PID回路指令及水箱水位控制(组态王)
- 格式:wps
- 大小:2.05 MB
- 文档页数:28
目录1 《控制系统集成实训》任务书 (2)2 总体设计方案 (4)2.1 系统组成 (4)2.2 水箱液位控制系统构成 (4)2.3 水箱液位控制系统工作原理 (5)2.4 仪表选型 (6)2.4.1 GK-01电源控制屏 (6)2.4.2 GK-02传感器输出与显示 (7)2.4.3 GK-03单片机控制 (7)2.4.4 GK-07交流变频调速 (8)2.4.4 GK-08 PLC可编程控制 (8)2.5 PLC设计流程图 (9)3 外部接线图 (10)4 I/0分配 (10)5 梯形图 (11)6 组态王界面 (15)6.1 主界面 (16)6.2 数据词典 (16)6.3 曲线监控 (17)6.4 水流动画程序 (18)7 调试和运行结果 (19)7.1 比例控制 (19)7.2 比例积分调节 (19)心得体会 (21)参考文献 (22)1.《控制系统集成实训》任务书题目:基于PLC和组态王的液位PID控制系统一、实训任务本课题要求设计液位PID控制系统,它的任务是使水箱液位等于给定值所要求的高度,并通过PID控制减小或消除来自系统内部或外部扰动的影响。
1.实训模块:1、THKGK-1过程控制实验装置GK-02、GK-07、GK-08。
2、计算机及STEP7运行环境(安装好演示程序)、MPI电缆线,组态王软件。
2.控制原理和控制要求:控制原理如图所示,测量值信号由S7-200PLC的AI通道进入,经程序比较测量值与设定值的偏差,然后通过对偏差的P或PI或PID调节得到控制信号(即输出值),并通过S7-200PLC 的AO通道输出。
用此控制信号控制变频器的频率,以控制交流电机的转速,从而达到控制水位的目的。
S7-200PLC和上位机进行通讯,并利用上位机组态王软件实现给定值和PID参数的设置、手动/自动无扰动切换、实时过程曲线的绘制等功能。
二、实训目的通过本次实训使学生掌握:1)实际控制方案的设计;2)编程软件的使用方法和梯形图语言的运用;2)程序的设计及实现方法;3)程序的调试和运行操作技术。
本科毕业论文(设计)题目:基于组态王6.5的串级PID液位控制系统设计学院:自动化工程学院专业:自动化姓名: ### 指导教师: ###2011年 6 月 5 日Cascade level PID control system based on Kingview 6.5摘要开发经济实用的教学实验装置、开拓理论联系实际的实验容,对提高课程教学实验水平,具有重要的实际意义。
就高校学生的实验课程来讲,由于双容水箱液位控制系统本身具有的复杂性和对实时性的高要求,使得在该系统上实现基于不同控制策略的实验容,需要全面掌握自动控制理论及相关知识。
本文通过对当前国外液位控制系统现状的研究,选取了PID控制、串级PID控制等策略对实验系统进行实时控制;通过对实验系统结构的研究,建立了单容水箱和双容水箱实验系统的数学模型,并对系统的参数进行了辨识;利用工业控制软件组态王6.5,并可通用于ADAM模块及板卡等的实现方案,通过多种控制模块在该实验装置上实验实现,验证了实验系统具有良好的扩展性和开放性。
关键词:双容水箱液位控制系统串级PID控制算法组态王6.5 智能调节仪AbstractIt is significant to develop applied experiment device and experiment content which combines theory and practice to improve experimental level of teaching. Based on the current situation of domestic and international level control system, selected the PID control, cascade PID control strategies such asreal-time control of experiment system.Through the study of the structure of experimental system, a single let water tank and double let water tank experiment system mathematical model was founded, and the parameters of the system is identified.Industrial control software configuration king 6.5 is used in experiment, ADAM module and boards, etc can also be suitable for this experiment, through a variety of control module on the device in the experiment verified experimental realization, experimental system has good expansibility and openness.Key Word Double let water tank liquid level control system Cascade PID control algorithm Configuration king 6.5 Intelligent adjusting instrument目录前言 (1)第一章串级液位控制系统介绍 (2)1.1 国外研究现状 (2)1.1.1液位控制系统的发展现状 (2)1.1.2液位控制系统算法的研究现状 (2)1.2 PID控制算法的介绍 (3)1.2.1 PID控制算法的历史 (3)1.2.2 PID控制各环节作用 (4)1.3 串级控制系统介绍 (4)1.4 本文的主要工作 (4)第二章水箱液位控制系统的建模 (6)2.1 水箱液位控制系统的构成 (6)2.2 水箱的建模过程 (7)2.2.1 单容水箱的建模过程 (7)2.2.2 二阶双容水箱的对象特性 (8)2.3水箱液位控制参数辨识方法 (11)2.3.1 单容上水箱的参数辨识 (11)2.3.2 二阶双容水箱的下水箱对象参数辨识 (12)2.4 水箱液位PID参数整定方法 (14)2.4.1上水箱液位的PID整定 (14)2.4.2 主回路和副回路的PID参数整定 (15)第三章组态王6.5简介与操作界面的设计 (17)3.1 组态王6.5简介 (17)3.2基于组态王6.5的液位控制系统上位机部分设计 (18)3.2.1 建立新工程 (18)3.2.2定义外部设备 (19)3.2.3动画设计 (21)3.2.3 组态王6.5的控件中选择历史曲线绘制 (23)第四章设计实验 (24)4.1 设备的连接和检查 (24)4.2 系统连线 (24)4.3 实验步骤 (25)第五章总结与展望 (30)辞 (31)参考文献 (32)前言随着现代科学技术的迅猛发展,工业生产的规模越来越大,结构也越来越复杂,从而使控制对象、控制器以及控制任务和目的日益复杂,而对系统的精度、响应速度和稳定性的要求却越来越高。
组态王串级PID水箱仿真该教程用串级PID算法实现对水箱液位的控制。
一、建立数据变量打开组态王6.55,新建一个工程,将其命名为“串级PID”。
打开工程,根据所需用到的数据类型、数据范围大小、初始值等建立数据变量(详细数据变量见附件1)。
二、搭建仿真画面根据实际器件,开关,阀门,曲线图,数据查看等需要,建立仿真画面(详细步骤见附件2)。
三、将画面动画连接到变量根据仿真时画面的动画要求,设置画面属性和各个器件、曲线图等的动画连接(详见附件2)。
四、编写运行程序打开工程浏览器,文件-命令语言-应用程序命令语言,双击打开程序编辑窗口,输入程序(详见附件3)。
五、调节PID参数运行系统。
分别调节两种PID算法的PID参数,实现对液位的控制。
1、第一种PID算法UK0=(KP+KP/KI+KP*KD)*EK0-(KP+2*KP*KD)*EK1+(KP*KD)*EK2+UK1 2、第二种PID算法UK0=KP*EK0+KI*SUM_EK0+KD*(EK0-EK1)/dt+UK1附件1:数据变量模拟量部分:变量名变量类型最大值最小值描述HM 内存实数100 0 水箱目标液位HS 内存实数100 0 水箱实际液位HC 内存实数120 0 储水池液位W 内存实数100 0 调节阀开度LM 内存实数200 0 目标流量LS 内存实数200 0 实际流量PS 内存实数120 80 水压波动比率G1 内存实数10 0 水管1流量G2 内存实数10 0 水管2流量开关量部分:变量名变量类型初始值描述V 内存离散0 水泵开关V1 内存离散0 阀门1开关V2 内存离散0 阀门2开关P 内存离散0 PID控制开关K 内存离散0 水压波动开关查看量部分:变量名变量类型初始值描述S 内存离散0 查看水箱有无水C 内存离散0 查看储水池有无水T 内存离散0 查看调节阀有无开PID计算部分:变量名变量类型最大值最小值描述EKH0 内存实数1000 -1000 本次液位偏差EKH1 内存实数1000 -1000 上次液位偏差EKH2 内存实数1000 -1000 上上次液位偏差SUM_EKH 内存实数10000 -10000 液位偏差积分UKH0 内存实数10000 -10000 本次液位PID结果UKH1 内存实数10000 -10000 上次液位PID结果KP1 内存实数1000 0 比例参数1KI1 内存实数1000 0 积分参数1KD1 内存实数1000 0 微分参数1EKL0 内存实数1000 -1000 本次流量偏差EKL1 内存实数1000 -1000 上次流量偏差EKL2 内存实数1000 -1000 上上次流量偏差SUM_EKL 内存实数10000 -10000 流量偏差积分UKL0 内存实数10000 -10000 本次流量PID结果UKL1 内存实数10000 -10000 上次流量PID结果KP2 内存实数1000 0 比例参数2KI2 内存实数1000 0 积分参数2KD2 内存实数1000 0 微分参数2TI 内存实数1000 0 时间计数器附录2:按照上图中各器件位置和下面所列各器件图像来源,动画连接、变量参数设置等搭建仿真画面。
- --目录水箱水位控制0第一章绪论0第二章系统需求分析1第三章系统控制方案1第四章系统监控界面设计1第五章数据字典设计2第六章应用程序命令语言2反响中心监控车间的设计4第一章系统监控界面设计4第二章应用程序命令语言4心得体会5水箱水位控制第一章绪论在日常生活中,我们最常见的就是对储水罐液位的控制,系统是根据用户使用水的情况自动向储水罐中注水,确保储水罐也为保持在一定围。
在这里我们运用组态王对单容水箱液位控制系统进展自动控制。
在双容水箱中,我们需要实时检测和调节水箱水位,为为了最大程度上减轻了人们工作负担,需要设计一个组态王液位控制系统对水箱的水位进展实时检测。
双位水箱串级控制系统是被测对象由两个不同容积的水箱串联组成,故称其为双容水箱,控制原理是通过水泵将储水箱中的水送上水箱,通过阀门对其控制,使其可以合理的进展储水,当然,如果进水量大于出水量,则自动通过溢水口排入储水箱。
第二章系统需求分析为了保证系统所需用水的供给,供水系统必须能够及时的对各种用水对象进展供水。
这就要求水塔和储水箱的水位不能低于一定的下限以免断水对人们的正常生活所带来的影响,同时水塔和储水箱的水位又不能高于一定的上限,从而使得水资源可以合理的分配利用。
如果使用组态王来实现软硬结合的控制,将会给系统的各性能带来良好的提升。
第三章系统控制方案整个供水系统可以抽象为主水箱和储水箱两个容器的液位控制。
主水箱的水来自地下,储水箱的液位由水泵和储水箱的出水阀门综合决定。
各种工业用水和生活用水可以用其对应的储水箱的出水管道代替。
这样系统就组态好了。
单容水箱液位控制系统主要有以下几个根本环节组成:被控对象〔水箱〕、液位测量变送器、控制器〔计算机〕、执行机构〔电动调节阀〕、水泵、储水箱。
本文的设计原理:当主水箱进水阀翻开时,水箱液位以较小的速度增长,增到90,水位到达高水位线,发出警报,水箱液位到达98时,主水箱进水阀自动关闭;此时,储水箱水泵翻开,开场抽水,输送到储水箱中;当储水箱液位到达高水位时〔90〕报警,到达液位98时关闭水泵;储水箱出水阀翻开;当储水箱出水阀翻开,并且储水箱液位低于20时,报警,并关闭储水箱出水阀,同时翻开水泵;当主水箱液位低于20时,关闭水泵,同时翻开主水箱进水阀。
基于plc和组态王的水塔水位控制系统摘要本文采用的是西门子型PLC可编程控制器作为水塔水位自动控制系统的核心,对水塔水位自动控制系统的功能性进行了需求分析。
主要实现方法是通过传感器检测水塔的实际水位,将水位具体信息传至PLC构成的控制模块,来控制水泵电机的动作,同时显示水位具体信息,若水位低于或高于某个设定值时,就会发出危险报警的信号,最终实现对水塔水位的自动。
另外在PLC的基础上,运用组态王Kingview工业监控软件,它将PLC过程控制设计、现场操作及资源管理于一体,将水箱控制系统的应用以及信息交流汇集在一起,实现最优化管理。
关键词:水位自动控制、西门子、组态王、水泵、传感器1.设计背景及意义1.1设计背景在工业生产和日常生活中,水位控制越来越重要。
在社会经济飞速发展的今天,水在人们正常生活和生产中起着越来越重要的作用。
一旦断了水,轻则给人民生活带来极大的不便,重则可能造成严重的生产事故及损失。
因此给水工程往往成为高层建筑或工矿企业中最重要的基础设施之一。
任何时候都能提供足够的水量、平稳的水压、合格的水质是对给水系统提出的基本要求。
就目前而言,多数工业、生活供水系统都采用水塔、层顶水塔等作为基本储水设备,由一级或二级水泵从地下市政水管补给。
传统的控制方式存在控制精度低、能耗大、可靠性差等缺点。
可编程控制器(PLC)是根据顺序逻辑控制的需要而发展起来的,是专门为工业环境应用而设计的数字运算操作的电子装置。
鉴于其种种优点,目前水位控制的方式被PLC控制取代。
同时,又有PID控制技术的发展,因此,如何建立一个可靠安全、又易于维护的给水系统是值得我们研究的课题。
1.2设计意义在工农业生产以及日常生活应用中,常常会需要对容器中的液位进行自动控制。
比如自动控制水塔、水池、水槽、锅炉等容器中的蓄水量,生活中抽水马桶的自动补水控制、自动电热水器、电开水机的自动进水控制等。
虽然各种水位控制的技术要求不同,精度不同。
目录1 《控制系统集成实训》任务书 (2)2 总体设计方案 (4)2.1 系统组成 (4)2.2 水箱液位控制系统构成 (4)2.3 水箱液位控制系统工作原理 (5)2.4 仪表选型 (6)2.4.1 GK-01电源控制屏 (6)2.4.2 GK-02传感器输出与显示 (7)2.4.3 GK-03单片机控制 (7)2.4.4 GK-07交流变频调速 (8)2.4.4 GK-08 PLC可编程控制 (8)2.5 PLC设计流程图 (9)3 外部接线图 (10)4 I/0分配 (10)5 梯形图 (11)6 组态王界面 (15)6.1 主界面 (16)6.2 数据词典 (16)6.3 曲线监控 (17)6.4 水流动画程序 (18)7 调试和运行结果 (19)7.1 比例控制 (19)7.2 比例积分调节 (19)心得体会 (21)参考文献 (22)1.《控制系统集成实训》任务书题目:基于PLC和组态王的液位PID控制系统一、实训任务本课题要求设计液位PID控制系统,它的任务是使水箱液位等于给定值所要求的高度,并通过PID控制减小或消除来自系统内部或外部扰动的影响。
1.实训模块:1、THKGK-1过程控制实验装置GK-02、GK-07、GK-08。
2、计算机及STEP7运行环境(安装好演示程序)、MPI电缆线,组态王软件。
2.控制原理和控制要求:控制原理如图所示,测量值信号由S7-200PLC的AI通道进入,经程序比较测量值与设定值的偏差,然后通过对偏差的P或PI或PID调节得到控制信号(即输出值),并通过S7-200PLC 的AO通道输出。
用此控制信号控制变频器的频率,以控制交流电机的转速,从而达到控制水位的目的。
S7-200PLC和上位机进行通讯,并利用上位机组态王软件实现给定值和PID参数的设置、手动/自动无扰动切换、实时过程曲线的绘制等功能。
二、实训目的通过本次实训使学生掌握:1)实际控制方案的设计;2)编程软件的使用方法和梯形图语言的运用;2)程序的设计及实现方法;3)程序的调试和运行操作技术。
自动化应用软件实训组态王Kingview就是一种通用得工业监控软件,它融过程控制设计、现场操作及工厂资源管理于一体,将一个企业内部得各种生产系统与应用以及信息交流汇集在一起,实现了最优化管理。
适用于从单一设备得生产运营管理与故障诊断,到网络结构分布式大型集中监控管理系统得开发。
在日常生活中,我们最常见得就就是对储水罐液位得控制,系统就是根据用户使用水得情况自动向储水罐中注水,确保储水罐也为保持在一定范围内。
在这里我们运用组态王对单容水箱液位控制系统进行自动控制。
2系统需求分析为了保证系统所需用水得供给,供水系统必须能够及时得对各种用水对象进行供水。
这就要求水塔与储水箱得水位不能低于一定得下限以免断水对人们得正常生活所带来得影响,同时水塔与储水箱得水位又不能高于一定得上限,从而使得水资源可以合理得分配利用、如果使用组态王来实现软硬结合得控制,将会给系统得各性能带来良好得提升、3系统方案论证整个供水系统可以抽象为原水箱与储水箱两个容器得液位控制。
原水箱得水来自地下,储水箱得液位由水塔得水泵与储水箱得出水阀门综合决定。
各种工业用水与生活用水可以用其对应得储水箱得出水管道代替。
这样系统就组态好了。
单容水箱液位控制系统主要有以下几个基本环节组成:被控对象(水箱)、液位测量变送器、控制器(计算机)、执行机构(电动调节阀)、水泵、储水箱。
本文得设计原理:当注水阀与用户阀同时打开时,水箱液位以较小得速度增长,增到(60,80)范围内,水位达到动态平衡;当用户阀关闭时,水箱液位以较快速度增长,增到(80,90)范围内,注水阀自动关闭;当注水阀关闭,用户阀打开时,水位下降到30以下,注水阀自动打开。
水位高于80与低于30时,报警指示灯开始闪烁,提醒工作人员系统就是否正常工作。
这样便实现了单容水箱液位得自动控制、4系统监控界面设计设计得界面有:水箱水位监控界面,实时曲线界面,实时报表界面,报警记录界面、历史曲线界面。
计算机控制技术自动化学院黄国辉Email : hgh817@Tel: 86919133QQ: 511372733实验三基于组态王的液位PID 控制实验(水泵控制)第一步创建工程路径新建的工程(项目)第二步创建新画面双击双击快捷键F2能打开图库管理器找到左侧反应器一栏双击同理找出水泵和阀门选择管道从水泵出水口开始按水流方向画线,双击结束选择水箱选择图素前移选择矩形画图,在画面上画出矩形用作水槽选择填充选择过度色类型并选择图素前移,使水槽覆盖水管显示画刷类型增加水箱过度色选择管道属性可改变管道属性,流动效果属性,来设置不同的管道及流动效果。
更改所有管道属性,并移动水泵等位置,和水管位置相匹配。
可更改文字颜色插入文本注意:文字和后面的“####”分两次输入!!!选择按钮选择字符串替换,可更改按钮上的字在工具箱中选择“实时趋势曲线”,放置在合适位置。
保存!第三步配置设备组态王可以与一系列I/O设备进行通讯,支持的I/O设备包括:可编程控制器(PLC)、智能模块、板卡、智能仪表等等。
组态王与I/O设备之间的数据交换采用以下五种方式:串行通讯方式、板卡方式、网络模块、人机接口卡方式、DDE方式。
在本实验中选取ModbusRTU(unpack)通过串口方式进行数据交互。
组态王和单片机进行数据交互有严格的数据格式。
双击点击下拉,找到莫迪康选择COM口1代表下位机设备地址,地址范围为1-255。
添加设备成功ModbusRTU(unpack)协议格式:举例说明举例说明组态王莫迪康系列产品的Modbus RTU驱动帮助)ModBus功能码与组态寄存器对应关系此表为操作相关寄存器对应的功能码表格(主要用到了寄存器4相应的功能码为03,06。
)例如:功能码03,对寄存器4进行读操作,寄存器地址为4xxx功能码06,对寄存器4进行写操作,寄存器地址为4xxx地址为40101:使用寄存器名称为4,dd 为地址通道范围,0101为水泵1实际地址100加上1后的值,因为组态地址通道是从1开始的,没有00地址。
基于组态王的水箱液位PID控制设计孙欢欢;莫岳平;马瑞;钱坤【摘要】以PCT过程控制实验装置为基础,通过对双容水箱液位控制系统的分析建模来决定控制方案;采用增量型PID算法来实现对水箱液位的闭环控制;用凑试法对PID进行参数整定;应用组态王软件运行的液位监控系统来实现液位数据的实时采集、实时显示、历史波形的回放、报警记录以及液位PID控制。
实验结果表明,系统能实现液位的无静态误差控制,且具有良好的稳态性能与动态性能。
%This design is based on PCT process control experimental device, using the double tank water level control system analysis and modeling to decise the control program. Adopting incremental PID algorithm to achieve closed-loop control of water tank level. Employing trial method to set PID parame-ter. Using of kingview software runs liguid level monitoring system to achieve the liguid level data real-time acquisition, real-time display, history waveform playback, alarm record and the level of PID con-trol. The experimental results show that the system can control the liquid level without static error, and has good dynamic performance and steady state performance.【期刊名称】《工业仪表与自动化装置》【年(卷),期】2016(000)004【总页数】4页(P102-104,106)【关键词】液位控制;组态王;PID;参数整定【作者】孙欢欢;莫岳平;马瑞;钱坤【作者单位】扬州大学水利与能源动力工程学院,江苏扬州225127;扬州大学水利与能源动力工程学院,江苏扬州225127;扬州大学水利与能源动力工程学院,江苏扬州225127;扬州大学水利与能源动力工程学院,江苏扬州225127【正文语种】中文【中图分类】TP271该文通过模拟量输入模块接受液位信号、PID算法计算出的控制量uk、模拟量输出模块输出的控制量以实现电动调节阀的自动调节,通过控制进水流量的大小来控制水箱的液位,从而实现液位变量的自动控制与显示。
目录1 《控制系统集成实训》任务书 (2)2 总体设计方案 (4)2.1 系统组成 (4)2.2 水箱液位控制系统构成 (4)2.3 水箱液位控制系统工作原理 (5)2.4 仪表选型 (6)2.4.1 GK-01电源控制屏 (6)2.4.2 GK-02传感器输出与显示 (7)2.4.3 GK-03单片机控制 (7)2.4.4 GK-07交流变频调速 (8)2.4.4 GK-08 PLC可编程控制 (8)2.5 PLC设计流程图 (9)3 外部接线图 (10)4 I/0分配 (10)5 梯形图 (11)6 组态王界面 (15)6.1 主界面 (16)6.2 数据词典 (16)6.3 曲线监控 (17)6.4 水流动画程序 (18)7 调试和运行结果 (19)7.1 比例控制 (19)7.2 比例积分调节 (20)心得体会 (23)参考文献 (24)1.《控制系统集成实训》任务书题目:基于PLC和组态王的液位PID控制系统一、实训任务本课题要求设计液位PID控制系统,它的任务是使水箱液位等于给定值所要求的高度,并通过PID控制减小或消除来自系统部或外部扰动的影响。
1.实训模块:1、THKGK-1过程控制实验装置GK-02、GK-07、GK-08。
2、计算机及STEP7运行环境(安装好演示程序)、MPI电缆线,组态王软件。
2.控制原理和控制要求:控制原理如图所示,测量值信号由S7-200PLC的AI通道进入,经程序比较测量值与设定值的偏差,然后通过对偏差的P或PI或PID调节得到控制信号(即输出值),并通过S7-200PLC 的AO通道输出。
用此控制信号控制变频器的频率,以控制交流电机的转速,从而达到控制水位的目的。
S7-200PLC和上位机进行通讯,并利用上位机组态王软件实现给定值和PID参数的设置、手动/自动无扰动切换、实时过程曲线的绘制等功能。
二、实训目的通过本次实训使学生掌握:1)实际控制方案的设计;2)编程软件的使用方法和梯形图语言的运用;2)程序的设计及实现方法;3)程序的调试和运行操作技术。
内蒙古科技大学信息工程学院测控专业毕业实习报告题目:基于组态王的单容水箱液位控制系统学生姓名:学号:专业:测控技术与仪器班级:测控2009-1指导教师:李文涛教授前言随着科学技术的发展,现代工业生产中的控制问题也日趋复杂。
在人们的生活中以及某些化工和能源的生产过程中,常常涉及一些液位或流量控制的问题。
比如,在石油、化工、轻工等工业生产过程中,有许多贮罐作为原料、半成品的贮液罐,前一道工序的成品或半成品不断地流入下一道工序的贮液罐进行加工和处理,为保证生产过程能连续进行,必须对贮罐的液位进行控制。
此外,居民生活用水的供应,通常需要使用蓄水池,蓄水池中的液位需要维持合适的高度。
还有一些水处理的过程也需要对蓄水池中的液位实施控制。
这些实际问题都可以抽象为某种水箱的液位控制。
因此,液位控制系统是过程控制的重要研究模型,对液位控制系统的研究具有显著的理论和实际意义。
本课题主要以单容水箱作为研究对象,运用研华PCI1710及1720板卡进行单容水箱对象特性的测试,从而求得其数学模型,并利用MATLAB软件进行了控制系统的仿真及分析,并确定出一组合适的PID参数对其进行控制。
其次,采用组态王进行系统监控,通过对调节器PID参数的整定,实现了水箱液位的闭环控制,使水箱液位稳定在设定值,满足设计要求。
一、总体方案设计该设计方案硬件部分由计算机,水泵,电磁阀,液位变送器,PCI-1710与1720板卡组成,软件部分以组态王来实现编程控制。
组态王通过从 PCI-1710与1720板卡两个I/ O模块与外界硬件设备通讯,对采集的数据进行处理来实时监控。
系统启动后,水泵由水源抽水,通过管道将水送到上水箱,液位变送器测得水箱液位通过板卡PCI-1710转换为数字信号输入计算机,组态监控中心对测得信号进行处理,通过PID运算,输出控制信号由板卡PCI-1720进行D/A转换,传送给电磁阀,进而控制水的流量实现对水箱液位控制。
扬州大学广陵学院毕业论文题目:基于组态软件的水箱液位控制班级:姓名:学号:指导老师:2011年6月基于组态软件的水箱液位控制摘要:利用组态王监控软件设计了一个水箱液位实时控制系统。
首先介绍了控制系统的硬件组成、采用的控制方案。
然后,详细描述了利用组态王进行监控画面设计、水箱液位PID控制程序设计、历史数据存储等设计过程。
最后,详细介绍了系统的实验步骤、调试过程、以及毕业设计过程中遇到的问题和解决办法。
实践结果表明,设计的水箱液位控制系统能够实现水箱液位的自动控制,控制效果好,运行稳定,操作方便。
关键词:水箱液位;PID算法;监控系统;组态王。
Water tank fluid position control system design based onKingviewAbstract:Make use of a set of Kingview the supervision software designed a water tank liquid solid control system.The hardware that introduced control system first constitutes, adoption of control project.Then, described to make use of a set of Tai king to carry on supervising and controling an appearance design, water tank liquid in detail PID control program design, history data saving etc. design process.End, introduced the experiment step of system, adjust to try process in detail, and the graduation designs to meet in the process of problem and solution.Practice result enunciation, design of water tank liquid control system to carry out a water tank liquid the automatic control of, control effective, circulate a stability, operate convenience.Key words:Water tank liquid;The calculate way of PID;Supervise and control system;Kingview.目录第一章概述 (3)1.1工业组态技术 (3)1.2水箱液位控制组态流程 (4)第二章总体方案 (5)2.1 系统框图 (5)2.2 硬件组成 (6)2.3 控制方案 (10)第三章系统组态 (12)3.1液位监控主画面设计 (12)3.2变量的定义 (16)3.2.1连接设备的建立和设置 (16)3.2.2数据词典和非线性表的定义 (18)3.3 监控系统报警画面 (20)3.4 监控趋势曲线 (22)3.4.1 液位的实时趋势曲线 (22)3.4.2液位的历史趋势曲线 (23)3.5 液位数据报表 (27)3.6 液位控制命令语言 (30)3.7 组态王与Ms Access数据库间数据的存储与查询 (32)3.71数据源的设置及组态王与数据库的通断 (32)3.72组态王的数据存储和对关系数据库的查询 (35)第四章调试及结果分析 (38)4.1 实验步骤 (38)4.1.1 数字PID控制 (38)4.1.2 温度控制实验 (40)4.1.3单片机控制水箱液位 (41)4.2组态参数整定与调试 (42)4.3 遇到的问题及解决办法 (45)第五章心得体会 (46)附录一单片机的水箱水位控制程序 (47)附录二水位监控命令语言 (50)参考文献 (51)致谢 (51)第一章概述1.1工业组态技术组态的含义是使用软件工具对计算机及软件的各种资源进行配置,达到使计算机或软件按照预先设置,自动执行特定任务,满足使用者要求的目的。
本科毕业论文(设计)题目:基于组态王6.5的串级PID液位控制系统设计学院:自动化工程学院专业:自动化姓名: ### 指导教师: ###2011年 6 月 5 日Cascade level PID control system based on Kingview 6.5摘要开发经济实用的教学实验装置、开拓理论联系实际的实验容,对提高课程教学实验水平,具有重要的实际意义。
就高校学生的实验课程来讲,由于双容水箱液位控制系统本身具有的复杂性和对实时性的高要求,使得在该系统上实现基于不同控制策略的实验容,需要全面掌握自动控制理论与相关知识。
本文通过对当前国外液位控制系统现状的研究,选取了PID控制、串级PID控制等策略对实验系统进行实时控制;通过对实验系统结构的研究,建立了单容水箱和双容水箱实验系统的数学模型,并对系统的参数进行了辨识;利用工业控制软件组态王6.5,并可通用于ADAM模块与板卡等的实现方案,通过多种控制模块在该实验装置上实验实现,验证了实验系统具有良好的扩展性和开放性。
关键词:双容水箱液位控制系统串级PID控制算法组态王6.5 智能调节仪AbstractIt is significant to develop applied experiment device and experiment content which combines theory and practice to improve experimental level of teaching. Based on the current situation of domestic and international level control system, selected the PID control, cascade PID control strategies such asreal-time control of experiment system.Through the study of the structure of experimental system, a single let water tank and double let water tank experiment system mathematical model was founded, and the parameters of the system is identified.Industrial control software configuration king 6.5 is used in experiment, ADAM module and boards, etc can also be suitable for this experiment, through a variety of control module on the device in the experiment verified experimental realization, experimental system has good expansibility and openness.Key Word Double let water tank liquid level control systemCascade PID control algorithmConfiguration king 6.5Intelligent adjusting instrument目录前言0第一章串级液位控制系统介绍11.1 国外研究现状11.1.1液位控制系统的发展现状11.1.2液位控制系统算法的研究现状21.2 PID控制算法的介绍31.2.1 PID控制算法的历史31.2.2 PID控制各环节作用41.3 串级控制系统介绍51.4 本文的主要工作5第二章水箱液位控制系统的建模72.1 水箱液位控制系统的构成72.2 水箱的建模过程82.2.1 单容水箱的建模过程82.2.2 二阶双容水箱的对象特性102.3水箱液位控制参数辨识方法122.3.1 单容上水箱的参数辨识122.3.2 二阶双容水箱的下水箱对象参数辨识142.4 水箱液位PID参数整定方法162.4.1上水箱液位的PID整定162.4.2 主回路和副回路的PID参数整定17第三章组态王6.5简介与操作界面的设计20 3.1 组态王6.5简介203.2基于组态王6.5的液位控制系统上位机部分设计213.2.1 建立新工程213.2.2定义外部设备233.2.3动画设计243.2.3 组态王6.5的控件中选择历史曲线绘制26第四章设计实验274.1 设备的连接和检查274.2 系统连线284.3 实验步骤30第五章总结与展望30辞31参考文献37前言随着现代科学技术的迅猛发展,工业生产的规模越来越大,结构也越来越复杂,从而使控制对象、控制器以与控制任务和目的日益复杂,而对系统的精度、响应速度和稳定性的要求却越来越高。
目录1 《控制系统集成实训》任务书 (2)2 总体设计方案 (4)2.1 系统组成 (4)2.2 水箱液位控制系统构成 (4)2.3 水箱液位控制系统工作原理 (5)2.4 仪表选型 (6)2.4.1 GK-01电源控制屏 (6)2.4.2 GK-02传感器输出与显示 (7)2.4.3 GK-03单片机控制 (7)2.4.4 GK-07交流变频调速 (8)2.4.4 GK-08 PLC可编程控制 (8)2.5 PLC设计流程图 (9)3 外部接线图 (10)4 I/0分配 (10)5 梯形图 (11)6 组态王界面 (15)6.1 主界面 (16)6.2 数据词典 (16)6.3 曲线监控 (17)6.4 水流动画程序 (18)7 调试和运行结果 (19)7.1 比例控制 (19)7.2 比例积分调节 (19)心得体会 (21)参考文献 (22)1.《控制系统集成实训》任务书题目:基于PLC和组态王的液位PID控制系统一、实训任务本课题要求设计液位PID控制系统,它的任务是使水箱液位等于给定值所要求的高度,并通过PID控制减小或消除来自系统内部或外部扰动的影响。
1.实训模块:1、THKGK-1过程控制实验装置GK-02、GK-07、GK-08。
2、计算机及STEP7运行环境(安装好演示程序)、MPI电缆线,组态王软件。
2.控制原理和控制要求:控制原理如图所示,测量值信号由S7-200PLC的AI通道进入,经程序比较测量值与设定值的偏差,然后通过对偏差的P或PI或PID调节得到控制信号(即输出值),并通过S7-200PLC 的AO通道输出。
用此控制信号控制变频器的频率,以控制交流电机的转速,从而达到控制水位的目的。
S7-200PLC和上位机进行通讯,并利用上位机组态王软件实现给定值和PID参数的设置、手动/自动无扰动切换、实时过程曲线的绘制等功能。
二、实训目的通过本次实训使学生掌握:1)实际控制方案的设计;2)编程软件的使用方法和梯形图语言的运用;2)程序的设计及实现方法;3)程序的调试和运行操作技术。