高频电路基础高频振荡电路
- 格式:pptx
- 大小:1.62 MB
- 文档页数:71
高频振荡电路原理图解乐乐课堂振荡电路
高频电路中主要的信号产生器主要分为振幅和频率高度稳定的正弦波产生器和频率受电压调控的压控式正弦波振荡器两大类。
它们被广泛应用于各种通信设备中。
LC基本正弦波产生器
最基本的振荡电路的模型和工作原理如下所示,它可以由一个放大器K和一个反馈网络F的闭环组成。
通过适当选择反馈网络的电抗参数,就能调控振荡的频率。
电感三点式(哈脱莱Hartley)振荡电路
又称为电感反馈振荡电路,其中X2为反馈支路电感。
特点:与射极相连的X1、X2电抗性质同为电感;电路起振容易;最高振荡频率为几十兆赫;但波形和振荡频率稳定性差,改变电容量时频率刻度的变化量是非均匀的,调试和使用不方便。
电容三点式(考毕兹Colpitts)振荡电路
又称为电容反馈振荡电路,其中X2为反馈支路电容。
特点:与射极相连的X1、X2电抗性质同为电容;振荡频率稳定
性好;最高振荡频率为几百兆赫;但电路不易起振,改变电容量时频率刻度的变化量的非均匀性稍有改善。
改进型的电容三点式振荡电路(其中串联改进型称“克拉泼Clapp”振荡电路,并联改进型称“西勒Seiler”振荡电路)
特点:以电容三点式振荡电路为基础,在电感(L)支路中串一
小电容;振荡频率稳定性好;最高振荡频率为几百兆赫至几千兆赫;改变电容量时频率刻度的变化量为均匀变化;起振性能比起电容三点式有所改善:。
第二章一.串联谐振回路1. 串联谐振电路的阻抗为1()Z r j L Cωω=+-,0ωω<时1L Cωω<回路呈现容性而0ωω>时1L Cωω>回路呈现感性,0ωω=时0X =、||Z r =且0φ=,电压电流同相位即回路呈现纯阻性,此时的回路发生了“谐振”; 2.谐振频率为0ω=;3. 品质因数定义为谐振时回路储能和耗能之比即001L Q rCrωω==; 4. 幅频特性||II 22001||1I I Q ωωωω=⇒⎛⎫+- ⎪⎝⎭在“小量失谐的情况下”可表示为0||1I I ≈=⎛+ ;5. 相频特性ωϕQ 值越大曲线越陡峭,线性范围越小0000001||arctan 1j I Ie Q I I jQ ϕωωϕωωωωωω⎛⎫=⋅=⇒=-- ⎪⎛⎫⎝⎭+- ⎪⎝⎭6. 将两个半功率点之间的带宽定义为串联回路的通频带00.7B Qω=。
二.并联谐振回路1. 并联谐振回路的阻抗为1()11()L r j L j C C Z r j L r j L j C Cωωωωωω+⋅=≈+++-,0ωω<时1L C ωω<回路呈现感性而0ωω>时1L C ωω>回路呈现容性,0ωω=时10C L ωω-=、||LZ rC=且0φ=,电压电流同相位即回路呈现纯阻性,回路发生“谐振”; 2.谐振频率为0ω=;3. 品质因数0000011L C Q rCr G LGωωωω====; 4. 幅频特性和相频特性与串联回路相同; 5. 通频带00.7B Qω=。
三.抽头并联回路1. 抽头电路具有阻抗变换和电源变换的作用即21.2.13.TT TR p RV pV I I p ⎧⎪=⎪⎪=⎨⎪⎪=⋅⎪⎩四. 耦合振荡回路1.临界耦合时双调谐回路的带宽为0.70B =; 2. 单调谐回路的矩形系数为9.95而双调谐回路的矩形系数为3.15。
五.石英晶体滤波器 1. 石英晶片的电路模型:C q C q L qr2.石英晶体的串联谐振频率为q ω=,并联谐振频率为q ωω;3. q ωω<或p ωω>时晶体为容性而q p ωωω<<时晶体为感性。
无线电发射电路基础—高频振荡器电路(附制作实例)利用无线电波传递信息,具有传输距离远、传送信息量大、可以穿越大多数障碍物以及无须架设线路等特点,广泛应用于通信、广播、遥控和遥测等领域,也吸引了大批无线电爱好者投身其中。
要发射无线电波,首先要产生无线电波。
“振荡”电路就是按照人们的意愿产生无线电波的“机器”。
高频振荡器振荡器是一种不需要外加输入信号,而能够自己产生输出信号的电路。
产生无线电载波信号的高频振荡器属于正弦波振荡器。
正弦波振荡器由放大电路和反馈电路两部分组成,反馈电路将放大电路输出电压的一部分正反馈到放大电路的输入端,周而复始即形成振荡,如图1所示。
高频振荡器有变压器耦合振荡器、电感三点式振荡器、电容三点式振荡器、晶体振荡器等多种电路形式。
图1正弦波振荡器1.变压器耦合振荡器变压器耦合振荡器电路如图2所示,变压器T包括振荡线圈L2和反馈线圈L1,L2与C2组成LC并联谐振回路,作为晶体管VT的集电极负载,L1接在VT基极。
VT与LC并联谐振回路构成选频放大器,只有频率f=f o的信号得到放大,并经变压器T正反馈至基极,形成振荡,振荡频率f o=1/(2πL2C2),正弦波信号经C4耦合输出。
变压器耦合振荡器的特点是容易起振,输出电压较大,但最高振荡频率较低。
2.电感三点式振荡器所谓三点式振荡器,是指晶体管的3个电极直接与振荡回路的3个端点相连接而构成的振荡器,如图3所示。
图2变压器耦合振荡器图3三点式振荡器等幅波发射机制作实例等幅波发射机可以产生和发射等幅无线电波,即没有被调制的无线电载波信号,它是用各种调制方式传输无线电信号的基础,也可用作等幅无线电报实训或简易无线电遥控。
1.电路原理图14所示为等幅波发射机电路,它实际上就是一个高频振荡器,产生频率为40 MHz的高频无线电波。
晶体管VT1、VT2及L1、C1等构成双管推挽高频振荡器,振荡频率由L1、C1谐振回路决定,电路产生的高频信号由L1耦合至L2,通过天线发射出去。
第二章一.串联谐振回路1. 串联谐振电路的阻抗为1()Z r j L Cωω=+-,0ωω<时1L Cωω<回路呈现容性而0ωω>时1L Cωω>回路呈现感性,0ωω=时0X =、||Z r =且0φ=,电压电流同相位即回路呈现纯阻性,此时的回路发生了“谐振”; 2.谐振频率为0ω=;3. 品质因数定义为谐振时回路储能和耗能之比即001LQ rCrωω==;4. 幅频特性||I I =在“小量失谐的情况下”可表示为0||II ≈=;5. 相频特性ωϕQ 值越大曲线越陡峭,线性范围越小0000001||arctan 1j I Ie Q I I jQ ϕωωϕωωωωωω⎛⎫=⋅=⇒=-- ⎪⎛⎫⎝⎭+- ⎪⎝⎭6. 将两个半功率点之间的带宽定义为串联回路的通频带00.7B Qω=。
二.并联谐振回路1. 并联谐振回路的阻抗为1()11()Lr j L j C C Z r j L r j L j C Cωωωωωω+⋅=≈+++-,0ωω<时1L C ωω<回路呈现感性而0ωω>时1L C ωω>回路呈现容性,0ωω=时10C L ωω-=、||LZ rC=且0φ=,电压电流同相位即回路呈现纯阻性,回路发生“谐振”; 2.谐振频率为0ω=;3. 品质因数0000011LC Q rCr G LGωωωω====; 4. 幅频特性和相频特性与串联回路相同; 5. 通频带00.7B Qω=。
三.抽头并联回路1. 抽头电路具有阻抗变换和电源变换的作用即21.2.13.TTTR p RV pV I I p ⎧⎪=⎪⎪=⎨⎪⎪=⋅⎪⎩四. 耦合振荡回路1.临界耦合时双调谐回路的带宽为0.70B =2. 单调谐回路的矩形系数为9.95而双调谐回路的矩形系数为3.15。
五.石英晶体滤波器 1.石英晶片的电路模型:C q C q L qr2.石英晶体的串联谐振频率为q ω=q ωω≈;3. q ωω<或p ωω>时晶体为容性而q p ωωω<<时晶体为感性。
LC与晶体振荡器实验一、实验目的1、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。
2、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。
3、测量振荡器的反馈系数、波段覆盖系数、频率稳定度等参数。
4、比较LC与晶体振荡器的频率稳定度。
二、实验仪器设备高频电子线路实验箱60M双踪示波器频率计三、实验原理三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1:图1-1 三点式振荡器1、起振条件(1)、相位平衡条件:Xce和Xbe必需为同性质的电抗,Xcb必需为异性质的电抗,且它们之间满足下列关系:(2)、幅度起振条件:式中:qm——晶体管的跨导,Pu——反馈系数,Au——放大器的增益qie——晶体管的输入电导qoe——晶体管的输出电导q L——晶体管的等效负载电导Fu一般在0.1~0.5之间取值2、电容三点式振荡器(1)、电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容Ci和输出电容Co 对频率稳定度的影响较大,且频率不可调。
(a)、考毕兹振荡器(b)、交流等效电路图1-2 考毕兹振荡器(2)、串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L支路中串入——个可调的小电容C3,并加大Cl和C2的容量,振荡频率主要由C3和L决定。
C1和C2主要起电容分压反馈作用,从而大大减小了Ci和Co对频率稳定度的影响,且使频率可调。
(a)、克拉泼振荡器(b)、交流等效电路图1-3、克拉泼振荡器(3)、并联改进型电容反馈三点式电路——西勒振荡器(a)、西勒振荡器(b)、交流等效电路图1-4、西勒振荡器电路如图1-4所示,它是在串联改进型的基础上,在L1两端并联一个小电容C4,调节C4可改变振荡频率。
西勒电路的优点是进一步提高电路的稳定性,振荡频率可以做得较高,该电路在短波、超短波通信机、电视接收机等高频设备中得到非常广泛的应用。