的体积,点到平面的距离,是基础题.5.如图所示的流程图,输出y的值为3,则输入x的值为______ .【答案】1【解析】解:由程序框图知:算法的功能是求y=>的值,当x>0时,y=2x+1=3⇒x=1;当x≤0时,y=2x+1=3⇒x=1(舍去),故答案为:1.算法的功能是求y=>的值,分当x>0时和当x≤0时求得输出y=3时的x值.本题考查了选择结构的程序框图,根据框图的流程判断算法的功能是关键.6.一组数据2,x,4,6,10的平均值是5,则此组数据的标准差是______ .【答案】2【解析】解:∵一组数据2,x,4,6,10的平均值是5,∴2+x+4+6+10=5×5,解得x=3,∴此组数据的方差[(2-5)2+(3-5)2+(4-5)2+(6-5)2+(10-5)2]=8,∴此组数据的标准差S==2.故答案为:2 .由已知条件先求出x 的值,再计算出此组数据的方差,由此能求出标准差.本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.7.在平面直角坐标系x O y 中,曲线C 的离心率为 ,且过点(1, ),则曲线C 的标准方程为 ______ . 【答案】 y 2-x 2=1 【解析】解:∵曲线C 的离心率为 , ∴a =b ,∴设曲线C 的方程为y 2-x 2=λ, 代入点(1, ),可得λ=1, ∴曲线C 的标准方程为y 2-x 2=1, 故答案为:y 2-x 2=1.根据曲线C 的离心率为 ,设曲线C 的方程为y 2-x 2=λ,代入点(1, ),可得λ=1,即可求出曲线C 的标准方程.本题考查双曲线的标准方程与几何性质,属于基础题.8.已知函数f (x )对任意的x ∈R 满足f (-x )=f (x ),且当x ≥0时,f (x )=x 2-ax +1,若f (x )有4个零点,则实数a 的取值范围是 ______ . 【答案】 (2,+∞) 【解析】解:∵f (-x )=f (x ), ∴函数f (x )是偶函数, ∵f (0)=1>0,根据偶函数的对称轴可得当x ≥0时函数f (x )有2个零点,即 >>,∴或 , 解得a >2,即实数a 的取值范围(2,+∞), 故答案为:(2,+∞) 由f (-x )=f (x ),可知函数是偶函数,根据偶函数的对称轴可得当x ≥0时函数f (x )有2个零点,即可得到结论.本题主要考查函数奇偶的应用,以及二次函数的图象和性质,利用偶函数的对称性是解决本题的关键.9.已知正实数x ,y 满足(x -1)(y +1)=16,则x +y 的最小值为 ______ . 【答案】 8【解析】解:∵正实数x ,y 满足(x -1)(y +1)=16, ∴,∴x+y==8,当且仅当y=3,(x=5)时取等号.∴x+y的最小值为8.故答案为:8.变形利用基本不等式即可得出.本题考查了变形利用基本不等式的性质,属于基础题.10.在直角三角形ABC中,C=90°,AC=6,BC=4.若点D满足=-2,则||= ______ .【答案】10【解析】解:由=-2可知B为AD的中点,如图,在直角三角形ABC中,C=90°,AC=6,BC=4,∴,∴.在△CBD中,由余弦定理得:CD2=BC2+BD2-2BC•BD•cos CBD==100.∴CD=10.即||=10.故答案为:10.由题意作出图形,得到B为AD的中点,由已知条件求得 CBD的余弦值,在△CBD中利用余弦定理得答案.本题考查了平行向量与共线向量,考查了余弦定理的应用,是基础的计算题.11.已知函数f(x)=sin(ωx+φ)的图象如图所示,则f(2)=______ .【答案】-【解析】解:根据函数f(x)=sin(ωx+φ)的图象可得•T=•=3-1,ω=.再根据五点法作图可得×1+φ=,∴φ=-,∴f(x)=sin(x-),∴f(2)=sin(-)=sin=-sin=-,故答案为:-.根据周期求出ω,再根据五点法作图求得φ,可得函数的解析式,从而求得f(2)的值.本题主要考查利用y=A sin(ωx+φ)的图象特征,由函数y=A sin(ωx+φ)的部分图象求解析式,属于中档题.12.在平面直角坐标系x O y中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取值范围是______ .【答案】[-2,2]【解析】解:∵C的方程为x2+y2-4x=0,故圆心为C(2,0),半径R=2.设两个切点分别为A、B,则由题意可得四边形PACB为正方形,故有PC=R=2,∴圆心到直线y=k(x+1)的距离小于或等于PC=2,即≤2,解得k2≤8,可得-2≤k≤2,故答案为:[-2,2].由题意可得圆心为C(2,0),半径R=2;设两个切点分别为A、B,则由题意可得四边形PACB为正方形,圆心到直线y=k(x+1)的距离小于或等于PC=2,即≤2,由此求得k的范围.本题主要考查直线和圆相交的性质,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题.13.设数列{a n}为等差数列,数列{b n}为等比数列.若a1<a2,b1<b2,且b i=a i2(i=1,2,3),则数列{b n}的公比为______ .【答案】3+2【解析】解:设等差数列{a n}的公差为d,由a1<a2可得d>0,∴b1=a12,b2=a22=(a1+d)2,b3=a32=(a1+2d)2,∵数列{b n}为等比数列,∴b22=b1•b3,即(a1+d)4=a12•(a1+2d)2,∴(a1+d)2=a1•(a1+2d)①或(a1+d)2=-a1•(a1+2d),②由①可得d=0与d>0矛盾,应舍去;由②可得a1=d,或a1=d,当a1=d时,可得b1=a12=b2=a22=(a1+d)2=,此时显然与b1<b2矛盾,舍去;当a1=d时,可得b1=a12=,b2=(a1+d)2=,∴数列{b n}的公比q==3+2,综上可得数列{b n}的公比q=3+2,故答案为:3+2设等差数列{a n}的公差为d,可得d>0,由数列{b n}为等比数列,可得b22=b1•b3,代入化简可得a1和d的关系,分类讨论可得b1和b2,可得其公比.本题考查等差数列与等比数列的性质,涉及分类讨论的思想,属中档题.14.在△ABC中,BC=,AC=1,以AB为边作等腰直角三角形ABD(B为直角顶点,C、D两点在直线AB的两侧).当 C变化时,线段CD长的最大值为______ .【答案】3【解析】解:如右图:∵AB=BD,∴在△ABC中,由正弦定理得,∴BD sin ABC=sin ACB,在△BCD中,CD2=BD2+BC2-2BD•BC cos(90°+ABC)=AB2+2+2BD sin ABC=AC2+BC2-2AC•BC cos ACB+2+2sin ACB=5-2cos ACB+2sin ACB=5+4sin( ACB-45°),∴当 ACB=135°时CD2最大为9,CD最大值为3,故答案为:3.在△ABC中,由正弦定理得BD sin ABC=sin ACB,在△BCD,△ABC中由余弦定理可得CD2=BD2+BC2-2BD•BC cos(90°+ABC)=AC2+BC2-2AC•BC cos ACB+2+2sin ACB,可化为5+4sin( ACB-45°),由此可求答案.该题考查正弦定理、余弦定理及其应用,考查三角函数的恒等变换,属中档题.二、解答题(本大题共12小题,共162.0分)15.如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.(1)求证:AB∥EF;(2)求证:平面BCF⊥平面CDEF.【答案】证明:(1)因为四边形ABCD是矩形,所以AB∥CD,因为AB⊄平面CDEF,CD⊂平面CDEF,所以AB∥平面CDEF.…4分因为AB⊂平面ABFE,平面ABFE∩平面CDEF=EF,所以AB∥EF.…7分(2)因为DE⊥平面ABCD,BC⊂平面ABCD,所以DE⊥BC.…9分因为BC⊥CD,CD∩DE=D,CD,DE⊂平面CDEF,所以BC⊥平面CDEF.…12分因为BC⊂平面BCF,所以平面BCF⊥平面CDEF.…14分.【解析】(1)由四边形ABCD是矩形,得到AB∥平面CDEF,由此能证明AB∥EF.(2)由已知条件推导出DE⊥BC,从而得到BC⊥平面CDEF,由此能证明平面BCF⊥平面CDEF.本题考查直线平行的证明,考查平面与平面垂直的证明,考查学生分析解决问题的能力,属于中档题.16.在△ABC中,角A,B,C所对的边分别为a,b,c.若b=4,•=8.(1)求a2+c2的值;(2)求函数f(B)=sin B cos B+cos2B的值域.【答案】解:(1)∵•=8,∴accos B=8,由余弦定理得b2=a2+c2-2accos B=a2+c2-16,∵b=4,∴a2+c2=32;(2)∵a2+c2≥2ac,∴ac≤16,∵accos B=8,∴cos B=≥,∵B∈(0,π),∴0<B≤,∵f(B)=sin B cos B+cos2B=sin2B+(1+cos2B)=sin(2B+)+,∵<2B+≤,∴sin(2B+)∈[,1],则f(B)的值域为[1,].【解析】(1)利用平面向量的数量积运算法则化简•=8,再利用余弦定理列出关系式,将化简结果及b的值代入计算即可求出a2+c2的值;(2)由基本不等式求出ac的范围,根据accos B=8表示出cos B,由ac的范围求出cos B的范围,进而利用余弦函数性质求出B的范围,f(B)解析式利用二倍角的正弦、余弦函数公式化简,整理为一个角的正弦函数,由B的范围求出这个角的范围,利用正弦函数的值域即可确定出f(B)的范围.此题考查了正弦、余弦定理,平面向量的数量积运算,二倍角的正弦、余弦函数公式,以及正弦函数的值域,熟练掌握定理及公式是解本题的关键.17.某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)(1)设 BAC=θ(弧度),将绿化带总长度表示为θ的函数S(θ);(2)试确定θ的值,使得绿化带总长度最大.【答案】解:(1)由题意,AC=100cosθ,直径AB为100米,∴半径为50米,圆心角为2θ,∴=100θ,∴绿化带总长度S(θ)=200cosθ+100θ(θ∈(0,);(2)∵S(θ)=200cosθ+100θ,∴S′(θ)=-200sinθ+100,令S′(θ)=0,可得θ=.函数在(0,)上单调递增,在(,)上单调递减,∴θ=时,绿化带总长度最大.【解析】(1)利用三角函数结合弧长公式,可将绿化带总长度表示为θ的函数S(θ);(2)求导数,确定函数的单调性,即可确定θ的值,使得绿化带总长度最大.利用导数可以解决实际问题中的最值问题,关键是确定函数解析式,正确运用导数工具,确定函数的单调性.18.如图,在平面直角坐标系x O y中,椭圆+=1(a>b>0)的离心率为,过椭圆右焦点F作两条互相垂直的弦AB与CD.当直线AB斜率为0时,AB+CD=7.(1)求椭圆的方程;(2)求AB+CD的取值范围.【答案】解:(1)由题意知,,CD=7-2a,所以a2=4c2,b2=3c2,…2分因为点,在椭圆上,即,解得c=1.所以椭圆的方程为.…6分(2)①当两条弦中一条斜率为0时,另一条弦的斜率不存在,由题意知AB+CD=7;…7分②当两弦斜率均存在且不为0时,设A(x1,y1),B(x2,y2),且设直线AB的方程为y=k(x-1),则直线CD的方程为.将直线AB的方程代入椭圆方程中,并整理得(3+4k2)x2-8k2x+4k2-12=0,所以,,所以.…10分同理,.所以,…12分令t=k2+1,则t>1,3+4k2=4t-1,3k2+4=3t+1,设,因为t>1,所以,,所以,,所以,.综合①与②可知,AB+CD的取值范围是,.…16分.【解析】(1)由题意知,,CD=7-2a,再由点,在椭圆上,能求出椭圆的方程.(2)当两条弦中一条斜率为0时,另一条弦的斜率不存在时,AB+CD=7;当两弦斜率均存在且不为0时,设A(x1,y1),B(x2,y2),设直线AB的方程为y=k(x-1),直线CD的方程为.由此能求出,从而能求出AB+CD的取值范围.本题考查椭圆的方程的求法,考查两条线段和的取值范围的求法,解题时要认真审题,注意分类讨论思想的合理运用.19.已知函数f(x)=(x-a)2e x在x=2时取得极小值.(1)求实数a的值;(2)是否存在区间[m,n],使得f(x)在该区间上的值域为[e4m,e4n]?若存在,求出m,n的值;若不存在,说明理由.【答案】解:(1)f'(x)=e x(x-a)(x-a+2),由题意知f'(2)=0,解得a=2或a=4.当a=2时,f'(x)=e x x(x-2),易知f(x)在(0,2)上为减函数,在(2,+∞)上为增函数,符合题意;当a=4时,f'(x)=e x(x-2)(x-4),易知f(x)在(0,2)上为增函数,在(2,4),(4,+∞)上为减函数,不符合题意.所以,满足条件的a=2.(2)因为f(x)≥0,所以m≥0.①若m=0,则n≥2,因为f(0)=4<e4n,所以(n-2)2e n=e4n.设,则′,所以g(x)在[2,+∞)上为增函数.由于g(4)=e4,即方程(n-2)2e n=e4n有唯一解为n=4.②若m>0,则2∉[m,n],即n>m>2或0<m<n<2.(Ⅰ)n>m>2时,,由①可知不存在满足条件的m,n.(Ⅱ)0<m<n<2时,,两式相除得m(m-2)2e m=n(n-2)2e n.设h(x)=x(x-2)2e x(0<x<2),则h'(x)=(x3-x2-4x+4)e x=(x+2)(x-1)(x-2)e x,h(x)在(0,1)递增,在(1,2)递减,由h(m)=h(n)得0<m<1,1<n<2,此时(m-2)2e m<4e<e4n,矛盾.综上所述,满足条件的m,n值只有一组,且m=0,n=4.【解析】(1)通过求导直接得出,(2)构造出新函数通过求导得出方程组,解得即可.本题考察了求导函数,函数的单调性,解题中用到了分类讨论思想,是一道较难的问题.20.各项均为正数的数列{a n}中,设S n=a1+a2+…+a n,T n=++…+,且(2-S n)(1+T n)=2,n∈N*.(1)设b n=2-S n,证明数列{b n}是等比数列;(2)设c n=na n,求集合{(m,k,r)|c m+c r=2c k,m<k<r,m,k,r∈N*}.【答案】解:(1)当n=1时,(2-S1)(1+T1)=2,即,解得a1=1.…2分由(2-S n)(1+T n)=2,所以①当n≥2时,②①-②,得(n≥2),…4分即,即,所以,因为数列{a n}的各项均为正数,所以数列{2-S n}单调递减,所以<.所以(n≥2).因为a1=1,所以b1=1≠0,所以数列{b n}是等比数列. (6)分(2)由(1)知,所以,即.由c m+c r=2c k,得(*)又n≥2时,<,所以数列{c n}从第2项开始依次递减.…8分(Ⅰ)当m≥2时,若k-m≥2,则,(*)式不成立,所以k-m=1,即k=m+1.…10分令r=m+1+i(i∈N*),则,所以r=2i+1,即存在满足题设的数组{(2i+1-i-1,2i+1-i,2i+1)}(i∈N*).…13分(Ⅱ)当m=1时,若k=2,则r不存在;若k=3,则r=4;若k≥4时,,(*)式不成立.综上所述,所求集合为{(1,3,4),(2i+1-i-1,2i+1-i,2i+1)}(i∈N*).…16分.【解析】(1)根据等比数列的定义即可证明数列{b n}是等比数列;(2)根据数列的递推关系即可得到结论.本题主要考查递推数列的应用,以及等比数列的定义,考查学生的计算能力,难度较大.21.如图,圆O的两弦AB和CD交于点E,EF∥CB,EF交AD的延长线于点F.求证:△DEF∽△EAF.【答案】证明:∵EF∥CB,∴ BCD=FED,又 BAD与 BCD是所对应的圆周角,∴ BAD=BCD∴ BAD=FED,又 EFD=EFD,∴△DEF∽△EAF.【解析】利用平行线的性质、相似三角形的判定定理即可得出.本题考查了平行线的性质、相似三角形的判定定理,属于基础题.22.若矩阵M=把直线l:x+y-2=0变换为另一条直线l′:x+y-4=0,试求实数a 值.【答案】解:设直线l上任意一点P(x,y)在矩阵M作用下的点P'的坐标为(x',y'),则′=,所以′′…4分将点P'(x',y')代入直线l':x+y-4=0,得(a-1)x+2y-4=0.即直线l的方程为.所以a=3.…10分.【解析】设直线l上任意一点P(x,y)在矩阵M作用下的点P'的坐标为(x',y'),利用矩阵乘法得出坐标之间的关系,代入直线l′的方程,即可求得实数a的值;本题以矩阵为依托,考查矩阵的乘法,关键是正确利用矩阵的乘法公式.23.在平面直角坐标系x O y中,直线l经过点P(0,1),曲线C的方程为x2+y2-2x=0,若直线l与曲线C相交于A,B两点,求PA•PB的值.【答案】解:根据题意设直线l的参数方程为(t为参数,α为倾斜角),设A,B两点对应的参数值分别为t1,t2,将代入x2+y2-2x=0,整理可得t2+2t(sinα-cosα)+1=0,则PA•PB=|t1t2|=1.【解析】设出直线l的参数方程,A,B两点对应的参数值分别为t1,t2,将表示出x与y代入圆C方程,得到关于t的一元二次方程,利用根与系数的关系即可求出所求式子的值.此题考查了直线与圆相交的性质,直线的参数方程,以及韦达定理,解题的关键是设出直线的参数方程.24.已知x>0,y>0,a∈R,b∈R.求证()2≤.【答案】证明:∵x>0,y>0,∴x+y>0,∴要证,即证(ax+by)2≤(x+y)(a2x+b2y).即证xy(a2-2ab+b2)≥0,即证(a-b)2≥0,而(a-b)2≥0显然成立,故.【解析】利用“分析法”和不等式的性质即可证明.本题考查了“分析法”和不等式的性质证明不等式,属于基础题.25.在平面直角坐标系x O y中,已知定点F(1,0),点P在y轴上运动,点M在x轴上,点N为平面内的动点,且满足•=0,+=0.(1)求动点N的轨迹C的方程;(2)设点Q是直线l:x=-1上任意一点,过点Q作轨迹C的两条切线QS,QT,切点分别为S,T,设切线QS,QT的斜率分别为k1,k2,直线QF的斜率为k0,求证:k1+k2=2k0.【答案】(1)解:设点N(x,y),M(a,0),P(0,b).∵可知,∴点P是MN的中点,∴,即,∴点M(-x,0),,.∴,,,.…3分∵,∴,即y2=4x.∴动点N的轨迹C的方程为y2=4x.…5分(2)证明:设点Q(-1,t),由于过点Q的直线y-t=k(x+1)与轨迹C:y2=4x相切,联立方程,整理得k2x2+2(k2+kt-2)x+(k+t)2=0.…7分则△=4(k2+kt-2)2-4k2(k+t)2=0,化简得k2+tk-1=0.由题意知k1,k2是关于k的方程k2+tk-1=0的两个根,∴k1+k2=-t.又,∴k1+k2=2k0.∴k1+k2=2k0.…10分.【解析】(1)设点N(x,y),M(a,0),P(0,b),由已知条件推导出点M(-x,0),,,由此能求出动点N的轨迹C的方程.(2)设点Q(-1,t),联立方程,得k2x2+2(k2+kt-2)x+(k+t)2=0,由此利用根的判别式和韦达定理能证明k1+k2=2k0.本题考查点的轨迹方程的求法,考查斜率和相等的证明,解题时要认真审题,注意根的判别式和韦达定理的合理运用.26.各项均为正数的数列{x n}对一切n∈N*均满足x n+<2.证明:(1)x n<x n+1;(2)1-<x n<1.【答案】解:(1)因为x n>0,<,所以<<,所以>,且2-x n>0.因为.所以,所以<,即x n<x n+1.…4分(注:用反证法证明参照给分)(2)下面用数学归纳法证明:>.①当n=1时,由题设x1>0可知结论成立;②假设n=k时,>,当n=k+1时,由(1)得,>>.由①,②可得,>.…7分下面先证明x n≤1.假设存在自然数k,使得x k>1,则一定存在自然数m,使得>.因为<,>>,>>,…,>,与题设<矛盾,所以,x n≤1.若x k=1,则x k+1>x k=1,根据上述证明可知存在矛盾.所以x n<1成立.…10分.【解析】(1)通过不等式的基本性质,化简证明即可.(2)利用数学归纳法的证明步骤,结合放缩法证明即可.本题考查数列与不等式的证明方法,数学归纳法的应用,也可以利用反证法证明.。
A BCD MNO(第14题图)2014年高考模拟试卷(2)南通市数学学科基地命题 第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分 .1.已知集合{}lg M x y x ==,{}21N x y x ==-,则M ∩N = . 2.复数(1i)i z =-(i 为虚数单位)的共轭复数为 .3.已知函数22,0,(),0x x x f x ax bx x ⎧+≤=⎨+>⎩为奇函数,则a b += .4.在某个容量为300的样本的频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个小长方形面积和的15,则中间一组的频数为 .5.如图是一个算法的程序框图,其输出的结果是 .6.已知函数()2sin()(0)f x x ωϕω=+>,若()0,()232f f ππ==,则实数ω的最小值为 .7.数列{}n a 满足11()2n n a a n *++=∈N ,112a =-,n S 是{}n a 的前n 项和,则2011S = .8.若()0,3m ∈,则直线(2)(3)30m x m y ++--=与x 轴、y 轴围成的三角形的面积小于98的概率为 .9.若中心在原点、焦点在y 轴上的双曲线的一条渐近线方程 为30x y +=,则此双曲线的离心率为 .10.若不等式xy y x k29422≥+对一切正数x ,y 恒成立,则整数k 的最大值为 .11.已知点,,,P A B C 是球O 表面上的四个点,且,,PA PB PC 两两成60角,1cm PA PB PC ===,则球的表面积为 2cm .12.已知点G 、H 分别为ABC ∆的重心(三条中线的交点)、垂心(三条高所在直线的交点),若46AC AB ==,,则HG BC ⋅的值为 .13. 若关于x 的方程43210x ax ax ax ++++=有实数根,则实数a 的取值范围为 .14. 如图,已知正方形ABCD 的边长为1,过正方形中心O 的直线MN 分别交正方形的边AB ,CD 于点M ,N ,则当MNBN取最小值时,CN = .二、解答题:本大题共6小题,共90分.15.(本小题满分14分)设函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象相邻两条对称轴之间的距离为2π,函数()2y f x π=+为偶函数.(1)求()f x 的解析式;(第5题图)b ←2b Y 输出b 开始 a ←1,b ←1 a ≤3 a ←a +1结束 N(2)若α为锐角,3()2125f απ+=,求sin 2α的值.16.(本小题满分14分)如图,四棱锥P ABCD -中,底面ABCD 为菱形,060DAB ∠=,平面PCD ⊥底面ABCD ,E 是AB 的中点,G 为PA 上的一点.(1)求证:平面GDE ⊥平面PCD ;(2)若//PC 平面DGE ,求PGGA 的值.17.(本小题满分14分)近日我渔船编队在钓鱼岛附近点A 周围海域作业,在B 处的海监15船测得A 在其南偏东45方向上,测得渔政船310在其北偏东15方向上,且与B 的距离为43海里的C 处.某时刻,海监15船发现日本船向在点A 周围海域作业的我渔船编队靠近,上级指示渔政船310立刻全速前往点A 周围海域执法,海监15船原地监测.渔政船310走到B 正东方向D 处时,测得距离B 为42海里.若渔政船310以23海里/小时的速度航行,求其到达点A 所需的时间.18. (本小题满分16分)已知椭圆:C 22221(0)x y a b a b+=>>的离心率为12,且经过点3(1,)2P .(1)求椭圆C 的方程;(2)设F 是椭圆C 的右焦点,M 为椭圆上一点,以M 为圆心,MF 为半径作圆M .问点M 的横坐标在什么范围内取值时,圆M 与y 轴有两个交点?B C DAPA B C D E G(3)设圆M 与y 轴交于D 、E 两点,求弦长DE 的最大值.19.(本小题满分16分)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”;若2()f x y x =在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”.我们把所有 “一阶比增函数”组成的集合记为A ,所有“二阶比增函数”组成的集合记为B . (1)设函数32()2(2)(1)(0,)f x ax a x a x x a R =--+->∈. ①求证:当0a =时,()f x A B ∈;②若()f x A ∈,且()f x B ∉,求实数a 的取值范围; (2)对定义在(0,)+∞上的函数()f x ,若()f x B ∈,且存在常数k ,使得(0,),()x f x k ∀∈+∞<,求证:()0f x <.20.(本小题满分16分)若数列{}n b 满足:对于N n *∈,都有2n n b b d +-=(常数),则称数列{}n b 是公差为d 的准等差数列.(1)若⎩⎨⎧+-=.9414为偶数时,当为奇数时;,当n n n n c n 求准等差数列{}n c 的公差,并求{}n c 的前19项的和19T ;(2)设数列{}n a 满足:1a a =,对于N n *∈,都有12n n a a n ++=.①求证:{}n a为准等差数列,并求其通项公式;②设数列{}n a的前n项和为n S,试研究:是否存在实数a,使得数列{}n S有连续的两项都等于50?若存在,请求出a的值;若不存在,请说明理由.第Ⅱ卷(附加题,共40分)21.[选做题]本题包括A、B、C、D四小题,每小题10分;请选定其中两题,并在相...........应的答题区域内作答..........A .(选修4-1:几何证明选讲)如图,AB 是半圆的直径,C 是AB 延长线上一点,CD 切半圆于点D ,2CD =,DE AB ⊥,垂足为E ,且E 是OB 的中点,求BC 的长.B .(选修4-2:矩阵与变换) 已知矩阵2143A -⎡⎤=⎢⎥-⎣⎦,2246B -⎡⎤=⎢⎥-⎣⎦. (1)求矩阵A 的逆矩阵;(2)求满足AX B =的二阶矩阵X .C .(选修4-4:坐标系与参数方程)已知曲线C 的参数方程为2sin ,[0,2)cos x y ααπα=⎧∈⎨=⎩,曲线D 的极坐标方程为sin()24πρθ+=-.(1)将曲线C 的参数方程化为普通方程; (2)曲线C 与曲线D 有无公共点?试说明理由.D .(选修4-5:不等式选讲)已知x ,y ,z 均为正数.求证:111yx z yzzx xy xy z++?+.22.甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是35,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(1)求乙得分的分布列和数学期望;(2)求甲、乙两人中至少有一人入选的概率.23.设数集{}121,,,,n A x x x =-,其中120n x x x <<<<,2n ≥,向量集{}(,),,B a a x y x A y A ==∈∈.若12,a B a B ∀∈∃∈使得120a a ⋅=,则称A 具有性质P .(1)若1a >,数集{}1,1,A a =-,求证:数集A 具有性质P ; (2)若2b >,数集{}1,1,2,A b =-具有性质P ,求b 的值; (3)若数集{}121,,,,n A x x x =-(其中120n x x x <<<<,2n ≥)具有性质P ,11x =,2x q =(q 为常数,1q >),求数列{}k x 的通项公式k x *(,)k N k n ∈≤.2014年高考模拟试卷(2)参考答案南通市数学学科基地命题 第Ⅰ卷(必做题,共160分)一、填空题1.(]0,1;2.1i -;3.0;4.50;5. 16;6.3;7. 502;8. 23;9. 10; 10. 3;11.32π; 12. 203-.解析:2211()()()()33HG BC AG AH BC AG BC AC AB AC AB AC AB ⋅=-⋅=⋅=+⋅-=-203=-.另解:注意到题中的ABC ∆形状不确定,因此可取特殊情形90ACB ∠=,则点H 即为点A ,由此可迅速得到答案 ; 13. [)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦; 14.512-. 二、解答题15. 解:(1)由题设:1,22T T ππ=∴=,22Tπω∴==,()2y f x π=+为偶函数,∴函数()f x 的图象关于直线2x π=对称,s i n()1πϕ∴+=或sin()1πϕ+=-,0ϕπ<<,2πϕ∴=,()sin(2)cos22f x x x π∴=+=;(2)3()2125f απ+=,3cos()65πα∴+=,α为锐角,4sin()65πα∴+=24sin 2()2sin()cos()66625πππααα∴+=++=,27c o s 2()2c o s ()16625ππαα∴+=+-=-, 241732473sin 2sin[2()]()6325225250ππαα+∴=+-=⨯--⨯=.16. (1)证明:设菱形ABCD 的边长为1,E 是AB 的中点,060DAB ∠=,PG211312cos60424DE ∴=+-⨯=, 222DE AE AD ∴+=,DE AE ∴⊥,DE CD ∴⊥,平面PCD ⊥底面ABCD ,平面PCD 底面ABCD CD =,DE ABCD ⊂,DE ∴⊥平面PCD ,又DE GED ⊂平面,∴平面GDE ⊥平面PCD ;(2)解:连接AC ,交DE 于H ,连接GH ,则//PC 平面DGE ,,PC PAC ⊂平面平面PCA 平面GDE GH =,//PC GH∴,2PG CH DCGA HA AB∴===. 17. 解:由题设,43,42,75,45,120,BC BD CBD ABD ABC ==∠=∠=∠= 在CBD ∆中,由余弦定理得,483224342cos752(62)CD =+-⨯⨯=+,在CBD ∆中,由正弦定理得,42sin 752,sin sin sin 7522(62)BD CD C C =∴==+,,090,45,1B D B C C C A <∴<<∴=∴=, 在ABC ∆中,由正弦定理得,sin sin120BC ACA =, s i n 12043s i n 1206(62)s i n s i n 15BC AC A ∴===+∴渔政船310从C 处到达点A 所需的时间为6(62)23+小时.18.解:(1)椭圆:C 22221(0)x y a b a b +=>>的离心率为12,且经过点3(1,)2P ,2222121914a b a a b ⎧-=⎪⎪∴⎨⎪+=⎪⎩,即22223401914a b a b ⎧-=⎪⎨+=⎪⎩,解得2243a b ⎧=⎨=⎩, ∴椭圆C 的方程为22143x y +=;(2)易求得(1,0)F .设00(,)M x y ,则2200143x y +=, 圆M 的方程为22220000()()(1)x x y y x y -+-=-+,令0x =,化简得2002210y y y x -+-=,20044(21)0y x ∆=-->……①.将22003(1)4x y =-代入①,得20038160x x +-<,解出0004442233x x x -<<≤≤∴-≤<,又-2,;(3)设1(0,)D y ,2(0,)E y ,其中12y y <.由(2),得222210000046444(21)38163()33DE y y y x x x x =-=--=--+=-++,当043x =-时,DE 的最大值为833.19. (1)①证明:当0a =时,2()4(0)f x x x x =->,()41f x y x x ∴==-在(0,)+∞上为增函数,()f x A ∴∈; 2()14f x y x x==-在(0,)+∞上为增函数,()f x B ∴∈,()f x A B ∴∈;②解:32()2(2)(1)(0,)f x ax a x a x x a R =--+->∈,()f x B ∉,∴由①知0a ≠,()f x A ∈,2()2(2)(1)f x y ax a x a x∴==--+-在(0,)+∞上为增函数, 020a a a>⎧⎪∴-⎨≤⎪⎩,02a ∴<≤(*) ()f x B ∉,2()12(2)f x a y ax a x x-==+--在(0,)+∞上不是增函数,2()12(2)f x a y a x a x x-==+--在(0,)+∞上是增函数⇔12,(0,)x x ∀∈+∞,且12x x <,121212121()()()()0a a x x x x a f x f x x x ----=<, 结合(*)有12,(0,)x x ∀∈+∞,且12x x <,1210a x x a-->,01a ∴<≤结合(*)有2()12(2)f x a y a x a x x-==+--在(0,)+∞上不是增函数⇔12a <≤,∴实数a 的取值范围是12a <≤; (2)(用反证法)假设0(0,)x ∃∈+∞,0()0f x ≥,则:㈠若0()0f x >,记020()0f x m x =>, ()f x B ∈,2()f x y x∴=在(0,)+∞上为增函数, ∴当0x x >时,0220()()f x f x m x x >=,所以2()f x mx >, ∴一定可以找到一个10x x >,使得211()f x mx k >>,这与()f x k <矛盾;㈡若0()0f x =,则020()0f x x =,()f x B ∈,在(0,)+∞上为增函数,0x x ∴>时,0220()()0f x f x x x >=,即()0f x >,同㈠可得矛盾;()0f x ∴<.20. 解:(1)数列⎩⎨⎧+-=.9414为偶数时,当为奇数时;,当n n n n c nn 为奇数时,2[4(2)1](41)8n n c c n n +-=+---=,n 为偶数时,2[4(2)9](49)8n n c c n n +-=++-+=, ∴准等差数列{}n c 的公差为8,19(375)10(1781)983122T +⨯+⨯=+=; (2)①n a a n n 21=++ (*∈N n )(i ))1(221+=+++n a a n n (ii )(ii )-(i )得22=-+n n a a (*∈N n ). 所以,{}n a 为公差为2的准等差数列.当n 为偶数时,a n n a a n -=⨯⎪⎭⎫⎝⎛-+-=2122,当n 为奇数时,解法一:12121-+=⨯⎪⎭⎫⎝⎛-++=a n n a a n ;解法二:()[]11)1(2)1(21-+=----=--=-a n a n n a n a n n ;解法三:先求n 为奇数时的n a ,再用(i )求n 为偶数时的n a 同样给分.⎩⎨⎧--+=∴为偶数) (为奇数)(n a n n a n a n ,,1②解:当n 为偶数时,()2212212222221222n n n n a n n n a S n =⨯⎪⎭⎫ ⎝⎛-+⋅-+⨯⎪⎭⎫ ⎝⎛-+⋅=;当n 为奇数时,()2212121212221212121⨯⎪⎭⎫⎝⎛---+-⋅-+⨯⎪⎭⎫ ⎝⎛-++++⋅=n n n a n n n a S n 21212-+=a n . 当k 为偶数时,50212==k S k ,得10=k .由题意,有10502192129=⇒=-+⨯=a a S ;或1050211121211-=⇒=-+⨯=a a S . 所以,10±=a .第Ⅱ卷(附加题,共40分)21. A. 解:连接OD ,则OD DC ⊥.在Rt OED ∆中,1122OE OB OD ==,30ODE ∴∠=.在Rt ODC ∆中,30DCO ∴∠=,由2DC =,则23tan 303OB OD DC ===,243cos30332CD OC ===, 所以233BC OC OB =-=. B .解:(1)2143A -⎡⎤=⎢⎥-⎣⎦,21det()243A -∴==-, ∴矩阵A 的逆矩阵131312222422122A --⎡⎤-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥-⎣⎦⎢⎥⎣⎦(2)AX B =,1X A B -∴=31221022460221⎡⎤-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦. C. 解:(1)由2sin ,[0,2)cos x y ααπα=⎧∈⎨=⎩得 21,[1,1]x y x +=∈- (2)由sin()24πρθ+=-得曲线D 的普通方程为20x y ++=2201x y x y ++=⎧⎨+=⎩得230x x --=解得113[1,1]2x ±=∉-,故曲线C 与曲线D 无公共点.D. 证明:因为x ,y ,z 都是为正数,所以12()y yx x yzzxz xyz+=+ ,同理可得22,yz z x zx xy x xyyz y+? , 当且仅当x y z ==时,以上三式等号都成立.将上述三个不等式两边分别相加,并除以2,得111yx z yzzxxyxy z++?+. 22. 解:(1)设乙答题所得分数为X ,则X 的可能取值为15,0,15,30-.353101(15)12C P X C =-==; 21553105(0)12C C P X C ===;12553105(15)12C C P X C ===; 353101(30)12C P X C ===.乙得分的分布列如下:X15- 0 15 30P112 512 512 112155115(15)01530121212122EX =⨯-+⨯+⨯+⨯=.(2)由已知甲、乙至少答对2题才能入选,记甲入选为事件A ,乙入选为事件B .则 223332381()()()555125P A C =+=,511()12122P B =+=. 故甲乙两人至少有一人入选的概率4411031()1.1252125P P A B =-⋅=-⨯= 23. (1)证明:数集{}1,1,A a =-时,列表如下:1a (1,1)-- (1,1)- (1,)a - (1,1)-(1,1) (1,)a (,1)a - (,1)a (,)a a 2a(1,1)-(1,1)(,1)a(,)a a(1,1)-(,1)a -(1,)a(1,)a -(1,1)-由表知:12,a B a B ∀∈∃∈使得120a a ⋅=,∴数集A 具有性质P ;(2)选取1(,2)a b =,B 中与1a 垂直的元素必有形式(1,)t -,2b t ∴=,2b >,{}1,1,2,t A b ∈=-,2t ∴=,2(2)2b ∴==;(3)由(1)(2)猜测1k k x q -=*(,)k N k n ∈≤. 记{}21,1,,,m m A x x =-,2,3,,m n =.先证明:若1m A +具有性质P ,则m A 也具有性质P .任取1(,),a s t s =、m t A ∈.当s 、t 中出现1-时,显然有2a 满足120a a ⋅=; 当1s ≠-且1t ≠-时,1s ≥、1t ≥.因为1m A +具有性质P ,所以有211111(,),,m a s t s t A +=∈,使得120a a ⋅=, 从而1s 和1t 中有一个是1-,不妨设11s =-.假设1t ∈1m A +且1t ∉m A ,则11m t x +=.由1(,)(1,)0m s t x +⋅-=, 得11m m s tx x ++=≥,与m s A ∈矛盾.1t ∴∈m A .从而m A 也具有性质P现用数学归纳法证明猜测: 1k k x q -=*(,)k N k n ∈≤. ①当n =1和2时,结论显然成立;②假设n=m 时, {}21,1,,,m m A x x =-有性质P ,则1k k x q -=,1,2,,k m =; 当n=1m +时,若{}1211,1,,,,m m m A x x x ++=-有性质P ,则{}21,1,,,m m A x x =-也有性质P ,{}1111,1,,,,m m m A q q x -++∴=-. 取11(,)m a x q +=,并设2(,),a s t =满足120a a ⋅=,即10m x s qt ++=. 由此可得1s =-或1t =-. 若1t =-,则1m q x q s+=≤矛盾;1s ∴=-,1m x qt +=,又11m m x q -+>,{}1111,1,,,,m m m t A q q x -++∈=-,1q >1m t q -∴=,1m m x q +∴=.综合①②知,1k k x q -=*(,)k N k n ∈≤.。
(第10题图)(第9题图) 南通市2014届高三数学参考答案与评分建议 数学I参考公式:棱锥的体积公式:13V Sh =,其中S 为锥体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置........ 1.已知集合A ={1,k -1},B ={2,3},且A ∩B ={2},则实数k 的值为 ▲ .答案:3. 2.若复数z 满足i z =2(i 为虚数单位),则z = ▲ .答案:-2i . 3.不等式组0,0,2x y x y ⎧⎪⎨⎪+⎩≥≥≤所表示的平面区域的面积为 ▲ .答案:2.4.函数y =sin 2x 的最小正周期为 ▲ .答案:π.5.若正方体ABCD -A 1B 1C 1D 1的棱长为1,则三棱锥A -BDA 1的体积为 ▲ .答案:16.6.已知函数23,0,()1,0,x x f x x x ->⎧=⎨+⎩≤若f (x )=5,则x = ▲ .答案:8或-2.7.设函数f (x )=log 2x (0<x <5),则f (x )<1的概率为 ▲ .答案:25. 8.某鲜花店对一个月的鲜花销售数量(单位:支)进行统计,统计时间是4月1日至4月30日,5天一组分组统计,绘制了如图的鲜花销售数量频率分布直方图.已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,且第二组的频数为180,那么该月共销售出的鲜花数(单位:支)为 答案:1200.9.如图是一个算法流程图.若输入A =3,B =5,则输出A ,B 的值分别为▲ .答案:5,3.10.已知向量a ,b ,c在正方形网格中的位(第8题图)(,)λμλμ=+∈R c a b ,则λμ+= ▲ .答案:53-.11.已知实数x ,y ,满足xy =1,且x >2y >0,则2242x y x y +-的最小值为 ▲ .答案:4.12.设t ∈R ,[t ]表示不超过t 的最大整数.则在平面直角坐标系xOy 中,满足[x ]2+[y ]2=13的点P (x ,y )所围成的图形的面积为 ▲ .答案:8.13.设函数f (x )满足f (x )=f (3x ),且当x ∈[1,3)时,f (x )=ln x .若在区间[1,9)内,存在3个不同的实数x 1,x 2,x 3,使得312123()()()f x f x f x x x x ===t ,则实数t 的取值范围为 答案:ln31(,)93e. 14.设各项均为正整数的无穷等差数列{a n },满足a 54=2014,且存在正整数k ,使a 1,a 54,a k 成等比数列,则公差d 的所有可能取值之和为 ▲ .答案:92.二、解答题:本大题共6小题,共计90分.请在答题卡...指定区域内作答........解答时应写出文字说明,证明过程或演算步骤. 15.(本小题满分14分)如图,在△ABC 中,|AB AC -|=3,|BC BA -|=5,|CA CB -|=7. (1)求C 的大小;(2)设D 为AB 的中点,求CD 的长.解:(1)依题意BC =3,CA =5,AB =7.······························1分 由余弦定理,得222cos 2CB CA AB C CB CA+-=⋅⋅=12-. ····················4分因0<C <π,···············6分 故C =23π.·······················8分(2)由余弦定理,得13cos 14A =.··············11分 在△ADC 中,AD =72,CD 2=AC 2+AD 2-2AC ×AD ×cos A =194,于是CD.·· 14分16.(本小题满分14分)如图,AB 为圆O 的直径,点E ,F 在圆上,四边形ABCD 为矩形,AB ∥EF ,∠BAF =3π,M 为BD 的中点,平面ABCD ⊥平面ABEF .求证:(1)BF ⊥平面DAF ; (2)ME ∥平面DAF .(第15题图)BAC解:(1)因四边形ABCD 为矩形,故DA ⊥AB .因平面ABCD ⊥平面ABEF ,且DA ⊂平面ABCD ,平面ABCD ∩平面ABEF =AB , 故DA ⊥平面ABEF . ·············3分,因BF ⊂平面ABEF ,故DA ⊥BF . ··········4分 因AB 为直径,故BF ⊥AF .因DA ,AF 为平面DAF 内的两条相交直线,故BF ⊥平面DAF .·····················7分 (2)因∠BAF =3π,AB ∥EF ,故EF =12AB .··················································8分 取DA 中点N ,连NF ,MN ,因M 为BD 的中点, 故MN ∥AB ,且MN =12AB ,于是四边形MNFE 为平行四边形,所以ME ∥NF .··· 1分 因NF ⊂平面DAF ,ME ⊄平面DAF ,故ME ∥平面DAF .·····14分注:第(2)问,亦可先证明ME ∥平面MOE .17.(本小题满分14分)图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD 是矩形,弧CmD 是半圆,凹槽的横截面的周长为4.若凹槽的强度T 等于横截面的面积S 与边AB 的乘积,设AB =2x ,BC =y . (1)写出y 关于x 函数表达式,并指出x 的取值范围; (2)求当x 取何值时,凹槽的强度T 最大.解:(1)易知半圆CmD 的半径为x ,故半圆CmD 的弧长为πx . 所以,4=2x +2y +πx ,得4(2)2xy -+π=.····················································4分 依题意,知:0<x <y ,得404x <<+π. 所以,4(2)2x y -+π=(404x <<+π).·······················································7分 (2)依题意,T =AB S ⋅=212(2)2x xy x -π=238(43)x x -+π. ······························9分令2163(43)T x x '=-+π=0,得16912x =π+∈4(0,)4+π,另一解舍去.··············11分(第17题图)图1图2所以当16912x =π+,凹槽的强度最大.·····················································14分注:x 的范围写为404x <≤+π,不扣分. 18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(a >b >0)过点(1,1).(1),求椭圆的方程; (2)若椭圆上两动点P ,Q ,满足OP ⊥OQ .(2)若椭圆上两动点P ,Q ,满足OP ⊥OQ .①已知命题:“直线PQ 恒与定圆C 相切”是真命题,试直接写出圆C 的方程;(不需要解答过程)②设①中的圆C 交y 轴的负半轴于M 点,二次函数y =x 2-m 的图象过点M .点A ,B在该图象上,当A ,O ,B 三点共线时,求△MAB 的面积S 的最小值.解:(1)由e =,所以::a b c =.························································2分 设椭圆方程为222212x y b b+=,将(1,1)代入得221112b b +=,所以223,32b a ==,椭圆方程为222133x y +=.··················5分 (2)①221x y +=.··················································································9分 ②由题意,二次函数为y =x 2-1.········· 10分 设直线AB 的方程为y =kx .由21y x y kx⎧=-⎨=⎩,消去y 得,210x kx --=. 设11(,)A x y ,22(,)B x y ,则12x x k +=,121x x =-.······································12分所以2112S OM x x =⋅-= ·····························14分 当0k =时,△MAB 的面积S 的最小值为1. ··········16分19.(本小题满分16分)设数列{a n },a 1=1,1133n n n a a +=+.数列{b n },13n n n b a -=.正数数列{d n },2221111n n n d b b +=++. (1)求证:数列{b n }为等差数列;(2)设数列{b n },{d n }的前n 项和分别为B n ,D n ,求数列{b n D n +d n B n -b n d n }的前n 项和S n .解:(1)由1133n n n a a +=+,得11331n n n n a a -+=+. 又13n n n b a -=,所以11n+n b b +=.·······························································3分 又b 1=a 1=1,所以数列{b n }是以1为首项,1为公差的等差数列.·····················4分 (2)由(1)得1(1)1n b n n =+-⨯=,B n =(1)2n n +.·············································6分 因2221111n n n d b b +=++, 故222221121)111(1)(1)nn n d n n n n ++=++=+++(21[1](1)n n =++. 由d n >0,得11111(1)1n d n n n n =+=+-++.于是,111n D n n =+-+. ·································10分 又当n ≥2时,b n D n +d n B n -b n d n =(B n -B n -1)D n +(D n -D n -1)B n -(B n -B n -1)(D n -D n -1)=B n D n -B n -1D n -1, 所以S n =(B n D n -B n -1D n -1)+(B n -1D n -1-B n -2D n -2)+…+(B 2D 2-B 1D 1)+B 1D 1=B n D n .··········14分 因S 1=b 1D 1+d 1B 1-b 1d 1=B 1D 1也适合上式,故对于任意的n ∈N *,都有S n =B n D n . 所以S n =B n D n =(1)2n n +⋅1(1)1n n +-+=321(2)2n n +. ···············16分 20.(本小题满分16分)设函数f (x )=ax 2+e x (a ∈R )有且仅有两个极值点x 1,x 2(x 1<x 2). (1)求实数a 的取值范围;(2)是否存在实数a 满足f (x 1)=231e x ?如存在,求f (x )的极大值;如不存在,请说明理由. 解:(1)()f x '=2ax +e x .显然a ≠0,x 1,x 2是直线y =12a-与曲线y =g (x )=e x x两交点的横坐标.··············2分由()g x '=1ex x-=0,得x =1.列表:·························································4分 此外注意到: 当x <0时,g (x )<0;当x ∈[0,1]及x ∈(1,+∞)时,g (x )的取值范围分别为[0,1e ]和(0,1e ).于是题设等价于0<12a -<1e⇒a <e 2-,故实数a 的取值范围为(-∞,e2-).········6分(2)存在实数a 满足题设.证明如下: 由(1)知,0< x 1<1<x 2,1()f x '=2ax 1+1e x =0,故f (x 1)=121+e x ax =111e e 2x x x -=231e x ,故11231e 1e e 02x x x --=.····························8分 记R (x )=23e 1e e 2x x x --(0<x <1),则()R x '=2e (1)1e 02x x x x --<,于是,R (x )在(0,1)上单调递减. 又R (23)=0,故R (x )有唯一的零点x =23. 从而,满足f (x 1)=231e x 的x 1=23.所以,a=1231e 3e 24x x -=-.·····························12分 此时f (x )=2233e e 4x x -+,()f x '=233e e 2x x -+,又(0)f '>0,(1)f '<0,(2)f '>0,而x 1=23∈(0,1), 故当a =233e 4-时,f (x )极大=f (x 1)=232e 3.·······················································16分南通市2014届高三数学临门一脚数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 共4小题,请.选定其中两小题.......,并在相应的答题区域.........内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)如图,⊙O 是三角形△ABC 的外接圆,AB =AC ,延长BC 到点D ,使得CD =AC ,连结AD 交⊙O 于点E ,连结BE 与AC 交于点F ,求证BE 平分∠ABC .解:因CD =AC ,故∠D =∠CAD .因AB =AC ,故∠ABC =∠ACB . 因∠EBC =∠CAD ,故∠EBC =∠D .因∠ABC =∠ABE +∠EBC ,∠ACB =∠D +∠CAD .故∠ABE =∠EBC ,即BE 平分∠ABC . ···················································10分B .[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵14a b ⎡⎤=⎢⎥-⎣⎦A ,A 的两个特征值为12λ=,2λ=3. (1)求a ,b 的值;(2)求属于2λ的一个特征向量α.解:(1)令2()()(4)(4)4014abf a b a a b λλλλλλλ--==--+=-+++=-,于是 1λ+2λ=a +4,1λ⋅2λ=4a +b .解得a =1,b =2. ············································5分(2)设α=x y ⎡⎤⎢⎥⎣⎦,则A α=1214⎡⎤⎢⎥-⎣⎦x y ⎡⎤⎢⎥⎣⎦=24x y x y +⎡⎤⎢⎥-+⎣⎦=3x y ⎡⎤⎢⎥⎣⎦=33x y ⎡⎤⎢⎥⎣⎦, 故23,43,x y x x y y +=⎧⎨-+=⎩解得x =y .于是,α=11⎡⎤⎢⎥⎣⎦.···············································10分(第21A 题图)C .[选修4-4:坐标系与参数方程](本小题满分10分)圆C 的参数方程为12cos ,2sin x y θθ=+⎧⎪⎨=⎪⎩(θ为参数),设P 是圆C 与x 轴正半轴的交点.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.解:由题设知,圆心(1C ,(2,0)P ,∠CPO =60°,故过P 点的切线的倾斜角为30°. ····························································3分 设(,)M ρθ是过P 点的圆C 的切线上的任一点,则在△PMO 中, ∠MOP =θ,030OMP θ∠=-,0150OPM ∠=. 由正弦定理得sin sin OM OPOPM OMP=∠∠,于是002sin150sin(30)ρθ=-, 即0cos(60)1 ρθ+=(或0sin(30)1ρθ-=)即为所求切线的极坐标方程.·········10分D .[选修4-5:不等式选讲](本小题满分10分)已知a 、b 、c 均为正实数,且a +b +c =1解:因 a 、b 、c >0,故 2 111++)2≤((a +1)+(b +1)+(c +1))(1+1+1)=12,························································3分,a =b =c =13时,取“=”.··········································10分【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)(1)计算:2013320145C A +;(2)观察下面一组组合数等式:101C C n n n -=;2112C C n n n -=;3213C C n n n -=;…由以上规律,请写出第k (k ∈N *)个等式并证明.解:(1)原式=2074.·····················································································5分(2)等式为:11C C k k n n k n --=,k ∈N *. ····························································7分证明:C k n k =!!()!kn k n k -=(1)!(1)!((1)(1))!n n k n k -----=11C k n n --.·······························10分23.(本小题满分10分)数列{a n },{b n }满足a 1=b 1,且对任意正整数n ,{a n }中小于等于n 的项数恰为b n ; {b n }中小于等于n 的项数恰为a n . (1)求a 1;(2)求数列{a n }的通项公式.解:(1)首先,容易得到一个简单事实:{a n }与{b n }均为不减数列且a n ∈N ,b n ∈N . 若a 1=b 1=0,故{a n }中小于等于1的项至少有一项,从而b 1≥1,这与b 1=0矛盾. 若a 1=b 1≥2,则{a n }中没有小于或等于1的项,从而b 1=0,这与b 1≥2矛盾. 所以,a 1=1.························································································4分 (2)假设当n =k 时,a k =b k =k ,k ∈N *.若a k +1≥k +2,因{a n }为不减数列,故{a n }中小于等于k +1的项只有k 项, 于是b k +1=k ,此时{b n }中小于等于k 的项至少有k +1项(b 1,b 2,…,b k ,b k +1), 从而a k ≥k +1,这与假设a k =k 矛盾.若a k +1=k ,则{a n }中小于等于k 的项至少有k +1项(a 1,a 2,…,a k ,a k +1), 于是b k ≥k +1,这与假设b k =k 矛盾. 所以,a k +1=k +1.所以,当n =k +1时,猜想也成立.综上,由(1),(2)可知,a n =b n =n 对一切正整数n 恒成立.所以,a n =n ,即为所求的通项公式.························································10分。
(第4题图) 2014年高考模拟试卷(5)南通市数学学科基地命题 第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分 .1.设全集U ={1,2,3,4,5},若U A =ð{1,2,4},则集合A = .2.已知复数z 满足(z 2)i 1i -=+(i 为虚数单位),则复数z 的模是 .3.已知曲线4(0)y x x=>的一条切线斜率为1-,则切点的横坐标为 .4.右图是某算法的流程图,则输出的T 的值为 .5.已知甲、乙、丙三人在3天中值班,每人值1天,那么甲在乙前面值班的概率为 .6.为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组及各组的频数如下表:根据以上数表绘制相应的频率分布直方图时,落在[10.95 11.15),范围内的矩形的高应为 .7.已知0x >,0y >,且2520x y +=,则lg lg x y +的最大值为 .8.要得到函数()3sin 2y x π=-3的图象,只需将函数3sin 2y x =的图象向右至少平移 个单位.9.设定义在R 上的奇函数()f x 在区间[0 )+∞,上是单调减函数,且2(3)f x x -(2)f +0>,则实数x 的取值范围是 .10.在锐角三角形ABC 中,3sin 5A =,1tan()3A B -=-,则3ta n C 的值为 .11.在平面直角坐标系xOy 中,已知直线l :23100x y +-=与圆C :22()()13x a y b -+-=切于点(P 2,2),则a b +的值构成的集合是 .12.如图,正四棱柱1111ABCD A B C D -的体积为27,点E ,F分别为棱1B B ,1C C 上的点(异于端点),且//EF BC , 则四棱锥1A AEFD -的体积为 .BACD 1B1A1C D (第12题图)E F13.已知向量a ,b ,c 满足++=0a b c ,且a 与b 的夹角的正切为12-,b 与c 的夹角的正切为13-,2=b ,则⋅a c 的值为 .14.已知数列{}n a 满足1234n n n a a a ++=+*()n ∈N .设*( n n n a b n a λλμμ-=∈-N , , 为均不等于2的且互不相等的常数,若数列{}n b 为等比数列,则λμ的值为 .二、解答题:本大题共6小题,共90分.15.(本小题满分14分)已知△ABC 为锐角三角形,角A ,B ,C 所对的边分别为a ,b ,c ,且222b ac ac--cos sin C A =sin cos C A -.(1)求角A 的大小;(2)设关于角B 的函数()22()2cos sin sin cos f B B B B B π=+-+6,求()f B 的值域.16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,D ,E 分别为棱1A A ,1C C 的中点,AC ⊥BE ,点F 在棱AB 上,且4AB AF =. (1)求证:1BC C D ⊥;(2)试在线段BE 上确定一点M ,使得1//C D 平面BFM ,并给出证明.(第16题图)1AA B C1C1B F E MD17.(本小题满分14分)如图,在半径为30 cm 的半圆形铁皮上截取一块矩形材料ABCD (点A ,B 在直径上,点C ,D 在半圆周上),并将其卷成一个以AD 为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗).(1)若要求圆柱体罐子的侧面积最大,应如何截取?(2)若要求圆柱体罐子的体积最大,应如何截取?18. (本小题满分16分) 在平面直角坐标系xOy ,已知椭圆E :22221(0)x y a b a b+=>>过点(1,其左右焦点分别为1F ,2F.(1)求椭圆E 的方程;(2)若A ,B 分别是椭圆E 的左右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P . ①求证:OP OM ⋅为定值;②设PB 与以PM 为直径的圆的另一交点为Q ,问直线MQ 是否过定点,并说明理由.19.(本小题满分16分)已知函数()()()f x x x a x b =--,其中0a b <<.(1)设函数()y f x =在点() ()A s f s ,,() ()B t f t ,处取得极值,且s t <.求证: ①0s a t b <<<<;②线段AB 的中点C 在曲线()y f x =上;(2)若a b +<问:过原点且与曲线()y f x =相切的两条直线是否垂直,并说明理由.20.(本小题满分16分) 已知数列{}n a 满足:11a =,11n a +=n ∈*N ,其前n 项和为n S .(1)求证:①数列21n a ⎧⎫⎨⎬⎩⎭是等差数列;②对任意的正整数n,都有n S >(2)设数列{}n b 的前n 项和为n T ,且满足:212211683n n n n T Tn n a a ++=+--.试确定1b 的值,使得数列{}n b 为等差数列.第Ⅱ卷(附加题,共40分)21.[选做题]本题包括A 、B 、C 、D 四小题,每小题10分;请选定其中两题,并在相...........应的答题区域内作答.......... A .(选修4-1:几何证明选讲)如图,C ,D 是直径为AB 的半圆上的两点,AC 与BD交于点E ,点F 在弦BD 上,且△ACD ∽△BCF ,证明:△ABC ∽△DFC .B .(选修4-2:矩阵与变换)已知矩阵A 的逆矩阵110102-⎡⎤⎢⎥=⎢⎥⎣⎦A .若1114()102-⎡⎤-⎢⎥=⎢⎥⎢⎥⎣⎦AB ,求矩阵B .C .(选修4-4:坐标系与参数方程)如图,在极坐标系中,求以点)Cπ,为圆心,12为半径的圆的极坐标方程.D .(选修4-5:不等式选讲) 设{}222min b h a a b=+,,其中a ,b 均为正实数,证明:h 1≤.【必做题】第22题、第23题,每题10分,共计20分.22.抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,B(第21题A)xO(第21—C 题)记所得数字分别为x ,y .设ξ为随机变量,若x y 为整数,则0ξ=;若x y为小于1的分数,则1ξ=-;若x y为大于1的分数,则1ξ=.(1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.23.设i 为虚数单位,n 为正整数.(1)证明:(cos isin )cos isin n x x nx nx +=+;(2)结合等式“[][]1(cos isin )(1cos )isin n nx x x x ++=++”证明:121C cos C cos2C cos nn n n x x nx +++⋅⋅⋅+2c o s c o s 22n n x nx =.2014年高考模拟试卷(5)参考答案南通市数学学科基地命题 第Ⅰ卷(必做题,共160分)一、填空题1. {3,5};2. 3. 2;4. 120 ;5. 12; 6. 1.45; 7.1; 8.6π; 9.(1,2);10. 79.依题意,3tan 4A =,[]311343tan tan ()319143B A A B +=--==-⨯,则313493tan 3tan()379313149C A B +=-+=-⨯=-⨯ ; 11. {1-,9}.依题意,22(2)(2)13a b -+-=,且2322b a -=-,联立方程组解得22 23a b -=⎧⎨-=⎩,或22 23a b -=-⎧⎨-=-⎩,,即4 5a b =⎧⎨=⎩,或0 1a b =⎧⎨=-⎩,,从而9a b +=或1a b +=-; 12. 9.连接DE ,易得11A AED A FED V V --=,又1111A AED E A AD A AD V V S AB --∆==⋅111111119662A ADD ABCD A C D S AB V -=⋅==,所以19A AEFD V -=; 13. 45.易得1123tan tan()1 11123C A B +=-+==-⨯-,sin sin sin A B C =从而2 ====由得,a c ac 45⋅=则 a c ; 14. 3-.11123342223234n n n n n n n n n a a a b a a a λλλλλμμμμμ++++⎡⎤--+⎢⎥---===⎢⎥-+--⎢⎥+-⎢⎥⎣⎦,因为数列{}nb 为等比数列,所以342λλλ--=-,342μμμ--=-,且公比为22λμ--,故λμ, 为方程342x x x --=-的两不等实根,从而3λμ=-. 二、解答题15. 解:(1)由222b a c --cos sin C A =得,222cos a c b B +-=()1sin cos 2cos sin C C A A =-1sin sin cos cos 2sin cos C A C A A A -=⋅()cos sin 2A C A-+=cos sin 2BA =, 因为△ABC 为锐角三角形,所以cos 0B ≠,从而sin 21A =,又()0 A ∈π,,故A π=4; (2)()22()2cos sin sin cos f B B B B B π=+-+6)12cos cos cos22BB B B =++2cos cos cos2B B B B =++1cos22cos22B B B +=++)11sin 222B B =+()1232B π=++,由0B B π⎧<<⎪2⎨3ππ⎪0<-<⎩42,得,B ππ<<42,从而542633B ππ<+<π,故()1sin 232B π<+<,所以0()f B <<()f B的值域为(0.16.证明:(1)在直三棱柱111ABC A B C -中, 1C C ⊥平面ABC ,又AC ,BC ⊂平面ABC ,所以1C C ⊥AC ,1C C ⊥BC ,又AC ⊥BE , 1BE C C E =,1 BE C C ⊂,平面11BCC B ,所以AC ⊥平面11BCC B ,又BC ⊂平面11BCC B ,所以AC ⊥BC ,而1AC C C C =,1 A C C C⊂,平面11ACC A , 所以BC ⊥平面11ACC A , 又1C D ⊂平面11ACC A ,所以1BC C D ⊥; (2)当4BE ME =时,1//C D ⊥平面BFM ,下证之:连结AE ,FM ,在△ABE 中,由4AB AF =,4BE M E =得,//AE MF ,又在平面11ACC A 中,易得1//AE C D , 所以1//MF C D , 又1C D ⊄平面BFM , M F ⊂平面BFM ,所以1//C D ⊥平面BFM .17.解:(1)如图,设圆心为O ,连结OC ,设BC =x ,法一 易得BC =(0 30)x ∈,, 所以矩形ABCD 的面积为()2S x =(第16题图)1AA B C 1C 1BE M D= 22900x x +-≤900=(2cm )(当且仅当22900x x=-,x =cm )时等号成立)此时BC =cm ; 法二 设COB θ∠=,()0 θπ∈2,; 则30sin BC θ=,30cos OB θ=, 所以矩形ABCD 的面积为()230sin 30cos 900sin 2S θθθθ=⨯⨯=,当sin 21θ=,即θπ=4时,max ()900S θ=(2cm ),此时BC =cm ; (2)设圆柱的底面半径为r ,体积为V ,由2AB r =π得,r ,所以()231900V r x x x =π=-,其中(0 30)x ∈,, 由()2190030V x '=-=π得x =此时,()31900V x x =-π在(0,上单调递增,在()上单调递减,故当x =cm 3cm ,答:(1)当截取的矩形铁皮的一边BC 为cm 为时,圆柱体罐子的侧面积最大.(2)当截取的矩形铁皮的一边BC 为cm 为时,圆柱体罐子的体积最大.18. 解:(1)易得223121 a b c ⎧⎪+=⎪⎨⎪=⎪⎩,且222c a b =-,解得224 2 a b ⎧=⎪⎨=⎪⎩,,所以椭圆E 的方程为22142x y +=;(2)设0(2 )M y ,,11( )P x y ,, ①易得直线MA 的方程为:0042y yy x =+,代入椭圆22142x y +=得,()2222000140822y y y x x +++-=, 由()201204828y x y --=+得,()20120288y x y --=+,从而012088y y y =+,所以()()2220000022220000284888 (2 )48888y y y y OP OM y y y y y ----⎛⎫⋅=⋅=+= ⎪++++⎝⎭,,, ②直线MQ 过定点(0 0)O ,,理由如下: 依题意,02020008822828PB y y k y y y +==----+(), 由MQ PB ⊥得,02MQ y k =, 则MQ 的方程为:00(2)2y y y x -=-,即0yy x =,所以直线MQ 过定点(0 0)O ,. 19. 解:(1)①依题意,s ,t ()s t <为方程2()32()0f x x a b x ab '=-++=的两个实根,而(0)0f ab '=>,()()0f a a a b '=-<,()()0f b b b a '=-<,故()0f x '=在区间(0 )a ,和( )a b ,内各有一个实根, 所以0s a t b <<<<; ②由①得,2()3a b s t ++=,3ab st =,因为()()3342()()()()()()273f s f t s t a b s tab s t a b ab a b +=+-++++=-+++, ()()321()()23273s t a b f f a b ab a b ++==-+++,所以()()f s f t +=()22s t f +,即证线段AB 的中点C 在曲线()y f x =上;(2)过原点且与曲线()y f x =相切的两条直线不垂直,理由如下: 设过曲线()y f x =上一点()00 P x y ,的切线方程为:20000 32()()y y xa b x a bx x ⎡⎤-=-++-⎣⎦, 因为切线过原点,所以2000032()y x x a b x ab ⎡⎤=-++⎣⎦, 又0000()()y x x a x b =--,所以200032()x x a b x ab ⎡⎤-++=⎣⎦000()()x x a x b --,解得00x =,或02a b x +=,当00x =时,切线的斜率为ab ;当02a b x +=时,切线的斜率为2()4a b ab +-; 因为0a b <<,且a b +< 所以两条切线斜率之积为:ab ⋅22222()1()()()2(1)1144a b ab ab ab a b ab ab ab ⎡⎤+-=-+>-=---⎢⎥⎣⎦≥, 所以过原点且与曲线()y f x =相切的两条直线不垂直.20.证明:(1)①因为11n a +=所以221114n na a +-=,故数列21n a ⎧⎫⎨⎬⎩⎭是首项为1,公差为4的等差数列; ②由①得211(1)4nn a =+-,又易得0n a >,故n a ,因为n a =>,所以n S >+⋅⋅⋅=(2)由212211683n nn n T T n n a a ++=+--得,1(43)(41)(43)(41)n n n T n T n n +-=++-+, 即114143n n T Tn n +-=+-, 所以数列43n T n ⎧⎫⎨⎬-⎩⎭是以1b 为首项,1为公差的等差数列,从而1143n Tb n n =+--,令2n =,3得,2145b b =+,31413b b =+,若{}n b 为等差数列,则2132b b b =+,所以()111245413b b b +=++,解得11b =,此时,243n T n n =-,87n b n =-恰为等差数列,所以,当11b =时,数列{}n b 为等差数列.第Ⅱ卷(附加题,共40分)21. A. 证明:因为△ACD ∽△BCF ,所以∠ACD =∠BCF , 故∠ACD ACF +∠=∠BCF ACF +∠,即∠DCF =∠BCE ,又∠BDC =∠BAC ,所以△ABC ∽△B .解:因为1()-=AB 11--B A ,所以1-B 11014110022⎡⎤-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, B (第21题A )解得1-=B 11201⎡⎤-⎢⎥⎢⎥⎣⎦,由逆矩阵公式得,B 11201⎡⎤⎢⎥=⎢⎥⎣⎦. C. 解:如图,设圆上任意一点( )P ρθ,,连结PO ,PC ,OC , 在△POC中,由余弦定理得()212cos 4ρθπ+--=4,整理得()27cos 04ρθπ--+=4,故所求圆的极坐标方程为()27cos 04ρθπ--+=4.D. 证明:依题意h a ≤,222bh a b +≤,由不等式的性质,两式相乘得2222ab h a b+≤, 因为222a b ab +≥,所以22221ab h a b+≤≤(当且仅当a b =时等号成立),即证. 22.解:(1)依题意,数对(x ,y )共有16种,其中使x y为整数的有以下8种:(1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2),所以81(0)162P ξ===;(2)随机变量ξ的所有取值为1-,0,1,1ξ=-有以下6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故63(1)168P ξ=-==;1ξ=有以下2种:(3,2),(4,3), 故21(1)168P ξ===;所以ξ3111()1018284E ξ=-⨯+⨯+⨯=-,答:ξ的数学期望为14-.23.证明:(1)①当1n =时,cos isin cos isin x x x x +=+,即证; ②假设当n k =时,(cos isin )cos isin k x x kx kx +=+成立, 则当1n k =+时,()1(cos isin )cos isin (cos isin )k x x kx kx x x ++=++ ()()c o s c o s s i ns i ns i n c o s s i n c o sik x x k x x k x x x k x =-++ ()()c o s 1i s i n 1k x k x =+++, 故命题对1n k =+时也成立,由①②得,(cos isin )cos isin n x x nx nx +=+; (2)由(1)知,[]1(cos isin )C (cos isin )C (cos isin )nn nrrr nn r r x x x x rx rx ==++=+=+∑∑,其实部为121C cos C cos2C cos nn n n x x nx +++⋅⋅⋅+;[](1c o s )i s i n nx x ++=()()22c o s 2i s i n c o s 2c o s c o s i s i n2222nnnnx x x x x x +=+()2c o s c o s i s i n n n xnx nx =+, 其实部为2cos cos 22n n x nx ,根据两个复数相等,其实部也相等可得:121C cos C cos2C cos nn n n x x nx +++⋅⋅⋅+2c o sc o s 22n n x nx =.。
2014届南通市高三一模考试前数学综合练习三数学I一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上......... 1.满足11z i -+≤的复数z 在复平面上对应的点构成的图形的面积为 ▲ . 2. 用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为400~1,按编号顺序平均分为20个组。
若第1组中用抽签的方法确定抽出的号码为11,则第20组抽取的号码为 ▲ .3. 根据如图所示的伪代码,可知输出的结果S 为 ▲ .4. 若以连续掷两次骰子分别得到的点数n m ,作为点P 的横、纵坐标,则点P 在直线012=--y x 上方的概率为 ▲ .5. 若圆锥的高是底面半径和母线的等比中项,则称此圆锥为“黄金圆锥”,已知一黄金圆锥的侧面积为π,则这个圆锥的高为 ▲ . 6. 在ABC ∆中,若π6A =,π3B =,1=BC ,则BA CA ⋅的值为 ▲ . 7. 集合()()()()()(){}1,1,1,1,1,1,1,1,2,0,2,0-----用描述法可表示为 ▲ . 8. 关于x 的不等式02>++c bx ax 的解集为()2,1-,则关于x 的不等式bx c xba >++2的解集为 ▲ .9. 函数x x x x y 2sin 3cos 2cos 3sin 2+++=的值域为 ▲ . 10.设P 为2412-=x y 图象C 上任意一点,l 为C 在点P 处的切线,则坐标原点O 到l 距离的最小值为 ▲ .11.已知函数 若12,x x ∃∈R ,12x x ≠,使得()()21x f x f =成立,则实数的取值范围是 ▲ .12.直线23+=x y 与圆心为D 的圆()()13122=-+-y x 交于B A ,两点,直线BD AD ,的倾斜角分别为βα,,则()βα+tan = ▲ .2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨+>⎩2a13.设函数()x x x x f 5323+-=,{}n a 为公差不为0的等差数列,若101021=+++a a a ,则()()()1021a f a f a f +++ = ▲ . 14.设()1,5,4,3,2,1051==≥∑=i ii xi x ,则{}{}54433221,,,m a x mi n x x x x x x x x ++++= ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)设函数()x x x x x f cos sin 3cos 62sin 2++⎪⎭⎫ ⎝⎛+=π.(1) 若4π<x ,求函数()x f 的值域;(2) 设C B A ,,为ABC ∆的三个内角,若252=⎪⎭⎫ ⎝⎛A f ,()cos A C +=求co s C 的值;16.(本小题满分14分)如图,有三个生活小区(均可看成点)分别位于C B A ,,三点处,AC AB =,A 到线段BC 的距离40=AO ,72π=∠ABO (参考数据: 33272tan ≈π). 今计划建一个生活垃圾中转站P ,为方便运输,P 准备建在线段AO (不含端点)上.(1)设()400<<=x x PO ,试将P 到三个小区距离的最远者S 表示为的函数,并求S 的最小值;(2)设⎪⎭⎫ ⎝⎛<<=∠720πααPBO ,试将P 到三个小区的距离之和y 表示为α的函数,并确定当α取何值时,可使y 最小?x17.(本小题满分16分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,椭圆C 的上、下顶点分别为A 1,A 2,左、右顶点分别为B 1,B 2,左、右焦点分别为F 1,F 2.原点到直线A 2B 2的距离为255. (1)求椭圆C 的方程;(2)P 是椭圆上异于A 1,A 2的任一点,直线PA 1,PA 2,分别交轴于点N ,M ,若直线OT 与过点M ,N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.18.(本小题满分16分)已知函数()()22ln ,f x ax a x x a =-++∈R .(Ⅰ)当1=a 时,求曲线()x f y =在点()()1,1f 处的切线方程;(Ⅱ)当0>a 时,若()x f 在区间[]e ,1上的最小值为2-,求实数a 的取值范围; (Ⅲ)若对任意()+∞∈,0,21x x ,且21x x <,恒有()()221122x x f x x f +<+成立,求实数a 的取值范围.19.(本小题满分16分)设数列{}n a ,对任意n ∈N *,都有()()()n n a a a p a a b kn +++=+++ 2112 (其中p bk ,,是常数).x(1)当4,3,0-===p b k 时,求n a a a +++ 21;(2)当0,0,1===p b k 时,若15,393==a a ,求数列{}n a 的通项公式;(3)若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列” .当0,0,1===p b k 时,设n S 是数列{}n a 的前n 项和,212=-a a ,试问:是否存在这样的“封闭数列”{}n a ,使得对任意*∈N n 都要有0≠n S ,且181111112121<+++<n S S S ,若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.第Ⅱ部分 附加题(满分40分,答卷时间30分钟)20.【选做题】本题包括A ,B ,C ,D 共4小题,请从这4题中选做2小题,每小题10分,共20分.请在答题卡上准确填涂题目标记,解答时应写出文字说明、证明过程或演算步骤. B .选修4-2:矩阵与变换已知矩阵1001M ⎡⎤=⎢⎥-⎣⎦. (1)求矩阵M 的特征值和特征向量;(2)设⎥⎦⎤⎢⎣⎡=32β ,求β 99M .C .选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程为⎪⎩⎪⎨⎧==t y tx (t 为参数),点()0,1A ,()3,3-B ,若以直角坐标系xOy 的O 点为极点,x 轴正方向为极轴,且长度单位相同,建立极坐标系.21.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.过直线1-=y 上的动点()1,-a A 作抛物线2x y =的两切线AQ AP ,,Q P ,为切点. (1)若切线AQ AP ,的斜率分别为21,k k ,求证:21k k ⋅为定值; (2)求证:直线PQ 过定点.22.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.对有()4n n ≥个元素的总体{}n ,,3,2,1 进行抽样,先将总体分成两个子总体{}m ,,3,2,1 和{}n m m ,,2,1 ++(m 是给定的正整数,且22m n -≤≤),再从每个子总体中各随 机抽取2个元素组成样本.用ij P 表示元素i 和j 同时出现在样本中的概率. (1)求n P 1的表达式(用n m ,表示);(2)求所有()1ij P i j n <≤≤的和.23.对有个元素的总体进行抽样,先将总体分成两个子总体 和(是给定的正整数,且),再从每个子总体中各随 机抽取个元素组成样本.用表示元素和同时出现在样本中的概率. (1)求的表达式(用表示);(2)求所有的和.2014届南通市高三一模考试前数学综合练习三答案1.2π 2.391 3.205 4. 415.1 6. 3 7.(){}Z x y x y x ∈=+,2,22 8.()0,∞-9.⎥⎦⎤⎢⎣⎡-545,10.2 11. ()()+∞∞-,21, 12.43- 13.30 14. 31 二、解答题:本大题共6小题,共计90分.请在答卷纸指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)()4n n ≥{}n ,,3,2,1 {}m ,,3,2,1 {}n m m ,,2,1 ++m 22m n -≤≤2ij P i j n P 1n m ,()1ij P i j n <≤≤设函数()x x x x x f cos sin 3cos 62sin 2++⎪⎭⎫ ⎝⎛+=π.(1) 若4π<x ,求函数()x f 的值域;(2) 设C B A ,,为ABC ∆的三个内角,若252=⎪⎭⎫ ⎝⎛A f ,()cos A C +=cos C 的值;解:(1)()x x x x x f 2sin 2322cos 12cos 212sin 23++++==2162sin 2212cos 2sin 3+⎪⎭⎫ ⎝⎛+=++πx x x …………4分 4π<x 32623πππ<+<-∴x 162sin 23≤⎪⎭⎫ ⎝⎛+<-∴πx …………6分 ()25321≤<-∴x f , 即()x f 的值域为⎥⎦⎤ ⎝⎛-25,321;…………7分(2)由252=⎪⎭⎫ ⎝⎛A f , 得16sin =⎪⎭⎫ ⎝⎛+πA ,又A 为ABC 的内角,所以3π=A ,……9分又因为在ABC 中, ()1435cos -=+C A , 所以()1411sin =+C A ……10分 所以()()1433sin 23cos 213cos cos =+++=⎪⎭⎫ ⎝⎛-+=C A C A C A C π…………14分16.(本小题满分14分)如图,有三个生活小区(均可看成点)分别位于C B A ,,三点处,AC AB =,A 到线段BC 的距离40=AO ,72π=∠ABO (参考数据: 33272tan ≈π). 今计划建一个生活垃圾中转站P ,为方便运输,P 准备建在线段AO (不含端点)上.∆∆(1) 设()400<<=x x PO ,试将P 到三个小区距离的最远者S 表示为的函数,并求S 的最小值;(2) 设⎪⎭⎫ ⎝⎛<<=∠720πααPBO ,试将P 到三个小区的距离之和y 表示为α的函数,并确定当α取何值时,可使y 最小?16.解:(1)在AOB Rt ∆中,因为40=AO ,72π=∠ABO ,所以320=BO , 所以x PA -=40,21200x PC PB +==…………2分, ①若PB PA ≥,即50≤<x 时,x S -=40; ②若PB PA <,即405<<x 时,21200x S +=,从而 ()()⎪⎩⎪⎨⎧<<+≤<-=405120050402x x x x S ………………4分。
2014年高考模拟试卷(3)南通市数学学科基地命题第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分 .1. 函数()sin()3f x x πω=-的最小正周期为3π,其中0ω>,则ω= .2. 若复数21(1)z a a i =-++是纯虚数,则实数a = .3. 若{Z |2216},{3,4,5}x A x B =∈≤≤=,则AB = .4. 已知双曲线22221(0,0)x ya b a b-=>>中,若以其焦点为圆心,半实轴长为半径的圆与渐近线相切,则其渐近线方程为 . 5.如果数据1x ,2x ,3x ,…,n x 的方差是a ,若数据132x -,232x -,332x -,…,32n x -的方差为9,则a = .6. 执行右边的程序框图,若p =80,则输出的n 的值为 .7. 如果投掷两颗骰子,得到其向上的点数分别为x 和y ,则log (1)1x y -=的概率为 . 8.若)(x f 是R 上的增函数,且2)2(,4)1(=-=-f f ,设{}31)(|<++=t x f x P ,{}4)(|-<=x f x Q ,若“P x ∈”是“Q x ∈的充分不必要条件,则实数t 的取值范围是______.9.正方形铁片的边长为8cm ,以它的一个顶点为圆心,一边长为半径画弧剪下一个顶角为4π的扇形,用这块扇形铁片围成一个圆锥形容器,则这个圆锥形容器的容积等于________cm 3.10. 若方程[][]22221,1,5,2,4x y a b a b+=∈∈表示焦点在x 轴上且离心率小于的椭圆,则z a b =+的最小值为 .11. 已知22()9,f x x x kx =-++若关于x 的方程()0f x =在(0,4)上有两个实数解,则k 的取值范围是 .12. 已知圆C 过点(1,1)P ,且与圆M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称.若Q 为圆C 上的一个动点,则PQ MQ ⋅的最小值为 .13. 已知函数3221()(21) 1.3=++-+-+f x x x a x a a 若函数()f x 在(]1,3上存在唯一的极值点.则实数a 的取值范围为 .14. 已知函数22 () n n f n n n ⎧⎪=⎨-⎪⎩为奇数为偶数 ,且()(1)n a f n f n =++,则1232014a a a a +++⋯+=.(第6题)二、解答题:本大题共6小题,共90分.15.(本小题满分14分)已知ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,向量(1,2)m =,2(cos2,cos )2An A =,且1m n ⋅=.(1)求角A 的大小;(2)若2b c a +==,求证:ABC ∆为等边三角形.16.(本小题满分14分)在直三棱柱111ABC A B C -中,AC=4,CB=2,AA 1=2,60ACB ∠=,E 、F 分别是11,AC BC 的中点.(1)证明:平面AEB ⊥平面1B CF ;(2)设P 为线段BE 上一点,且2EP PB =,求三棱锥11P B C F -的体积.P F EC 1B 1A 1CBA17.(本小题满分14分)设椭圆方程22221x y a b+=(0)a b >>,椭圆上一点到两焦点的距离和为4,过焦点且垂直于x 轴的直线交椭圆于A ,B 两点,AB =2. (1)求椭圆方程;(2)若M ,N 是椭圆C 上的点,且直线OM 与ON 的斜率之积为12-,是否存在动点00(,)P x y ,若2OP OM ON =+,有22002x y +为定值.18. (本小题满分16分) 某固定在墙上的广告金属支架如图所示,根据要求,AB 至少长3米,C 为AB 的中点,B 到D 的距离比CD 的长小0.5米,∠BCD=600(1)若,CD x =,BC y =将支架的总长度表示为y 的函数,并写出函数的定义域.(注:支架的总长度为图中线段AB 、BD 和CD 长度之和)(2)如何设计,AB CD 的长,可使支架总长度最短.19.(本小题满分16分)若数列{}n a 的前n 项和为n S ,且满足等式23n n a S +=.(1)能否在数列中找到按原来顺序成等差数列的任意三项,说明理由;(2)能否从数列中依次抽取一个无穷多项的等比数列,且使它的所有项和S 满足9116013S <<,如果这样的数列存在,这样的等比数列有多少个?(注:设等比数列的首项为1,a ,公比为(||1)q q <,则它的所有项的和定义为11a q-)20.(本小题满分16分)已知函数32()(63)x f x x x x t e =-++,t R ∈. (1)若函数()y f x =有三个极值点,求t 的取值范围;(2)若()f x 依次在,,()x a x b x c a b c ===<<处取到极值,且22a c b +=,求()f x 的零点; (3)若存在实数[0,2]t ∈,使对任意的[1,]x m ∈,不等式()f x x ≤恒成立,试求正整数m 的最大值.第Ⅱ卷(附加题,共40分)21.[选做题]本题包括A 、B 、C 、D 四小题,每小题10分;请选定其中两题,并在相应的答题区域.................内作答.... A .(选修4-1:几何证明选讲)在ABC ∆中,,=AB AC 过点A 的直线与其外接圆交于点P,交BC 延长线于点D. 求证:⋅=⋅AP AD AB ACB .(选修4-2:矩阵与变换)ABC ∆的顶点A (1,2),B (3,3),C (2,1),求在矩阵2002⎡⎤⎢⎥-⎣⎦对应的变换下所得图形的面积.C .(选修4-4:坐标系与参数方程)已知直线11:()5x tl t y =+⎧⎪⎨=-+⎪⎩为参数和直线2:0l x y --=的交于点P . (1)求P 点的坐标;(2)求点P 与(1,5)Q -的距离.D .(选修4-5:不等式选讲)设,a b 是正数,证明:3322222a b a b a b+++≥⋅.【必做题】第22题、第23题,每题10分,共计20分.22.在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , EF // AB ,PDC BA∠BAF =90º, AD = 2,AB =AF =2EF =1,点P 在棱DF 上.(1)若P 是DF 的中点, 求异面直线BE 与CP 所成角的余弦值; (2)若二面角D -AP -CPF 的长度.23.数列{}n a 满足2121n n a a +=-,1N a =且11N a -≠,其中{}2,3,4,N ∈(1)求证:1||a ≤1; (2)求证:()12cos 2N k a k Z π-=∈.PFEDCAB2014年高考模拟试卷(3)参考答案南通市数学学科基地命题 第Ⅰ卷(必做题,共160分)一、填空题 1. 6.263T ππωω==⇒= ;2. 1.将复数表示为(,)z a bi a b R =+∈的形式,然后由0,0a b =≠即可求;3.{}3,4.142216,222,14x x x ≤≤∴≤≤∴≤≤,即{}1,2,3,4A =. {}3,4,5B = ,{}3,4A B ∴⋂=;4. y x =±.设焦点为(,0)c ,渐近线方程为by xa=±,即0,bx ay ±=所以a =所以,a b =即渐近线方程为y x =±;5. 3.原数据的方差为a ,则新方差为2a ,而已知新方差为9,所以3a =;6. 7 .依次产生的S 和n 值分别为2,2;6,3;14,4;30,5;62,6;126,7;所以,输出的n 值为7;7.19.因为抛掷两枚均匀的正方体骰子的基本事件数为36种,又由l o g (1)1x y -=知1(1)y x x =+>,所以,满足条件的事件有: (2,3),(3,4),(4,5),(5,6)共4种,则log (1)1x y -=的概率为19;8.3>t .{}|()13{()2}{()(2)}P x f x t x f x t x f x t f =++<=+<=+<,{}|()4{()(1)}Q x f x x f x f =<-=<-,因为函数)(x f 是R 上的增函数,所以{}|2{2}P x x t x x t =+<=<-,{}|1Q x x =<-,要使“P x ∈”是“Q x ∈的充分不必要条件,则有21t -<-,即3t >;9..由题意知,弧长为4π×8=2π,即围成圆锥形容器底面周长为2π,所以圆锥底面半径为r =1,可得圆锥高h =,所以容积V =13πr 2×h =13π×1.⨯;10. 4 .方程22221x y a b+=表示焦点在x 的椭圆时,有22a b c e a ⎧>⎪⎨==⎪⎩,即22224a b a b ⎧>⎨<⎩,化简得2a b a b >⎧⎨<⎩, 又[1,5]a ∈,[2,4]b ∈,画出满足不等式组的平面区域,如右图阴影部分所示,令z y x =+,平移直线,y x z =-+当过(2,2)时,min 4Z =; 11. 23(,3).4--()0f x =可以转化为22|9|x x kx -+=-,记22()|9|g x x x =-+,则()0f x =在(0,4)上有两个实数解,可以转化为函数2229,03()929,34x g x x x x x <≤⎧=-+=⎨-<<⎩与()h x kx =-的图象,结合图像和特殊点(3,9),(4,23)A B 可知23(,3)4k ∈--; 12.-4.设圆心C (,)a b ,则222022212a b b a --⎧++=⎪⎪⎨+⎪=⎪+⎩,解得00a b =⎧⎨=⎩,则圆C 的方程为222x y r +=,将点P 的坐标代入得22r =,故圆C 的方程为222x y +=,设(,)Q x y ,则222x y +=,且(1,1)(2,2)PQ MQ x y x y ⋅=--⋅++=224x y x y +++-=2x y +-,法一:令x α,y α=,则2sin()4x y πα+=+≥-2法二:令x y t +=,则y x t =-+,所以2PQ MQ x y ⋅=+-≥-4,PQ MQ ⋅的最小值为4- ; 13. [)7,1--.2()221'=++-f x x x a , 若函数()f x 在(]1,3上存在唯一的极值点,则方程2221++-x x a =0在区间(]1,3上有唯一解.因为抛物线21122=--+a x x 的对称轴为1=-x ,函数21122=--+a x x 在区间(]1,3单调递减,所以[)7,1∈--a ;14. 2014. n 为奇数时 1+n 为偶数 ,22(1)21=-+=--n a n n n , n 为偶数时,1+n 为奇数,22(1)21=-++=+n a n n n ∴ 13=-a ,25=a ,37=-a ,49=a ,511=-a ,713=a ,…… ,∴ 122+=a a ,342+=a a ,即1220142014a a a ++=.二、解答题15. (1)由(1,2)m =,2(cos2,cos )2A n A =, 得222cos22cos 2cos 1cos 12cos cos 2Am n A A A A A ⋅=+=-++=+ …………4分 又因为1m n ⋅=,所以,22cos cos 1A A +=解得1cos 2A =或cos 1A =- …………6分0,3A A ππ<<∴=……7分(2)在ABC ∆中,2222cos a b c bc A =+-且a =所以,22222122b c bc b c bc=+-⋅=+-① …………9分又b c +=b c =,代入①整理得230c -+=,解得c =b于是a b c ===, .…………13分 即ABC △为等边三角形. .…………14分 16.(1)在ABC ∆中,∵AC =2,BC =4,060ACB ∠=,∴AB =222AB BC AC +=, ∴AB BC ⊥.………………………………3分 由已知1AB BB ⊥,1BB BC B =,∴11AB BB C C ⊥面. …………………5分又∵AB ABE ⊂面,11ABE BB C C ⊥故平面平面,即平面AEB ⊥平面1B CF ……7分 (2)取11B C 的中点H ,连结EH , 则//EH AB且12EH AB ==由(1)11AB BB C C ⊥面,∴11EH BB C C ⊥面, ……10分C 1A 1A∵2EP PB =,∴111111111333P B C F E B C F B C F V V S EH --∆==⨯⋅=. ……14分17. (1)因为24a =,所以,2a = ---------------------------------2分∵过焦点且垂直于x 轴的直线交椭圆于A ,B 两点,AB =2.∴由椭圆的对称性知,椭圆过点(,1)c ,即22114c b+= --------------------4分224c b =-,解得22b =椭圆方程为22142x y += ------------------------------------------------------------7分(2)存在这样的点00(,)P x y .设11(,)M x y ,22(,)N x y , 则121212OM ON y y k k x x ==-,化简为 121220x x y y += ---------------------9分 ∵M ,N 是椭圆C 上的点,∴2211142x y +=,2222142x y += 由2OP OM ON =+得0121222x x x y y y =+⎧⎨=+⎩- ----------------------------------------11分所以22220012122(2)(2)x y x x y y +=+++ 222211221212(2)4(2)4(2)x y x y x x y y =+++++444020=+⨯+=即存在这样的点00(,)P x y -----------------------------------------------------14分 18. (1)由,CD x =则(0.5)BD x m =-,设CB y =, 则支架的总长度为AC BC BD CD +++,在BCD ∆中,由余弦定理2222cos60(0.5)x y xy x +-=-化简得 20.25y xy x -=-+ 即20.250y xy x -+-= ① ……4分 记0.5220.5l y y x x y x =++-+=+- 由20.250y xy x -+-=,则20.251y x y -=-222220.2520.52220.5420.5220.520.50.50.51111y y y y y y y l y y y y y y ---+---=+⨯-=+-=-=--------------6分(2)由题中条件得23y ≥,即 1.5y ≥设1(0.5)y t t -=≥则原式224(1)2(1)0.5484220.50.50.5t t t t t l t t+-+-++---=-=-=246 1.5 1.5 1.50.5460.54 5.5t t t t t t t++-=++-=++ ……10分0.5t ≥由基本不等式 1.54t t∴+≥有且仅当24 1.5t = ,即t =时成立,又由t = 满足0.5t ≥1y ∴=,x ∴= ∴当2,AB CD =+=金属支架总长度最短. (16)分19. (1)当1n =时,1123a a +=,则11a =.又23n n a S +=,所以1123n n a S +++=,两式相减得113n n a a +=,即 {}n a 是首项为1,公比为13的等比数列,所以113n n a -=------------------------------------------------------4分 假设存在三项按原来顺序成等差数列,记为,,,()p q r a a a p q r << 则111211333q p r ---=+,即211333q p r=+,所以2331r q r p --⋅=+,即2331r q r p --⋅-=,即3(23)1r q q p ---=又p q r <<,*,r q r p N ∴--∈,所以33,230r q q p -->-<所以3(23)0r q q p ---<∴假设不成立,所以不存在三项按原来顺序成等差数列 --------8分 (2)设抽取的等比数列首项为13m ,公比为13n,项数为k ,且,,m n k N +∈则111[1()]333()111133k m nmn nS k -=<--, -------------------------------------------10分因为9116013S <<,所以191311601313<<-, ------------------12分 所以1311(1)3391609(2)33m nn m ⎧<-⎪⎪⎨⎪<+⎪⎩由(1)得到113133nm +<,所以3,1m n ≥≥, ------------13分 由(2)得到1609933m n +>, --------------------------------14分 当3,1m n ==时,适合条件,这时等比数列首项为311327=,公比为11133= 当3,1m n =>时,均不适合. 当3,1m n >≥时,均不适合.综上可得满足题意的等比数列有只有一个. ------------------16分20. (1)①23232()(3123)(63)(393)x x f x x x e x x x t x x x t e '=-++-++=--++∵()f x 有3个极值点,∴323930x x x t --++=有3个不同的根, --------2分 令32()393g x x x x t =--++,则2()3693(1)(3)g x x x x x '=--=+-, 从而函数()g x 在(,1)-∞-,(3,)+∞上递增,在(1,3)-上递减.∵()g x 有3个零点,∴(1)0(3)0g g ->⎧⎨<⎩,∴824t -<<. -----------------4分(2),,a b c 是()f x 的三个极值点∴3232393()()()()()x x x t x a x b x c x a b c x ab bc ac x abc --++=---=-+++++-----6分∴23932a b c ab ac bc t abca c b++=⎧⎪++=-⎪⎨+=-⎪⎪+=⎩,∴1b =或32-(舍∵(1,3)b ∈-)∴111a b c ⎧=-⎪=⎨⎪=+⎩, 所以,()f x的零点分别为1-1,1+ -------------------10分 (3)不等式()f x x ≤,等价于32(63)x x x x t e x -++≤,即3263x t xe x x x -≤-+-. 转化为存在实数[0,2]t ∈,使对任意的[1,]x m ∈,不等式3263x t xe x x x -≤-+-恒成立. 即不等式32063x xe x x x -≤-+-在[1,]x m ∈上恒成立.即不等式2063x e x x -≤-+-在[1,]x m ∈上恒成立. ----------------12分 设2()63x x e x x ϕ-=-+-,则()26x x e x ϕ-'=--+. 设()()26x r x x e x ϕ-'==--+,则()2x r x e -'=-.因为1x m ≤≤,有()0r x '<. 所以()r x 在区间[1,]m 上是减函数. 又1(1)40r e -=->,2(2)20r e -=->,()3330r -=-<, 故存在()02,3x ∈,使得00()()0r x x ϕ'==.当01x x ≤<时,有()0x ϕ'>,当0x x >时,有()0x ϕ'<. 从而()y x ϕ=在区间0[1,]x 上递增,在区间0[,)x +∞上递减. 又1(1)40e ϕ-=+>,2(2)50e ϕ-=+>,3(3)60e ϕ-=+>,4(4)50e ϕ-=+>,5(5)20e ϕ-=+>,6(6)30e ϕ-=-<.所以,当15x ≤≤时,恒有()0x ϕ>;当6x ≥时,恒有()0x ϕ<. 故使命题成立的正整数m 的最大值为5. -----------------16分第Ⅱ卷(附加题,共40分)21. A. 由AB AC =,所以ABC ACB ∠=∠,所以,,∠=∠∠=∠ACD APC CAP CAP 所以,APCACD ∆∆所以,=AP ACAC AD所以2,=⋅AC AP AD 由AB AC =,所以⋅=⋅AP AD AB AC .………10分B .由20120224⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,所以,A ,B ,C 在矩阵变换下变为(2,4),(6,6),(4,2)A B C '''---,从而可得A B B C A C ''''''===,可得S=6. ………10分C. (1)将15x t y =+⎧⎪⎨=-+⎪⎩代入0x y --=得t =得(1P +, ………5分(2)由(1,5)Q -,得PQ =. ………10分D. 332233222()()()222a b a b a ba b a b a b +++≥⋅⇔+≥++ ……3分3322332222()()()a b a b ab a b a b ab a a b b a b ⇔+≥+⇔+-+=--- ……6分 2()()0a b a b ⇔+-≥.当且仅当a b =时等号成立. ……10分22. (1)因为∠BAF=90º,所以AF ⊥AB ,因为 平面ABEF ⊥平面ABCD ,且平面ABEF ∩平面ABCD= AB ,所以AF ⊥平面ABCD ,因为四边形ABCD 为矩形, 所以以A 为坐标原点,AB ,AD ,AF 分别为x ,y ,z 轴,建立如图所示空间直角坐标系O xyz -. 所以 (1,0,0)B ,1(,0,1)2E ,1(0,1,)2P ,(1,2,0)C .所以 1(,0,1)2BE =-,1(1,1,)2CP =--,所以4cos ,||||BE CP BE CPBE CP ⋅<>==⋅即异面直线BE 与CP . -----------------------------5分 (2)因为AB ⊥平面ADF ,所以平面APF 的法向量为1(1,0,0)n =.设P 点坐标为(0,22,)t t -,在平面APC 中,(0,22,)AP t t =-,(1,2,0)AC =, 所以 平面APC 的法向量为222(2,1,)t nt-=-, 所以,121212||cos ,||||n n n n n n ⋅<>==⋅解得23t =,或2t =(舍). 所以PF = ---------------10分 23. (1)猜想:N K a -≤1,1≤k <N -1,k ∈N *,接下来用数学归纳法对k 进行证明:当k =1时,由2121n n a a +=-,1N a = 得 21N a -=12N a +=1 但11N a -≠ ∴1-N a =-1,∴11N a -≤成立 --------------------------------------------2分 假设k =m (1≤m <N -1,m ∈*N )时,1N m a -≤ 则21N m a --=12N m a -+∈[0,1] 所以11N m a --≤ 所以k =m+1时结论也成立.综上 ,有1N K a -≤,1≤k <N -1,k ∈*N 故有11a ≤ ----------------5分 (2)当N=2时,由12=a 且11≠a 得11cos a π=-=成立假设N=m (m ≥2)时,存在Z k ∈,使得12cos2m k a π-= ------------------7分 则当N=m +1时,由归纳假设,存在k ,使得23cos 2m k a π-=,则21a =212a +=3cos 122m k π-+=22cos 2m k π- 所以12cos 2m k a π-==(1)22cos 2m k π+-或12cos 2m k a π-=-=(1)2(1)2(22)cos 2m m k π+-+-- 所以无论N 取任何大于1的正整数,都存在k 使得()12cos2N k a k Z π-=∈ --10。
一、填空题:
1.已知集合{}
1,2,3,4
=≤≤,{}
B=,则A B=▲.
A x x
|12
2.已知复数z满足i1i
z⋅=+(i是虚数单位),则z=▲.
3.袋中有2个红球,2个蓝球,1个白球,从中一次取出2个球,则取出的球颜色相同的概率为▲.
4.平面α截半径为2的球O所得的截面圆的面积为π,则球心O到平面α的距离为▲ .
考点:球的相关知识.
5.如图所示的流程图,输出y的值为3,则输入x的值为▲.
6.一组数据2,,4,6,10
x的平均值是5,则此组数据的标准差是▲.
7.在平面直角坐标系xOy中,曲线C且过点(1,则曲线C的标准方程
为 ▲ . 【答案】221y x -= 【解析】
试题分析:因为曲线C 的离心率为,所以曲线为等轴双曲线,其方程可以设为22x y λ-=.因为过点
8.已知函数()f x 对任意的x ∈R 满足()()f x f x -=,且当0x ≥时,2()1f x x ax =-+.若()f x 有4个零点,则实数a 的取值范围是 ▲ .
9.已知正实数,x y 满足(1)(1)16x y -+=,则x y +的最小值为 ▲ .
10.在直角三角形ABC 中,C =90°,6AC =,4BC =.若点D 满足2AD DB =-,则||CD = ▲ .
11.已知函数()sin()f x x ωϕ=+的图象如图所示,则(2)f = ▲ .
12.在平面直角坐标系xOy 中,圆C 的方程为2240x y x +-=.若直线(1)y k x =+上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围是 ▲ .
13.设数列{a n }为等差数列,数列{b n }为等比数列.若12a a <,12b b <,且2(1,2,3)i i b a i ==,则
数列{b n }的公比为 ▲ .
则2
21133
60a a a a ++=,所以23311()6()10a a a a ++=,则31
3a a =-±2
2
23332111()b a a q a ===,
且1q >,所以
14.在△ABC 中,BC AC =1,以AB 为边作等腰直角三角形ABD (B 为直角顶点,C 、D 两点
在直线AB 的两侧).当C ∠变化时,线段CD 长的最大值为 ▲ .
二、解答题:
15.如图,在五面体ABCDEF 中,四边形ABCD 是矩形,DE ⊥平面ABCD . (1)求证:AB ∥EF ;
(2)求证:平面BCF ⊥平面CDEF .
平面CDEF ,所以BC ⊥平面CDEF .因为BC ⊂平面BCF ,平面BCF ⊥平面CDEF .
16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若4b =,8BA BC ⋅=. (1)求22a c +的值;
(2)求函数2()cos cos f B B B B =+的值域.
17.某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆
弧上的一点C之间设计为直线段小路,在路的两侧
..边缘种植绿化带;从点C到点B设计为沿弧BC的弧形小路,在路的一.侧.边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)(1)设ÐBAC=q(弧度),将绿化带总长度表示为q的函数()
s ;
(2)试确定q的值,使得绿化带总长度最大.
由于22BOC BAC θ∠=∠=,所以弧BC 的长为502100θθ⨯=. ……………………3分
18.如图,在平面直角坐标系xOy 中,椭圆22
221(0)y x a b a b
+=>>的离心率为12,过椭圆右焦
点F 作
两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,7AB CD +=. (1)求椭圆的方程;
(2)求AB CD +的取值范围.
参数,一般取直线的斜率,① 当两条弦中一条斜率为0时,另一条弦的斜率不存在,由题意知7AB CD +=,
将直线AB 的方程代入椭圆方程中,并整理得2222(34)84120k x k x k +-+-=,
19.已知函数2()()e x f x x a =-在2x =时取得极小值. (1)求实数a 的值;
(2)是否存在区间[],m n ,使得()f x 在该区间上的值域为44[e ,e ]m n ?若存在,求出m ,n 的值;
若不存在,说明理由.
02
m n
<<<时,
24
24
(2)e e
(2)e e
m
n
m n
n m
⎧-=
⎨
-=
⎩
,两式相除得22
(2)e(2)e
m n
m m n n
-=-.
20.各项均为正数的数列{a n }中,设12n n S a a a =+++,12111n n
T a =++
+,且(2)(1)2n n S T -+=,*n ∈N .
(1)设2n n b S =-,证明数列{b n }是等比数列;
(2)设12
n n c na =,求集合(){}
*,,|2,,,,m r k m k r c c c m k
r m k r +=<<∈N .
时,
114
2k c c
c c =≥,(*)式不成立.
南通市2014届高三第二次调研测试
数学Ⅱ(附加题)
21.A选修4—1:几何证明选讲
如图,圆O的两弦AB和CD交于点E,//
EF CB,EF交AD的
延长线于点F.求证:△DEF∽△EAF.
21.B选修4—2:矩阵与变换
若矩阵
12
a
⎡⎤
=⎢⎥
-⎣⎦
M把直线:20
l x y
+-=变换为另一条直线:40
l x y
'+-=,试求实数a值.
21.C选修4—4:坐标系与参数方程
在平面直角坐标系xOy中,直线l经过点P(0,1),曲线C的方程为2220
+-=,若直
x y x
线
l与曲线C相交于A,B两点,求PA PB
⋅的值.
21.D 选修4—5:不等式选讲
已知0x >,0y >,a ∈R ,b ∈R .求证()
2
22ax by a x b y
x y x y
++++≤.
22.在平面直角坐标系xOy 中,已知定点F (1,0),点P 在y 轴上运动,点M 在x 轴上,点N
为平面内的动点,且满足0PM PF ⋅=,PM PN +=0. (1)求动点N 的轨迹C 的方程;
(2)设点Q 是直线l :1x =-上任意一点,过点Q 作轨迹C 的两条切线QS ,QT ,切点分别为S ,T ,
设切线QS ,QT 的斜率分别为1k ,2k ,直线QF 的斜率为0k ,求证:1202k k k +=.
23.各项均为正数的数列{}n x 对一切*n ∈N 均满足1
12n n x x ++<.证明:
(1)1n n x x +<;
(2)1
11n x n -<<.
【答案】(1)详见解析,(2)详见解析.
【解析】
11k k x x +>=,根据上述证明可知存在矛盾.
下面先证明1n x ≤.。