通用版2018年高考数学二轮复习专题五解析几何第四讲大题考法__圆锥曲线中的定点定值存在性问题课件共
- 格式:ppt
- 大小:3.32 MB
- 文档页数:39
2018年高考数学(理)二轮复习讲练测热点十一圆锥曲线的综合问题纵观近几年高考圆锥曲线的综合问题是高考中的一个热点和重点,在历年高考中出现的频率较高,主要注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力.其中直线与椭圆、抛物线的位置关系常常与平面向量、三角函数、函数的性质、不等式等知识交汇命题.涉及求轨迹、与圆相结合、定点、定值、最值、参数范围、存在性问题等.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.1.求轨迹方程求轨迹方程的基本方法有:直接法、定义法、相关点法、参数法、交轨法、向量法等.(1)求轨迹方程时,先看轨迹的形状能否预知,若能预先知道轨迹为何种圆锥曲线,则可考虑用定义法求解或用待定系数法求解;否则利用直接法或代入法.(2)讨论轨迹方程的解与轨迹上的点是否对应,要注意字母的取值范围.例1【2017课标II,理】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P 满足。
(1)求点P的轨迹方程;(2)设点Q在直线上,且。
证明:过点P且垂直于OQ的直线l过C的左焦点F。
【答案】(1) 。
(2)证明略。
【解析】(2)由题意知。
设,则,。
由得,又由(1)知,故。
所以,即。
又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线过C的左焦点F.例2【2018届湖北省荆州中学、宜昌一中等“荆、荆、襄、宜四地七校考试联盟”高三2月联考】如图,一张坐标纸上一已作出圆及点,折叠此纸片,使与圆周上某点重合,每次折叠都会留下折痕,设折痕与直线的交点为,令点的轨迹为.(1)求轨迹的方程;(2)若直线与轨迹交于两个不同的点,且直线与以为直径的圆相切,若,求的面积的取值范围.【答案】 (1) ;(2) .试题解析:(1)折痕为的垂直平分线,则,由题意知圆的半径为,∴,∴的轨迹是以为焦点的椭圆,且,,∴,∴的轨迹的方程为.(2)与以为直径的圆相切,则到即直线的距离:,即,由,消去,得,∵直线与椭圆交于两个不同点,∴,,设,,则,,,又,∴,∴,设,则,∴,,∵关于在单调递增,∴,∴的面积的取值范围是.2. 圆锥曲线与圆相结合的问题处理有关圆锥曲线与圆相结合的问题,要特别注意圆心、半径及平面几何知识的应用,如直径对的圆心角为直角,构成了垂直关系;弦心距、半径、弦长的一半构成直角三角形.利用圆的一些特殊几何性质解题,往往使问题简化.例3【2017课标3,理20】已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点,求直线l与圆M的方程.【答案】(1)证明略;(2)直线的方程为,圆的方程为 .或直线的方程为,圆的方程为 .【解析】所以,解得或 .当时,直线的方程为,圆心的坐标为,圆的半径为,圆的方程为.当时,直线的方程为,圆心的坐标为,圆的半径为,圆的方程为 .3.定值定点问题(1)求解定点和定值问题的基本思想是一致的,定值是证明求解的一个量与参数无关,定点问题是求解的一个点(或几个点)的坐标,使得方程的成立与参数值无关.解这类试题时要会合理选择参数(参数可能是直线的斜率、截距,也可能是动点的坐标等),使用参数表达其中变化的量,再使用这些变化的量表达需要求解的解题目标.当使用直线的斜率和截距表达直线方程时,在解题过程中要注意建立斜率和截距之间的关系,把双参数问题化为单参数问题解决.(2)证明直线过定点的基本思想是使用一个参数表示直线方程,根据方程的成立与参数值无关得出x,y的方程组,以方程组的解为坐标的点就是直线所过的定点.例4【2018届河北省唐山市高三上学期期末】已知抛物线:的焦点,过点作两条互相垂直的直线,直线交于不同的两点,直线交于不同的两点,记直线的斜率为.(1)求的取值范围;(2)设线段的中点分别为点,证明:直线过定点.【答案】(1) {k|k<-2或0<k<} (2)见解析【解析】试题分析:(1)写出直线的方程,与抛物线方程联立方程组,利用判别式求出的一个范围,另外直线的方程为与抛物线方程联立同样又得出的一个范围,两者求交集即得;(2)设,利用韦达定理可得即点坐标,用代替可得点坐标,计算出,得证结论.试题解析:(1)由题设可知k≠0,所以直线m的方程为y=kx+2,与y2=4x联立,整理得ky2-4y+8=0,①由Δ1=16-32k>0,解得k<.直线n的方程为y=-x+2,与y2=4x联立,整理得y2+4ky-8k=0,由Δ2=16k2+32k>0,解得k>0或k<-2.所以故k的取值范围为{k|k<-2或0<k<}.(2)设A(x 1,y1),B(x2,y2),M(x0,y0).由①得,y1+y2=,则y0=,x0=-,则M(-,).同理可得N(2k2+2k,-2k).直线MQ的斜率k MQ==,直线NQ的斜率k NQ===k MQ,所以直线MN过定点Q(2,0).例5【2018届河南省商丘市高三上学期期末】在平面直角坐标系中,已知两点,,动点满足,线段的中垂线交线段于点.(1)求点的轨迹的方程;(2)过点的直线与轨迹相交于两点,设点,直线的斜率分别为,问是否为定值?并证明你的结论.【答案】(1) ;(2)答案见解析.【解析】试题分析:(1)利用椭圆定义求出点的轨迹的方程;(2)讨论直线的斜率,当直线的斜率存在时,设直线的方程为,联立方程得,利用根与系数关系表示,即可得到定值.试题解析:(Ⅰ)以题意可得:,,所以点的轨迹是以为焦点,长轴长为的椭圆,且所以,所以轨迹的方程为.(Ⅱ)①当直线的斜率不存在时,由,解得,设,.②当直线的斜率存在时,设直线的方程为,将代入整理化简,得,依题意,直线与轨迹必相交于两点,设,则,,又,,所以综上得:为定值2.(说明:若假设直线为,按相应步骤给分)4.最值、范围问题求解范围、最值问题的基本解题思想是建立求解目标与其他变量的关系(不等关系、函数关系等),通过其他变量表达求解目标,然后通过解不等式、求函数值域(最值)等方法确定求解目标的取值范围和最值.在解题时要注意其他约束条件对求解目标的影响,如直线与曲线交于不同两点时对直线方程中参数的约束、圆锥曲线上点的坐标范围等.例6【2018届吉林省长春市第十一高中、东北师范大学附属中学、吉林一中,重庆一中等五校高三1月联考】已知椭圆的短轴长为,离心率为,点,是上的动点,为的左焦点.(Ⅰ)求椭圆的方程;(Ⅱ)若点在轴的右侧,以为底边的等腰的顶点在轴上,求四边形面积的最小值. 【答案】(Ⅰ) ;(Ⅱ) .试题解析:(Ⅰ)依题意得解得∴椭圆的方程是(Ⅱ)设设线段中点为∵∴中点,直线斜率为由是以为底边的等腰三角形∴∴直线的垂直平分线方程为令得∵∴由∴四边形面积当且仅当即时等号成立,四边形面积的最小值为.5.探索性问题解决直线与圆锥曲线位置关系的存在性问题,往往是先假设所求的元素存在,然后再推理论证,检验说明假设是否正确. 其解题步骤为:(1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组).(2)解此方程(组)或不等式(组),若有解则存在;若无解则不存在.(3)得出结论.例7【2018届河北省石家庄市高三上学期期末】已知椭圆的离心率为,左、右焦点分别为,过的直线交椭圆于两点.(1)若以为直径的动圆内切于圆,求椭圆的长轴长;(2)当时,问在轴上是否存在定点,使得为定值?并说明理由.【答案】(Ⅰ)6(Ⅱ)见解析【解析】试题分析:(1)设的中点为,可得 ,当两个圆相内切时,两个圆的圆心距等于两个圆的半径差,即,所以,椭圆长轴长为;(2)先求得椭圆方程为,设直线AB方程为:,联立可得,设根据韦达定理及平面向量数量积公式可得,当即时为定值.试题解析:(Ⅰ)设的中点为M,在三角形中,由中位线得:当两个圆相内切时,两个圆的圆心距等于两个圆的半径差,即所以,椭圆长轴长为6.(Ⅱ)由已知,,所以椭圆方程为当直线AB斜率存在时,设直线AB方程为:设由得恒成立设当即时为定值当直线AB斜率不存在时,不妨设当时,为定值综上:在X轴上存在定点,使得为定值【反思提升】1.高考涉及考查轨迹问题通常是以下两类:一类是容易题,以定义法、相关点法、待定系数法等为主,另一类是高难度的纯轨迹问题,综合考查各种方法.“轨迹”、“方程”要区分求轨迹方程,求得方程就可以了;若是求轨迹,求得方程还不够,还应指出方程所表示的曲线类型(定形、定位、定量).处理轨迹问题成败在于:对各种方法的领悟与解题经验的积累.所以在处理轨迹问题时一定要善于根据题目的特点选择恰当的方法(什么情况下用什么方法上面已有介绍,这里不在重复)确定轨迹的范围是处理轨迹问题的难点,也是学生容易出现错误的地方,在确定轨迹范围时,应注意以下几个方面:①准确理解题意,挖掘隐含条件;②列式不改变题意,并且要全面考虑各种情形;③推理要严密,方程化简要等价;④消参时要保持范围的等价性;⑤数形结合,查“漏”补“缺”.在处理轨迹问题时,要特别注意运用平面几何知识,其作用主要有:①题中没有给出明显的条件式时,可帮助列式;②简化条件式;③转化化归.2.涉及求取值范围的问题时,首先要找到产生范围的几个因素:(1)直线与曲线相交(判别式);(2)曲线上点的坐标的范围;(3)题目中给出的限制条件.其次要建立结论中的量与这些范围中的因素的关系;最后利用函数或不等式求变量的取值范围.3.解析几何中最值问题的基本解法有几何法和代数法.几何法是根据已知的几何量之间的相互关系,通过平面几何和解析几何的知识加以解决(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等);代数法是建立求解目标关于某个或某两个变量的函数,通过求解函数的最值(普通方法、基本不等式方法、导数方法等)解决.4.存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.注意以下几点:(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.。
2018年高考数学试题分类汇编之圆锥曲线(解析版)一、选择题1.(浙江卷)(2)双曲线221 3=x y -的焦点坐标是A .(0),0)B .(−2,0),(2,0)C .(0,,(0D .(0,−2),(0,2)解:∵双曲线方程可得双曲线的焦点在x 轴上,且a 2=3,b 2=1, 由此可得222=+=b a c ∴该双曲线的焦点坐标为(±2,0)故选:B2.(天津文)(7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为(A )22139x y -= (B )22193x y -= (C )221412x y -=(D )221124x y -= 解:由题意可得,CD 是双曲线的一条渐近线x aby =,即0=-ay bx ,)0,(c F故选:A3.(天津理)(7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A221412x y -= B221124x y -= C 22139x y -= D 22193x y -=解:由题意可得,CD 是双曲线的一条渐近线x aby =,即0=-ay bx ,)0,(c F故选:C4.(全国卷一文)(4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 解:椭圆的一个焦点为(2,0),可得a 2-4=4,解得22=a ,故选:C5.(全国卷一理)(8)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .8解:抛物线C :y 2=4x 的焦点为F (1,0),过点(-2,0联立直线与抛物线C :y 2=4x ,消去x 可得:y 2-6y+8=0, 解得y 1=2,y 2=4,不妨M (1,2),N (4,4),FM =(0,2), FN =(3,4).则 FM ∙FN =(0,2)•(3,4)=8. 故选:D6.(全国卷一理)(11)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .4故选:B7.(全国卷二文)(6)双曲线22221(0,0)x y a b a b-=>>A.y =B.y =C.y = D .y = 解:∵双曲线的离心率为==ace则2222±=-=aa c ab 故选:A.8.(全国卷二文)(11)已知1F ,2F 是椭圆C 的两个焦点,P 是C上的一点,若12PF PF ⊥,且2160PFF ∠=︒,则C 的离心率为 A.1 B.2C D 1-解:F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°, 可得椭圆的焦点坐标F 2(c ,0),所以P(c 23,21故选:D9.(全国卷二理)(5)双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y x =D .y =解:∵双曲线的离心率为==ace则2222±=-=aa c ab 故选:A .10.(全国卷二理)(12)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14解:由题意可知:A (-a ,0),F 1(-c ,0),F 2(c ,0),直线AP 的方程为:)(a x y +=63,故选:D11.(全国卷三文)(10)已知双曲线22221(00)x y C a b a b-=>>:,(4,0)到C 的渐近线的距离为AB .2CD .故选:D12.(全国卷三理)(11)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF ,则C 的离心率为A B .2 C D在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2-2|PF 2|•|F 1F 2|COS ∠PF 2O ,故选:C二、填空题1.(北京文)(10)已知直线l 过点(1,0)且垂直于 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.解:∵直线l 过点(1,0)且垂直于x 轴,∴x=1,代入到y 2=4ax ,可得y 2=4a ,显然a >0,∴y=±∴抛物线的焦点坐标为(1,0), 故答案为:(1,0)2.(北京文)(12)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________.解:双曲线的离心率为245422=+a a ,解得a=4. 故答案为:43.(北京理)(14)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.解:若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,4.(江苏卷)(8)在平面直角坐标系xOy中,若双曲线22221(0,0)x ya ba b-=>>的右焦点(,0)F c到一条渐近,则其离心率的值是.,故答案为:25.(浙江卷)(17)已知点P(0,1),椭圆24x+y2=m(m>1)上两点A,B满足AP=2PB,则当m=_______时,点B横坐标的绝对值最大.解:设A(x1,y1),B(x2,y2),由P(0,1),AP=2PB,可得-x 1=2x2,1-y1=2(y2-1),即有x1=-2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x22+4y22=4m,②①-②得(y1-2y2)(y1+2y2)=-3m,可得y1-2y2=-m,即有m=5时,x22有最大值4,即点B横坐标的绝对值最大.故答案为:5.6.(全国卷三理)(16)已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.解:∵抛物线C :y 2=4x 的焦点F (1,0),∴过A ,B 两点的直线方程为y=k (x-1),联立⎩⎨⎧-==)1(42x k y xy 可得,k 2x 2-2(2+k 2)x+k 2=0,设A (x 1,y 1),B (x 2,y 2),y 1y 2=k 2(x 1-1)(x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=-4,∵M (-1,1),∴ MA =(x 1+1,y 1-1), MB =(x 2+1,y 2-1), ∵∠AMB=90°=0,∴MA *MB =0∴(x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0,整理可得,x 1x 2+(x 1+x 2)+y 1y 2-(y 1+y 2)+2=0,∴即k 2-4k+4=0, ∴k=2. 故答案为:2三、解答题1.(北京文)(20)(本小题14分)已知椭圆2222:1(0)x y M a b a b +=>>焦距为斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D和点71(,)42Q -共线,求k .解析(Ⅰ)由题意得2c =,所以c =3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||AB x x =-=,易得当20m =时,max ||AB =||AB(Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y , 则221133x y += ①,222233x y += ②, 又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-, 因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =.2.(北京理)(19)(本小题14分)已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,μλ==,,求证:μλ11+为定值.解析:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y x y kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3. 所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2). 由(I )知12224k x x k -+=-,1221x x k =. 直线P A 的方程为y –2=1122(1)1y y x x --=--. 令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由μλ==,得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=211(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.3.(江苏卷)(18)(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.解析:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y =. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=,从而AB =.设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=, 所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为. 综上,直线l的方程为y =+4.(天津文)(19)(本小题满分14分) 设椭圆22221(0)x y a b a b +=>> 的右顶点为A ,上顶点为B .||AB =(I )求椭圆的方程;(II )设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.解析:(I )设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23.a b =由||AB ==从而3,2a b ==. 所以,椭圆的方程为22194x y +=. (II )解:设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>,点Q 的坐标为11(,).x y -- 由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩ 消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =由215x x =5(32)k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-. 5.(天津理)(19)(本小题满分14分) 设椭圆22221x x a b +=(a >b >0)的左焦点为F ,上顶点为B .,点A 的坐标为(,0)b ,且FB AB ⋅=.(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若AQAOQ PQ =∠(O 为原点) ,求k 的值. 解析(Ⅰ):设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB,由FB AB ⋅=ab =6,从而a =3,b =2. 所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ.由AQ AOQ PQ =∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =.易知直线AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221k y k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =.所以,k 的值为111228或. 6.(浙江卷)(21)(本题满分15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.解析(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=.因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈. 因此,PAB △面积的取值范围是7.(全国一卷文)(20)(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN =∠∠.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0. 由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4. 直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222y x k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k ++-++++===. 所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM =∠ABN .8.(全国一卷理)(19)(12分) 设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A的坐标为或(1,. 所以AM的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<,直线MA ,MB 的斜率之和为212122MA MB x x y y k k +=+--. 由1122,y k k x y k x k =-=-得 121212(23()42)(2)MA MB x x x x k k x x k k k -+++=--. 将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=. 所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k k k k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB ∠=∠.9.(全国二卷文)(20)(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0).设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x =-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+=,故212224k x x k ++=. 所以212244(1)(1)k AB AF BF x x k +=+=+++=. 由题设知22448k k +=,解得k =–1(舍去),k =1.因此l 的方程为y =x –1. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.10.(全国卷二理)(19)(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF kx +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =.因此l 的方程为1y x =-. (2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.11.(全国卷三文)(20)(12分) 已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=. 两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,. 由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA =-uu r .同理2||=22x FB -uu r . 所以1214()32FA FB x x +=-+=u u r u u r .故2||=||+||FP FA FB u u r u u r u u r . 12.(全国卷三理)(20)(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得 1122043y x y k x +++⋅=. 由题设知12121,22x y x y m ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则 331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=. 由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是 1||(22x FA x ==-. 同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB =+,即||,||,||FA FP FB 成等差数列.设该数列的公差为d ,则 1212||||||||||2FB FA x x d =-=-=②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||d =.或。
1.【2018浙江21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =上存在不同的两点,A B 满足,P A P B 的中点均在C上。
(1) 设AB 中点为M ,证明:PM 垂直于y 轴;(2) 若P 是半椭圆221(0)4y x x +=<上的动点,求PAB ∆面积的取值范围。
解析:(1)设2200112211(,),(,),(,)44P x y A y y B y yAP 中点满足:22102014()4()22y x y y ++= BP 中点满足:22202024:()4()22y x y y BP ++= 所以12,y y 是方程220204()4()22y x y y ++=即22000280y y y x y -+-=的两个根,所以1202y y y +=,故PM 垂直于y 轴。
(2)由(1)可知212012002,8y y y y y x y +=⋅=-所以2221200013||()384PM y y x y x =+-=-,12||y y -=因此,32212001||||(4)24PABS PM y y y x ∆=⋅-=- 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈ 因此,PAB ∆面积的取值范围是 1. 距离型问题(1,)(0)M m m >(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点且0FP FA FB ++=,证明:,,FP FA FB 为等差数列,并求出该数列的公差。
解析:(1)由中点弦公式22OMb k k a ⋅=-,解得34k m=-又因为点M 在椭圆内,故302m <<,故12k <- (2)由题意知2,2FA FB FM FP FM +==-,故(1,2)P m -因为点P 在椭圆上,代入可得3,14m k ==-,即3||2FP = 根据第二定义可知,1211||2,||222FA x FB x =-=- 联立22212121114371402,42874x y x x x x x x y x ⎧+=⎪⎪⇒-+=⇒+==⎨⎪=-+⎪⎩ 即121||||4()32FA FB x x +=-+= 故满足2||||||FP FA FB =+,所以,,FP FA FB 为等差数列 设其公差为d ,因为,A B 的位置不确定,则有代入得21428d d =±=±(1,)(0)M m m >(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点且0FP FA FB ++=,证明2||||||FP FA FB =+。
专题五解析几何高考解答题专讲(五)圆锥曲线的综合应用一、圆锥曲线中的范围、最值问题解决有关范围、最值问题时,先要恰当地引入变量(如点的坐标、斜率等),建立目标函数,然后利用函数的有关知识和方法求解.(1)利用判别式来构造不等式,从而确定参数的取值范围;(2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数之间建立相等关系;(3)利用隐含的不等关系,从而求出参数的取值范围;(4)利用已知不等关系构造不等式,从而求出参数的取值范围;(5)利用函数值域的求法,确定参数的取值范围.[思维流程]定义法(1)EB∥AC―→|EB|=|ED|―→|EA|+|EB|=4――→点E的轨迹方程(2)设直线l 方程并联立―→根与系数的关系―→求|MN |―→求|PQ |―→面积S 用k 表示―→利用函数知识求范围[解] (1)证明:因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC .所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0).(2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎨⎧y =k (x -1),x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1,所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为[12,83).解圆锥曲线范围、最值问题的要点求解范围或最值问题的关键是建立关于求解某个变量的目标函数,通过求这个函数的值域确定目标的范围.[对点训练]1.(2017·安徽皖西南十校期末联考)已知右焦点为F 2(c,0)的椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝ ⎛⎭⎪⎫1,32,且椭圆C 关于直线x =c 对称的图形过坐标原点.(1)求椭圆C 的方程;(2)过点⎝ ⎛⎭⎪⎫12,0作直线l 与椭圆C 交于E ,F 两点,线段EF 的中点为M ,点A 是椭圆C 的右顶点,求直线MA 的斜率k 的取值范围.[解] (1)∵椭圆C 过点⎝⎛⎭⎪⎫1,32,∴1a 2+94b 2=1,① ∵椭圆C 关于直线x =c 对称的图形过坐标原点,∴a =2c , ∵a 2=b 2+c 2,∴b 2=34a 2,②由①②得a 2=4,b 2=3,∴椭圆C 的方程为x 24+y 23=1.(2)依题意,直线l 过点⎝ ⎛⎭⎪⎫12,0且斜率不为零,故可设其方程为x =my +12.由方程组⎩⎪⎨⎪⎧x =my +12,x 24+y 23=12消去x ,并整理得4(3m 2+4)y 2+12my-45=0.设E (x 1,y 1),F (x 2,y 2),M (x 0,y 0) ∴y 1+y 2=-3m3m 2+4, ∴y 0=y 1+y 22=-3m2(3m 2+4),∴x 0=my 0+12=23m 2+4,∴k =y 0x 0-2=m4m 2+4. ①当m =0时,k =0 ②当m ≠0时,k =14m +4m , ∵4m +4m ≥8,∴0<14m +4m ≤18.∴0<k ≤18, ∴-18≤k ≤18且k ≠0. 综合①、②可知,直线MA 的斜率k 的取值范围是⎣⎢⎡⎦⎥⎤-18,18.二、圆锥曲线中的定点、定值问题 1.定点问题的求解策略解决动直线恒过定点问题的一般思路是设出直线y =kx +m (k 存在的情形).然后利用条件建立k 与m 的关系.借助于点斜式方程思想确定定点坐标.2.定值问题的求解策略定值的证明与探索一般是先利用特殊情形确定定值,再给出一般化的证明或直接推证得出与参数无关的数值.在这类试题中选择消元的方法是非常关键的.[思维流程] (1)P 3、P 4关于y 轴对称――→椭圆的性质P 3、P 4∈C――→点与椭圆位置关系P 2∈C ――→待定系数法求C 方程(2)设直线l :y =kx +m并与C 方程联立――→根与系数的关系Δ、x 1+x 2、x 1·x 2―→k 1+k 2=-1―→k 、m 的等量关系式―→直线l 方程[解] (1)由于P 3,P 4两点关于y 轴对称,故由题设知C 经过P 3,P 4两点.又由1a 2+1b 2>1a 2+34b 2知,C 不经过点P 1,所以点P 2在C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故C 的方程为x 24+y 2=1.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22. 则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2, 不符合题设.从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1得 (4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2, 由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)·(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0.解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m , 即y +1=-m +12(x -2), 所以l 过定点(2,-1).解答圆锥曲线的定值、定点问题应把握3点(1)从特殊情形开始,求出定值,再证明该值与变量无关; (2)直接推理、计算,在整个过程中消去变量,得定值; (3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标.[对点训练]2.(2016·北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.[解] (1)由题意得⎩⎪⎨⎪⎧c a =32,12ab =1,a 2=b 2+c 2,解得a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)证明:由(1)知,A (2,0),B (0,1).设P (x 0,y 0),则x 20+4y 20=4.当x 0≠0时,直线P A 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2.直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1,从而|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.所以|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2 =4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4. 综上,|AN |·|BM |为定值. 三、圆锥曲线中的探索性问题处理探索性问题,一般要先对结论作出肯定的假设,然后由此假设出发,结合已知条件进行推理论证,若推出相符的结论,则存在性随之解决;若导出矛盾,则否定了存在性.若证明某结论不存在,也可采用反证法.[思维流程]由椭圆对称性猜定直线x =x 0―→联立l 、C 方程,得根与系数的关系―→求出直线A 1M 、A 2N 方程 ―→将x G =x 0代入方程―→证得结论[解] (1)设点A 1(-a,0),F 2(c,0),由题意可知c =-a +42,即a =4-2c .①又椭圆的离心率e =c a =12,即a =2c ,②联立方程①②可得,a =2,c =1,则b 2=a 2-c 2=3, 所以椭圆C 的方程为x 24+y 23=1.(2)解法一:根据椭圆的对称性猜测点G 在与y 轴平行的直线x =x 0上.假设当点M 为椭圆的上顶点时,直线l 的方程为3x +4y -43=0,此时点N ⎝ ⎛⎭⎪⎫85,335, 则联立直线lA 1M :3x -2y +23=0和直线lA 2N :33x +2y -63=0,可得点G ⎝ ⎛⎭⎪⎫1,332. 据此猜想点G 在直线x =1上,下面对猜想给予证明. 设M (x 1,y 1),N (x 2,y 2),由题意知直线l 的斜率存在,设直线l 的方程为y =k (x -4),联立方程得⎩⎨⎧y =k (x -4)x 24+y 23=1,可得(3+4k 2)x 2-32k 2x +64k 2-12=0,Δ>0.可得x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2,(*)直线lA 1M :y =y 1x 1+2(x +2),lA 2N :y =y 2x 2-2(x -2),联立两直线的方程得y 1x 1+2(x +2)=y 2x 2-2(x -2)(其中x 为G 点的横坐标),即证3y 1x 1+2=-y 2x 2-2,即3k (x 1-4)·(x 2-2)=-k (x 2-4)·(x 1+2),即证4x 1x 2-10(x 1+x 2)+16=0,将(*)代入上式可得4×(64k 2-12)3+4k 2-10×32k 23+4k 2+16=0,即16k 2-3-20k 2+3+4k 2=0,此式明显成立,原命题得证,所以点G 在定直线x =1上. 解法二:显然l 与x 轴不垂直,设l 的方程为y =k (x -4),M (x 1,y 1),N (x 2,y 2).由⎩⎨⎧y =k (x -4)x 24+y 23=1,得(3+4k 2)x 2-32k 2x +64k 2-12=0,Δ>0.设M (x 1,y 1),N (x 2,y 2),G (x 3,y 3),x 1,x 2,x 3两两不相等, 则x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2,|x 1-x 2|=(x 1+x 2)2-4x 1x 2=121-4k 23+4k 2,由A 1,M ,G 三点共线,得y 3x 3+2=y 1x 1+2,①由A 2,N ,G 三点共线,得y 3x 3-2=y 2x 2-2,②①与②两式相除得x 3+2x 3-2=y 2(x 1+2)y 1(x 2-2)=k (x 2-4)(x 1+2)k (x 1-4)(x 2-2) =x 1x 2-(x 1+x 2)+3(x 2-x 1)-8x 1x 2-3(x 1+x 2)+(x 1-x 2)+8=-3, 解得x 3=1,所以点G 在定直线x =1上.存在性问题的解题步骤[对点训练]3.在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.[解] (1)由题设可得M (2a ,a ),N (-2a ,a ),或 M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a (x -2a ),即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2.将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a .当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM =∠OPN ,所以点P (0,-a )符合题意.热点课题20 圆锥曲线综合问题的求解策略[感悟体验](2017·沈阳市高三一测)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-6,0),e =22.(1)求椭圆C 的方程;(2)如图,设R (x 0,y 0)是椭圆C 上一动点,由原点O 向圆(x -x 0)2+(y -y 0)2=4引两条切线,分别交椭圆于点P ,Q ,若直线OP ,OQ 的斜率存在,并记为k 1,k 2,求证:k 1k 2为定值;(3)在(2)的条件下,试问|OP |2+|OQ |2是否为定值?若是,求出该值;若不是,请说明理由.[解] (1)由题意得,c =6,e =22,解得a =23, ∴椭圆C 的方程为x 212+y 26=1.(2)由已知,直线OP :y =k 1x ,OQ :y =k 2x ,且与圆R 相切, ∴|k 1x 0-y 0|1+k 21=2,化简得(x 20-4)k 21-2x 0y 0k 1+y 20-4=0, 同理,可得(x 20-4)k 22-2x 0y 0k 2+y 20-4=0,∴k 1,k 2是方程(x 20-4)k 2-2x 0y 0k +y 20-4=0的两个不相等的实数根,∴x 20-4≠0,Δ>0,k 1k 2=y 20-4x 20-4.∵点R (x 0,y 0)在椭圆C 上,∴x 2012+y 206=1,即y 20=6-12x 20,∴k 1k 2=2-12x 20x 20-4=-12. (3)|OP |2+|OQ |2是定值18.设P (x 1,y 1),Q (x 2,y 2),联立得⎩⎨⎧y =k 1x ,x 212+y 26=1,解得⎩⎨⎧x 21=121+2k 21,y 21=12k211+2k 21,∴x 21+y 21=12(1+k 21)1+2k 21,同理,可得x 22+y 22=12(1+k 22)1+2k 22. 由k 1k 2=-12,得|OP |2+|OQ |2=x 21+y 21+x 22+y 22=12(1+k 21)1+2k 21+12(1+k 22)1+2k 22=12(1+k 21)1+2k 21+12⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-12k 121+2⎝⎛⎭⎪⎫-12k 12=18+36k 211+2k 21=18. 综上:|OP |2+|OQ |2=18.。
专题五 解析几何【高考考场实情】解析几何的本质是用代数的方法研究几何问题,其中蕴含丰富的数学思想:函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想等.因此,要注意数学思想方法在问题解决过程中的核心地位.【考查重点难点】近几年解析几何内容考查的题型归纳与分析如下:考什么怎么考题型与难度1.圆与圆锥曲线的定义、标准方程与性质 考查圆锥曲线的定义、标准方程与性质题型:选择题或填空题难度:基础题 2.直线与(圆)圆锥曲线的位置关系 主要考查直线与圆锥曲线的位置关系题型:解答题难度:中档题或难题 3.与(圆)圆锥曲线有关的X 围与最值 主要考查与圆锥曲线有关的X 围与最值问题,常与函数、不等式交汇命题 题型:解答题 难度:中档题或难题 4.定点、定值的探究与证明①考查以直线、圆、圆锥曲线为载体,探究直线或曲线过定点;②考查与圆锥曲线有关的定值问题.题型:解答题 难度:中档题或难题5. (圆)圆锥曲线中的点、线、参数等存在性问题①考查以圆锥曲线为载体,探究平分面积的线、平分线段的点等问题;②考查某解析式成立的参数是否存在.题型:解答题难度:中档题或难题【存在问题分析】(一)缺乏利用圆锥曲线的定义研究相关问题的意识与模式习惯【指点迷津】定义是数学问题研究的起点.圆锥曲线的定义蕴含了丰富的内涵,对我们的问题的理解与思考有深刻的意义.【例1】(2016全国I 卷理20)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程.(二)缺乏对几何条件代数化(坐标化)方法策略的深入研究【指点迷津】解析几何就是用代数的方法研究几何问题.那么,对题目所给的几何条件如何代数化(坐标化)很值得研究,我们追求的是既要准确转化,又要简便、减少运算量的转化.【例2】(某某2017)已知O 为坐标原点,F 是双曲线()2222:10,0x y a b a bΓ-=>>的左焦点,,A B 分别为Γ的左、右顶点,P 为Γ上一点,且PF x ⊥轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,直线BM 与y 轴交于点N ,若2OE ON =,则Γ的离心率为() A .3 B .2 C .32 D .43(三)缺乏对算法、算理、算式的分析,简化运算的意识待加强有效运算、简便运算是求解解析几何问题必须重视的环节,包括如何设元、如何设方程、如何整体代换、如何化简等.【例3】(2017全国Ⅰ卷理10)已知F 为抛物线C :2=4y x 的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【例4】(2015全国Ⅱ卷理20)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(略)(Ⅱ)若l 过点(,)3mN m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.(四)缺乏参数的选择与解题过程中的优化意识【指点迷津】我们往往需要设元引参,但选择什么作为参数对问题的解决影响较大,【例5】(2017某某高二理11)抛物线2:2C y px =(0)p >与椭圆2222:1x y E a b +=(0)a b >>有相同焦点F ,两条曲线在第一象限内的交点为A .若直线OA 的斜率为2,则椭圆的离心率为A B C 1 D 【解决问题对策】(一)立足概念,返璞归真-----适度挖掘图形的特征,善于运用圆锥曲线的定义.【指点迷津】数形结合思想为指导,把定量的计算与定性的分析(图形的几何性质)有机结合,可简化计算量上.圆锥曲线的定义是根本,利用定义解题是高考的一个重要命题点.圆锥曲线的定义反映了它们的图形特点,是画图的依据和基础,也是问题研究的基础,正确利用定义可以使问题的解决更加灵活.已知圆锥曲线上的点以及焦点,应考虑使用圆锥曲线的定义.【例6】(2015某某理21)如图所示,椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,过2F 的直线交椭圆于P ,Q 两点,且1PQ PF ⊥.(1)若12PF =22PF = (2)若1PF PQ =,求椭圆的离心率e .(二)巧用平几,事半功倍------关注平面几何知识方法与性质在问题转化中的应用,关注几何图形(特别是三角形)相关方法在运算中的应用.【指点迷津】解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,结合平面几何知识,这往往能减少计算量.数学试题中很多图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解.提高等价转化的能力——实现复杂问题简单化,陌生问题熟悉化.例如:①没有图形,不妨画个图形,以便直观思考;②“设—列—验”是求轨迹的通法;③消元转化为一元二次函数(方程),判别式,韦达定理,中点,弦长公式等要把握好;④多感悟“设—列—解”,“设”:设什么?坐标、方程、角、斜率、截距?“列”:列的前提是找关系,“解”:解就是转化、化简、变形,向目标靠拢;⑤紧扣题意,联系图形,数形结合;⑥一旦与自己熟悉的问题接轨立即入位.【例8】在平面直角坐标系xOy 中,已知圆C :22(3)2x y +-=,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值X 围为.【例9】如图所示,过点(1,0)的直线与抛物线2y x =交于A 、B 两点,射线OA 和OB 分别和圆22(2)4x y -+=交于D 、E 两点,若OABODES S λ∆∆=,则λ的最小值等于 A .12 B .13 C .14 D .15ED BOA(三)设而不求,参数归一------立足目标意识,寻求点的坐标之间的关系,剖析变量内在的几何意义,通过整体代换的思想,简化运算过程,实现设而不求,简洁明了、准确解题.【指点迷津】运算繁杂是解析几何最突出的特点.首先,解题中要指导学生克服只重视思路、轻视动手运算的缺点.运算能力差是学生普遍存在的问题,不仅在解析几何问题中要加强训练,在其它板块中也要加强训练,只有把提高学生的运算能力贯彻于教学的过程之中,才能受到较好的效果.其次,要培养学生运算的求简意识,尤其是“设而不求”,充分发挥圆锥曲线的定义和利用平面几何知识化难为易、化繁为简的作用.譬如圆锥曲线中的定点、定值问题,解决的基本思想从变量中寻求不变,即先用变量表示所求的量或点的坐标,再通过推理计算,导出这些量或点的坐标和变量无关.其基本策略:定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.另外,对于某些定点问题的证明,可以先通过特殊情形探求定点坐标,然后对一般情况进行证明,这种方法在填空题中更为实用.【例10】过抛物线24y x =的焦点F 的直线交抛物线于A 、B 两点,分别过A 、B 两点作准线的垂线,垂足分别为1A ,1B 两点,以线段1A 1B 为直径的圆C 过点(2,3)-,则圆C 的方程为() A .22(1)(2)2x y ++-= B .22(1)(1)5x y ++-= C .22(1)(1)17x y +++= D .22(1)(2)26x y +++=【例11】如图,在平面直角坐标系xOy 中,已知椭圆22142x y +=,过坐标原点的直线交椭圆于P 、A 两点,其中点P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线P A 的斜率为k .求证:对任意k >0,都有P A ⊥PB .(四)函数思想,方程互化-----整体意识下利用方程思想处理求值,利用函数思想求X 围和最值.【例12】(2015某某理19)已知椭圆()2222+=10x y a b a b >>的左焦点为(),0F c -,离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆222+4b x y =截得的线段的长为c ,43=3FM .(1)求直线FM 的斜率;(2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值X 围.【例13】(2015某某理20)如图所示,椭圆E :()222210x y a b a b +=>>的离心率是22,过点()0,1P 的动直线l 与椭圆相交于,A B 两点,当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为22.(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PA QBPB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.y xBOPA【新题好题训练】1.已知椭圆的右焦点关于直线的对称点为,点为的对称中心,直线的斜率为,且的长轴不小于,则的离心率( )A. 存在最大值,且最大值为B. 存在最大值,且最大值为C.存在最小值,且最小值为D. 存在最小值,且最小值为2.已知双曲线的一条渐近线与直线垂直,且焦点在圆上,则该双曲线的标准方程为( ) A.B.C. D.3.已知抛物线上的两个动点和,其中且.线段的垂直平分线与轴交于点,则点 C 与圆的位置关系为( )A. 圆上B. 圆外C. 圆内D. 不能确定4.设为椭圆上在第一象限内的一点,,分别为左、右焦点,若,则以为圆心,为半径的圆的标准方程为__________.5.过抛物线:的焦点的直线与抛物线交于、两点,过、两点分别作抛物线的准线的垂线,垂足分别为、,若,,则抛物线的方程为__________.6.已知点是抛物线上一点,且到的焦点的距离为.(1)求抛物线在点处的切线方程;(2)若是上一动点,且不在直线上,过作直线垂直于轴且交于点,过作的垂线,垂足为.证明:为定值,并求该定值.7.已知点为抛物线的焦点,过的直线交抛物线于两点.(1)若直线的斜率为1,,求抛物线的方程;(2)若抛物线的准线与轴交于点,,求的值.8.在直角坐标系中,设点A(-3,0),B(3,0),直线AM,BM相交于点M,且它们的斜率之积是(1)试讨论点M的轨迹形状;(2)当0<b<3时,若点M的轨迹上存在点P(P在x轴的上方),使得∠APB=120°,求b的取值X围. 9.已知,为椭圆:的左、右顶点,,且离心率为.(1)求椭圆的方程;(2)若点为直线上的任意一点,,交椭圆于,两点,求四边形面积的最大值.10.在平面直角坐标系中,以为极点,轴的非负半轴为极轴取相同的长度单位建立极坐标系,曲线的参数方程为(为参数,),直线的极坐标方程为.(1)写出曲线的普通方程和直线的直角坐标方程;(2)若为曲线上任意一点,为直线任意一点,求的最小值.。
2018高考试题分类汇编之解析几何和圆锥曲线理(精校版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考试题分类汇编之解析几何和圆锥曲线理(精校版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考试题分类汇编之解析几何和圆锥曲线理(精校版)(word版可编辑修改)的全部内容。
2017年高考试题分类汇编之解析几何(理)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017课标I 理)已知F 为抛物线x y C 4:2=的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则DE AB +的最小值为( ) 16.A14.B 12.C 10.D2。
(2017课标II 理)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )2.A3.B 2.C 332.D3。
(2017浙江)椭圆22194x y +=的离心率是( ).A .B .C 23.D 594.(2017课标III 理)已知椭圆:C 22221x y a b+=)0(>>b a ,的左、右顶点分别为21,A A 且以线段21A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( ).A .B .C 3.D 135.(2017天津理)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F .若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ).A 22144x y -= .B 22188x y -= .C 22148x y -= .D 22184x y -=6。
高考解答题赏析——圆锥曲线精炼基础1.如图,分别过椭圆E :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点F 1,F 2的动直线l 1,l 2相交于P 点,l 1,l 2与椭圆E 分别交于A ,B 与C ,D 且这四点两两不同,直线OA ,OB ,OC ,OD 的斜率k 1,k 2,k 3,k 4满足k 1+k 2=k 3+k 4.已知当l 1与x 轴重合时,|AB|=23,|CD|=433.(1)求椭圆E 的方程;(2)是否存在定点M ,N ,使|PM|+|PN|为定值?若存在,求出M ,N 点坐标;若不存在,说明理由.解:(1)当l 1与x 轴重合时,由2a =|AB|=23,得a 2=3.又2b 2a =|CD|=433,所以b 2=2,所以椭圆E 的方程为x 23+y 22=1.(2)焦点F 1,F 2的坐标分别为(-1,0),(1,0),当直线l 1或l 2的斜率不存在时,P 点的坐标为(-1,0)或(1,0).当斜率存在时,设直线l 1,l 2的斜率分别为m 1,m 2,设A(x 1,y 1),B(x 2,y 2),由⎩⎨⎧x 23+y 22=1,y =m 1x +1得(2+3m 21)x 2+6m 21x +3m 21-6=0,所以x 1+x 2=-6m 212+3m 21,x 1x 2=3m 21-62+3m 21, 所以k 1+k 2=y 1x 1+y 2x 2=m 1⎝ ⎛⎭⎪⎫x 1+1x 1+x 2+1x 2 =m 1⎝⎛⎭⎪⎫2+x 1+x 2x 1x 2=-4m 1m 21-2.同理k 3+k 4=-4m 2m 22-2.∵k 1+k 2=k 3+k 4,∴-4m 1m 21-2=-4m 2m 22-2,即(m 1m 2+2)(m 2-m 1)=0,由题意得m 1≠m 2,∴m 1m 2+2=0.设P(x ,y),则yx +1·yx -1+2=0,即y 22+x 2=1(x≠±1).当直线l 1或l 2的斜率不存在时,P 点坐标为(-1,0)或(1,0)也满足上式,所以P(x ,y)在椭圆y 22+x 2=1上.所以存在点M ,N ,其坐标分别为(0,-1),(0,1),使得|PM|+|PN|为定值2 2.2.(2017·广州五校联考)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率e =22,且经过点(6,1),O 为坐标原点.(1)求椭圆E 的标准方程;(2)圆O 是以椭圆E 的长轴为直径的圆,M 是直线x =-4在x 轴上方的一点,过M 作圆O 的两条切线,切点分别为P 、Q ,当∠PMQ =60°时,求直线PQ 的方程.解:(1)由题意可得e =c a =22,∵椭圆E 经过点(6,1),∴6a 2+1b 2=1,又a 2-b 2=c 2,解得a =22,b =2,∴椭圆E的标准方程为x28+y24=1.(2)连接OM,OP,OQ,OM与PQ交于点A,依题意可设M(-4,m).由圆的切线性质及∠PMQ=60°,可知△OPM为直角三角形且∠OMP=30°,∵|OP|=22,∴|OM|=42,∴ -4 2+m2=42,又m>0,解得m=4,∴M(-4,4),∴直线OM的斜率k OM=-1,由MP=MQ,OP=OQ可得OM⊥PQ,∴直线PQ的斜率k PQ=1,设直线PQ的方程为y=x+n,∵∠OMP=30°,∴∠POM=60°,∴∠OPA=30°,由|OP|=22知|OA|=2,即点O到直线PQ的距离为2,∴|n|12+ -1 2=2,解得n=±2(舍去负值),∴直线PQ的方程为x-y+2=0.3.已知动点P到定点F(1,0)和直线l0:x=2的距离之比为2 2,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB 相交于一点(与A ,B 不重合).(1)求曲线E 的方程;(2)当直线l 与圆x 2+y 2=1相切时,四边形ACBD 的面积是否有最大值?若有,求出其最大值及对应的直线l 的方程;若没有,请说明理由.解:(1)设点P(x ,y),由题意可得x -1 2+y 2|x -2|=22,整理可得x 22+y 2=1,即曲线E 的方程是x 22+y 2=1.(2)设C(x 1,y 1),D(x 2,y 2),由已知可得|AB|= 2.当m =0时,不合题意. 当m≠0时,由直线l 与圆x 2+y 2=1相切,可得|n|m 2+1=1,即m 2+1=n 2.联立⎩⎨⎧y =mx +n ,x22+y 2=1,消去y得⎝⎛⎭⎪⎫m 2+12x 2+2mnx +n 2-1=0.Δ=4m 2n 2-4⎝⎛⎭⎪⎫m 2+12(n 2-1)=2m 2>0,所以x 1+x 2=-4mn 2m 2+1,x 1x 2=2n 2-22m 2+1, 则S 四边形ABCD =12|AB||x 2-x 1|=22m 2-n 2+12m 2+1=2|m|2m 2+1=22|m|+1|m|≤22,当且仅当2|m|=1|m|,即m =±22时等号成立,此时n =±62.经检验可知,直线y =22x -62和直线y =-22x +62符合题意.链接高考1.(2017·石家庄一模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e =12,点A 为椭圆上一点,∠F 1AF 2=60°,且S △F 1AF 2=3.(1)求椭圆C 的方程;(2)设动直线l :y =kx +m 与椭圆C 有且只有一个公共点P ,且与直线x =4相交于点Q.问:在x 轴上是否存在定点M ,使得以PQ为直径的圆恒过定点M ?若存在,求出点M 的坐标;若不存在,说明理由.解:(1)由e =12可得a 2=4c 2,①S △F 1AF 2=12|AF 1||AF 2|sin60°=3,可得|AF 1||AF 2|=4,在△F 1AF 2中,由余弦定理可得|F 1A|2+|F 2A|2-2|F 1A|·|F 2A|cos60°=4c 2,又|AF 1|+|AF 2|=2a ,可得a 2-c 2=3,② 联立①②得a 2=4,c 2=1,∴b 2=3, ∴椭圆C 的方程为x 24+y 23=1.(2)设点P(x 0,y 0),由⎩⎨⎧y =kx +m ,x 24+y23=1得(4k 2+3)x 2+8kmx +4m 2-12=0,由题意知Δ=64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0,∴x 0=-4km4k 2+3=-4k m ,y 0=3m ,∴P ⎝ ⎛⎭⎪⎫-4k m ,3m .由⎩⎨⎧y =kx +m ,x =4得Q(4,4k +m),假设存在点M ,坐标为(x 1,0),则MP →= ⎝ ⎛⎭⎪⎫-4km-x 1,3m ,MQ →=(4-x 1,4k +m).∵以PQ 为直径的圆恒过M 点,∴MP →·MQ →=0,即-16k m +4kx 1m -4x 1+x 21+12km+3=0, ∴(4x 1-4)km+x 21-4x 1+3=0对任意k ,m 都成立.则⎩⎨⎧4x 1-4=0,x 21-4x 1+3=0,解得x 1=1,故存在定点M(1,0)符合题意.2.(2017·贵阳监测)设点F 1(-c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2=1(a>1)的左、右焦点,P 为椭圆C 上任意一点,且PF 1→·PF 2→的最小值为0.(1)求椭圆C 的方程;(2)如图,动直线l :y =kx +m 与椭圆C 有且仅有一个公共点,作F 1M ⊥l ,F 2N ⊥l 分别交直线l 于M ,N 两点,求四边形F 1MNF 2面积S 的最大值.解:(1)设P(x ,y),则PF 1→=(-c -x ,-y),PF 2→=(c -x ,-y),∴PF 1→·PF 2→=x 2+y 2-c 2=a 2-1a 2x 2+1-c 2,x ∈[-a ,a],由题意得,1-c 2=0,c =1,则a 2=2,∴椭圆C 的方程为x 22+y 2=1.(2)将直线l 的方程l :y =kx +m 代入椭圆C 的方程x 22+y 2=1中,得(2k 2+1)x 2+4kmx +2m 2-2=0,则Δ=16k 2m 2-4(2k 2+1)(2m 2-2)=0,化简得:m 2=2k 2+1.设d1=|F1M|=|-k+m| k2+1,d2=|F2N|=|k+m| k2+1.①当k≠0时,设直线l的倾斜角为θ,则|d1-d2|=|MN|·|tanθ|,∴|MN|=1 |k|·|d1-d2|,∴S=12·1|k|·|d1-d2|·(d1+d2)=2|m|k2+1=4|m|m2+1=4|m|+1|m|,∵m2=2k2+1,∴当k≠0时,|m|>1,|m|+1|m|>2,即S<2.②当k=0时,四边形F1MNF2是矩形,此时S=2.∴四边形F1MNF2面积S的最大值为2.。
突破点13 圆锥曲线中的综合问题(酌情自选)[核心知识提炼]提炼1 解答圆锥曲线的定值、定点问题,从三个方面把握(1)从特殊开始,求出定值,再证明该值与变量无关. (2)直接推理、计算,在整个过程中消去变量,得定值.(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标.提炼2 用代数法求最值与范围问题时从下面几个方面入手(1)若直线和圆锥曲线有两个不同的交点,则可以利用判别式求范围.(2)若已知曲线上任意一点、一定点或与定点构成的图形,则利用圆锥曲线的性质(性质中的范围)求解.(3)利用隐含或已知的不等关系式直接求范围. (4)利用基本不等式求最值与范围. (5)利用函数值域的方法求最值与范围. 提炼3 与圆锥曲线有关的探索性问题(1)给出问题的一些特殊关系,要求探索出一些规律,并能论证所得规律的正确性.通常要对已知关系进行观察、比较、分析,然后概括出一般规律.(2)对于只给出条件,探求“是否存在”类型问题,一般要先对结论作出肯定存在的假设,然后由假设出发,结合已知条件进行推理,若推出相符的结论,则存在性得到论证;若推出矛盾,则假设不存在.[高考真题回访]回访1 圆锥曲线的定值、定点问题1.(2015·全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值. [解] (1)由题意有a 2-b 2a =22,4a 2+2b2=1,2分 解得a 2=8,b 2=4.3分所以C 的方程为x 28+y 24=1.4分(2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入x 28+y 24=1,得(2k 2+1)x 2+4kbx +2b 2-8=0. 6分 故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1. 8分于是直线OM 的斜率k OM =y M x M =-12k,即k OM ·k =-12.11分 所以直线OM 的斜率与直线l 的斜率的乘积为定值. 12分回访2 圆锥曲线中的最值与范围问题2.(2016·全国卷Ⅱ)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,证明:3<k <2. [解] (1)设M (x 1,y 1),则由题意知y 1>0.由已知及椭圆的对称性知,直线AM 的倾斜角为π4.又A (-2,0),因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1得7y 2-12y =0.解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.4分(2)证明:设直线AM 的方程为y =k (x +2)(k >0), 代入x 24+y 23=1得(3+4k 2)x 2+16k 2x +16k 2-12=0.由x 1·(-2)=16k 2-123+4k2得x 1=-4k23+4k2,故|AM |=|x 1+2|1+k 2=121+k23+4k2.由题意,设直线AN 的方程为y =-1k(x +2),故同理可得|AN |=12k 1+k23k 2+4. 7分由2|AM |=|AN |得23+4k 2=k3k 2+4, 即4k 3-6k 2+3k -8=0.9分设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点.f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)单调递增.又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)上有唯一的零点,且零点k 在(3,2)内,所以3<k <2. 回访3 与圆锥曲线有关的探索性问题3.(2016·全国卷Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.[解] (1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t . 1分又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t , 故直线ON 的方程为y =ptx ,将其代入y 2=2px 整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t 2p.因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .4分 所以N 为OH 的中点,即|OH ||ON |=2.6分(2)直线MH 与C 除H 以外没有其他公共点.理由如下:7分直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).9分代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.12分热点题型1 圆锥曲线中的定点问题题型分析:主要考查直线、曲线过定点或两直线的交点在定直线上,以解答题为主. 【例1】 (2017·郑州二模)已知动圆M 恒过点(0,1),且与直线y =-1相切.(1)求圆心M 的轨迹方程;(2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点.【导学号:04024115】[解] (1)由题意,得点M 与点(0,1)的距离始终等于点M 到直线y =-1的距离,由抛物线定义知圆心M 的轨迹为以点(0,1)为焦点,直线y =-1为准线的抛物线,则p2=1,p =2.∴圆心M 的轨迹方程为x 2=4y . 4分(2)证明:由题知,直线l 的斜率存在, ∴设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2), 则C (-x 2,y 2),联立⎩⎪⎨⎪⎧x 2=4y ,y =kx -2,得x 2-4kx +8=0,∴⎩⎪⎨⎪⎧x 1+x 2=4k ,x 1x 2=8. 6分k AC =y 1-y 2x 1+x 2=x 214-x 224x 1+x 2=x 1-x 24,则直线AC 的方程为y -y 1=x 1-x 24(x -x 1), 8分即y =y 1+x 1-x 24(x -x 1)=x 1-x 24x -x 1x 1-x 24+x 214=x 1-x 24x +x 1x 24.10分∵x 1x 2=8,∴y =x 1-x 24x +x 1x 24=x 1-x 24x +2,故直线AC 恒过定点(0,2).12分[方法指津]动线过定点问题的两大类型及解法(1)动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).(2)动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点..[变式训练1] (2017·兰州二模)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2,0),点B (2,2)在椭圆C 上,直线y =kx (k ≠0)与椭圆C 交于P ,Q两点,直线AP ,AQ 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.[解] (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),∵椭圆的左焦点为F 1(-2,0),∴a 2-b 2=4. 2分∵点B (2,2)在椭圆C 上,∴4a 2+2b2=1.解得a 2=8,b 2=4.∴椭圆C 的方程为x 28+y 24=1.5分(2)依题意点A 的坐标为(-22,0),设P (x 0,y 0)(不妨设x 0>0),则Q (-x 0,-y 0),由⎩⎪⎨⎪⎧y =kx ,x 28+y24=1,得x 0=221+2k2,y 0=22k 1+2k2, 6分∴直线AP 的方程为y =k1+1+2k 2(x +22), 7分 直线AQ 的方程为y =k1-1+2k 2(x +22), 8分∴M ⎝ ⎛⎭⎪⎫0,22k 1+1+2k 2,N ⎝ ⎛⎭⎪⎫0,22k 1-1+2k 2,9分∴|MN |=⎪⎪⎪⎪⎪⎪22k1+1+2k 2-22k 1-1+2k 2=2+2k 2|k |.设MN 的中点为E ,则点E 的坐标为⎝⎛⎭⎪⎫0,-2k ,10分则以MN 为直径的圆的方程为x 2+⎝ ⎛⎭⎪⎫y +2k 2=+2k2k2,即x 2+y 2+22ky =4,令y =0,得x =2或x =-2,11分即以MN 为直径的圆经过两定点H 1(-2,0),H 2(2,0).12分热点题型2 圆锥曲线中的定值问题题型分析:圆锥曲线中的定值问题是近几年高考的热点内容,解决这类问题的关键是引入变化的参数表示直线方程、数量积、比例关系等,根据等式恒成立,数式变换等寻找不受参数影响的量.【例2】 (2016·重庆二模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点P ⎝ ⎛⎭⎪⎫1,32与椭圆右焦点的连线垂直于x 轴,直线l :y =kx +m 与椭圆C 相交于A ,B 两点(均不在坐标轴上). (1)求椭圆C 的标准方程;(2)设O 为坐标原点,若△AOB 的面积为3,试判断直线OA 与OB 的斜率之积是否为定值?【导学号:04024116】[解] (1)由题意知⎩⎪⎨⎪⎧1a 2+94b2=1,a 2=b 2+1,解得⎩⎪⎨⎪⎧a 2=4,b 2=3,3分∴椭圆C 的标准方程为x 24+y 23=1.6分(2)设点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,得(4k 2+3)x 2+8kmx +4m 2-12=0,5分由Δ=(8km )2-16(4k 2+3)(m 2-3)>0,得m 2<4k 2+3. 6分∵x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3,∴S △OAB =12|m ||x 1-x 2|=12|m |·434k 2+3-m24k 2+3=3, 8分 化简得4k 2+3-2m 2=0,满足Δ>0,从而有4k 2-m 2=m 2-3(*), 9分∴k OA ·k OB =y 1y 2x 1x 2=kx 1+m kx 2+m x 1x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2=-12k 2+3m 24m 2-12=-34·4k 2-m 2m 2-3,由(*)式,得4k 2-m2m 2-3=1, ∴k OA ·k OB =-34,即直线OA 与OB 的斜率之积为定值-34.12分[方法指津]求解定值问题的两大途径1证明定值:将问题转化为证明待证式与参数某些变量无关2.先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.[变式训练2] 已知椭圆C :x 2a 2+y 2b2=1过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. [解] (1)由题意得a =2,b =1, ∴椭圆C 的方程为x 24+y 2=1.4分又c =a 2-b 2=3,∴离心率e =c a=32. 6分 (2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4. 7分又A (2,0),B (0,1), ∴直线PA 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2. 8分直线PB 的方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1. 10分∴四边形ABNM 的面积S =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2=x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.从而四边形ABNM 的面积为定值.12分热点题型3 圆锥曲线中的最值、范围问题题型分析:圆锥曲线中的最值、范围问题是高考重点考查的内容,解决此类问题常用的方法是几何法和代数法.【例3】 (2017·东北三省四市模拟)已知椭圆C :x 2a2+y 2=1(a >0),F 1,F 2分别是其左、右焦点,以F 1F 2为直径的圆与椭圆C 有且仅有两个交点. (1)求椭圆C 的方程;(2)设过点F 1且不与坐标轴垂直的直线l 交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点P ,点P 横坐标的取值范围是⎝ ⎛⎭⎪⎫-14,0,求线段AB 长的取值范围. [解] (1)因为以F 1F 2为直径的圆与椭圆C 有且仅有两个交点,所以b =c =1,a =2, 所以椭圆C 的方程为x 22+y 2=1.4分(2)根据题意,直线A ,B 的斜率存在且不为0,设直线AB 的方程为y =k (x +1),与x 22+y 2=1联立,消去y 并整理得(1+2k 2)x 2+4k 2x +2k 2-2=0, 设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0), 则x 1+x 2=-4k 21+2k 2,x 1·x 2=2k 2-21+2k2,y 1+y 2=k (x 1+1)+k (x 2+1)=k (x 1+x 2+2)=2k 1+2k 2,即M ⎝ ⎛⎭⎪⎫-2k 21+2k 2,k 1+2k 2.则直线AB 的垂直平分线为y -k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x +2k 21+2k 2,令y =0,得x P =-k21+2k2,因为x P ∈⎝ ⎛⎭⎪⎫-14,0,即-14<-k 21+2k 2<0, 所以0<k 2<12,|AB |=+k 2x 1+x 22-4x 1·x 2]=+k2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-4k 21+2k 22-4·2k 2-21+2k 2=22+k 21+2k2=2⎝⎛⎭⎪⎫1+11+2k 2. ∵12<12k 2+1<1, ∴|AB |∈⎝ ⎛⎭⎪⎫322,22. 12分[方法指津]与圆锥曲线有关的取值范围问题的三种解法1.数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解. 2.构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. 3.构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.[变式训练3] (2017·长沙二模)已知平面内一动点M 与两定点B 1(0,-1)和B 2(0,1)连线的斜率之积等于-12.(1)求动点M 的轨迹E 的方程;(2)设直线l :y =x +m (m ≠0)与轨迹E 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点P ,当m 变化时,求△PAB 面积的最大值.【导学号:04024117】[解] (1)设M 的坐标为(x ,y ),1分 依题意得y +1x ·y -1x =-12,2分 化简得动点M 的轨迹E 的方程为x 22+y 2=1(x ≠0).4分(2)设A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧x 22+y 2=x ,y =x +m ,化简得3x 2+4mx +2m 2-2=0(x ≠0), ∵有两个不同的交点,由根与系数的关系得x 1+x 2=-4m 3,x 1x 2=2m 2-23,6分∴Δ=(4m )2-12(2m 2-2)>0, 即-3<m <3且m ≠-1,0,1.7分设A ,B 的中点为C (x C ,y C ),则x C =x 1+x 22=-2m 3, y C =x C +m =m3,∴C ⎝ ⎛⎭⎪⎫-2m 3,m 3, ∴线段AB 的垂直平分线方程为y -m 3=-⎝ ⎛⎭⎪⎫x +2m 3,令y =0,得P 点坐标为⎝ ⎛⎭⎪⎫-m 3,0.8分则点P 到AB 的距离d =⎪⎪⎪⎪⎪⎪2m 32,9分由弦长公式得|AB |=2·x 1+x 22-4x 1x 2=2324-8m 2,10分∴S △PAB =12·⎪⎪⎪⎪⎪⎪2m 32·23·24-8m 2=229m 2-m2≤229·m 2+3-m 22=23,11分当且仅当m 2=32,即m =±62∈(-3,3)时,等号成立,∴△PAB 面积的最大值为23.12分热点题型4 圆锥曲线中的探索性问题题型分析:探索性问题一般分为探究条件和探究结论两种类型,若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在.若探究结论,则应先写出结论的表达式,再针对表达式进行讨论,往往涉及对参数的讨论.【例4】 (2017·湘中名校联考)如图131,曲线C 由上半椭圆C 1:y 2a 2+x 2b2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32. (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),是否存在直线l ,使得以PQ 为直径的圆恰好过点A ?若存在,求出直线l 的方程;若不存在,请说明理由.图131[解] (1)在C 1,C 2的方程中,令y =0,可得b =1, 且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点. 由e =ca =32及a 2-c 2=b 2=1可得a =2,∴a =2,b =1. 2分 (2)存在.由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).3分由题易知,直线l 与x 轴不重合也不垂直, 设其方程为y =k (x -1)(k ≠0).代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*) 5分设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根.由求根公式,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4. 7分同理,由⎩⎪⎨⎪⎧y =k x -k ,y =-x 2+y得点Q 的坐标为(-k -1,-k 2-2k ).∴AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).9分连接AP 、AQ (图略),依题意可知AP ⊥AQ , ∴AP →·AQ →=0,即-2k 2k 2+4[k -4(k +2)]=0,∵k ≠0,∴k -4(k +2)=0,解得k =-83.11分 经检验,k =-83符合题意,故直线l 的方程为y =-83(x -1).12分[方法指津]探索性问题求解的思路及策略1.思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.2.策略:(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.[变式训练4] (2017·呼和浩特一模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63,直线y =bx +2与圆x 2+y 2=2相切.(1)求椭圆的方程;(2)已知定点E (1,0),若直线y =kx +2(k ≠0)与椭圆相交于C ,D 两点,试判断是否存在实数k ,使得以CD 为直径的圆过定点E ?若存在,求出k 的值;若不存在,请说明理由.【导学号:04024118】[解] (1)∵直线l :y =bx +2与圆x 2+y 2=2相切. ∴2b 2+1=2,∴b =1.2分∵椭圆的离心率e =63, ∴e 2=c 2a 2=a 2-1a 2=⎝ ⎛⎭⎪⎫632,∴a 2=3,4分 ∴所求椭圆的方程是x 23+y 2=1.5分(2)直线y =kx +2代入椭圆方程,消去y 可得 (1+3k 2)x 2+12kx +9=0,∴Δ=36k 2-36>0,∴k >1或k <-1.7分 设C (x 1,y 1),D (x 2,y 2),则有x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2.若以CD 为直径的圆过点E , 则EC ⊥ED .∵EC →=(x 1-1,y 1),ED →=(x 2-1,y 2), ∴(x 1-1)(x 2-1)+y 1y 2=0.9分 ∴(1+k 2)x 1x 2+(2k -1)(x 1+x 2)+5=0, 10分∴(1+k 2)×91+3k 2+(2k -1)×⎝ ⎛⎭⎪⎫-12k 1+3k 2+5=0. 解得k =-76<-1.∴存在实数k =-76使得以CD 为直径的圆过定点E .12分。
专题限时集训(十三) 圆锥曲线中的综合问题(对应学生用书第143页) [建议用时:45分钟]1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,右顶点A (2,0).(1)求椭圆C 的方程;(2)过点M ⎝ ⎛⎭⎪⎫32,0的直线l 交椭圆于B ,D 两点,设直线AB 的斜率为k 1,直线AD 的斜率为k 2,求证:k 1k 2为定值,并求此定值.[解] (1)由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =32,a =2,解得⎩⎨⎧a=2,b =1,c =3,所以C 的方程为x 24+y 2=1.4分(2)证明:由题意知直线l 的斜率不为0,可设直线l 的方程为x =my +32,与x 24+y 2=1联立得(m 2+4)y 2+3my -74=0,6分由Δ>0,设B (x 1,y 1),D (x 2,y 2), 则y 1+y 2=-3mm 2+4,y 1y 2=-74m 2+4,8分k 1k 2=y 1y 2x 1-x 2-=y 1y 2⎝ ⎛⎭⎪⎫my 1-12⎝ ⎛⎭⎪⎫my 2-12=y 1y 2m 2y 1y 2-12m y 1+y 2+14=-74-74m 2+32m 2+14m 2+=-74,∴k 1k 2为定值,定值为-74.15分2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线7x -5y +12=0相切. (1)求椭圆C 的方程;(2)设A (-4,0),过点R (3,0)作与x 轴不重合的直线l 交椭圆C 于P ,Q 两点,连接AP ,AQ 分别交直线x =163于M ,N 两点,若直线MR ,NR 的斜率分别为k 1,k 2,试问:k 1k 2是否为定值?若是,求出该定值,若不是,请说明理由.[解] (1)由题意得⎩⎪⎨⎪⎧c a =12,127+5=b ,a 2=b 2+c 2,∴⎩⎨⎧a =4,b =23,c =2,故椭圆C 的方程为x 216+y 212=1.4分(2)设P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为x =my +3,由⎩⎪⎨⎪⎧x 216+y 212=1,x =my +3,∴(3m 2+4)y 2+18my -21=0,∴y 1+y 2=-18m 3m 2+4,y 1y 2=-213m 2+4.6分由A ,P ,M 三点共线可知y M 163+4=y 1x 1+4,∴y M =28y 1x 1+.8分同理可得y N =28y 2x 2+,∴k 1k 2=y M163-3×y N 163-3=9y M y N 49=16y 1y 2x 1+x 2+. 10分∵(x 1+4)(x 2+4)=(my 1+7)(my 2+7)=m 2y 1y 2+7m (y 1+y 2)+49,∴k 1k 2=16y 1y 2m 2y 1y 2+7m y 1+y 2+49=-127.14分 ∴k 1k 2为定值-127.15分3.(2017·杭州高级中学高三最后一模)已知抛物线C 1:x 2=2py (p >0)与圆C 2:x 2+y 2=8的两个交点之间的距离为4,A ,B 为抛物线C 1上的两点. (1)求p 的值;(2)若C 1在点A ,B 处切线垂直相交于点P ,且点P 在圆C 2内部,直线AB 与C 2相交于C ,D 两点,求|AB |·|CD |的最小值.图136[解] (1)由题易得抛物线与圆的两个交点坐标为(-2,2),(2,2),则代入x 2=2py 得p =1.5分(2)设A ⎝ ⎛⎭⎪⎫x 1,x 212,B ⎝⎛⎭⎪⎫x 2,x 222, 又x 21=2y 1,则PA 的斜率为y ′1=x 1.同理PB 的斜率为y ′2=x 2,所以x 1·x 2=-1, 两切线为y =x 1x -12x 21,y =x 2x -12x 22,交点为P ⎝⎛⎭⎪⎫x 1+x 22,-12, 8分点P 在圆内得x 21+x 22<33, 直线AB 为y =x 1+x 22x +12过抛物线的焦点⎝ ⎛⎭⎪⎫0,12,|AB |=x 212+x 222+p =12(x 21+x 22+2),10分设d 为圆心到直线AB 的距离,则|AB |·|CD |=12(x 21+x 22+2)·28-d 2,d =1x 21+x 22+2, 13分t =x 21+x 22+2∈[4,35),则|AB |·|CD |=8t 2-t , 最小值为231.15分4.已知中心在原点O ,焦点在x 轴上,离心率为32的椭圆过点⎝⎛⎭⎪⎫2,22. (1)求椭圆的方程;图137(2)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,满足直线OP ,PQ ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.【导学号:68334134】[解] (1)由题意可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 则c a =32(其中c 2=a 2-b 2,c >0),且2a 2+12b2=1,故a =2,b =1. 所以椭圆的方程为x 24+y 2=1.4分(2)由题意可知,直线l 的斜率存在且不为0.故可设直线l :y =kx +m (m ≠0),设P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,消去y 得(1+4k 2)x 2+8kmx +4(m 2-1)=0,5分则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0, 且x 1+x 2=-8km 1+4k 2,x 1x 2=m 2-1+4k 2. 6分 故y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2, 7分因为直线OP ,PQ ,OQ 的斜率依次成等比数列,所以y 1x 1·y 2x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2=k 2,即-8k 2m 21+4k2+m 2=0.8分 又m ≠0,所以k 2=14,即k =±12.9分由于直线OP ,OQ 的斜率存在,且Δ>0,得0<m 2<2,且m 2≠1. 设d 为点O 到直线l 的距离,则d =|2m |5,10分|PQ |=+k2x 1+x 22-4x 1x 2]=-m2, 11分所以S =12|PQ |d =m2-m2<m 2+2-m 22=1(m 2≠1),故△OPQ 面积的取值范围为(0,1).15分。