第3章 保护基及其在有机合成中的应用.
- 格式:ppt
- 大小:809.00 KB
- 文档页数:39
有机化学基础知识点有机合成中的保护基与去保护有机合成是有机化学的一个重要分支,它通过一系列的化学反应将简单的有机物转化为目标化合物,是现代有机化学的基础和核心。
在有机合成中,保护基(Protecting Group)和去保护(Deprotection)是经常用到的策略。
保护基是一种暂时性的官能团,它可以在某个特定的反应条件下保护某些功能团,以避免其在反应过程中发生意外的反应或损失。
而去保护则是将保护基从目标分子中除去,使其恢复原有的官能团。
有机合成中常用的保护基包括醚、酯、酸、酮、酰胺等。
它们的选择要考虑到以下几个因素:保护基的选择应易于引入和去除,同时要有足够的稳定性,以确保在反应条件下不发生早期去保护或其他副反应。
此外,还需考虑到保护基的引入和去除条件是否与目标分子的其他功能团相容,避免对其他反应步骤产生干扰。
醚和酯是常用的保护基,它们在酸性条件下稳定,在碱性条件下则容易去除。
当需要保护醇或羟基时,可以选择使用醚保护基,如醚化反应,将目标分子中的醇转化为相应的醚化物。
待其他反应完成后,通过酸催化或氧化还原等条件,将醚保护基去除。
而当需要保护羧酸时,可以选择使用酯保护基,如酯化反应,将目标分子中的羧酸转化为酯化物。
在需要的时候,通过碱的催化作用,将酯保护基去除。
酸和酮也是常见的保护基,它们在碱性条件下稳定,在酸性条件下易于去除。
当需要保护胺基时,可以选择使用酸保护基,如酸化反应,将目标分子中的胺基转化为相应的酸化物。
待其他反应完成后,通过碱的催化作用,将酸保护基去除。
而当需要保护羰基时,可以选择使用酮保护基,如酮化反应,将目标分子中的羰基转化为相应的酮化物。
在需要的时候,通过酸的催化作用,将酮保护基去除。
此外,酰胺也是常用的保护基。
它在碱性条件下稳定,在酸性条件下易于去除。
当需要保护胺基时,可以选择使用酰胺保护基,如酰胺化反应,将目标分子中的胺基转化为相应的酰胺化物。
待其他反应完成后,通过酸的催化作用,将酰胺保护基去除。
第21卷 第5期2005年10月 忻州师范学院学报JOURNAL OF XINZHOU TEACHERS UN IV ERSIT Y Vol.21 No.5 Oct.2005 羰基保护及其在有机合成中的应用赵少琼(北京大学,北京100083)摘 要:论述了保护羰基的意义、保护方法和保护基种类以及在有机合成中的应用,给出了较多的应用实例,阐明保护羰基在有机合成中的重要性和必要性。
关键词:羰基;保护;有机合成中图分类号:O621.3 文献标识码:A 文章编号:1671-1491(2005)05-0058-04 在有机合成中,常常遇到多官能团化合物。
反应时,很多反应物分子内往往不止一个活性中心,一种试剂往往会与其中两个或两个以上的官能团作用,而实际只希望仅与其中的某一个官能团反应。
例如,化合物中含有醛基和酮基,两者具有类似的反应活性。
又如,酮酸酯中,含有酮羰基和酯基,均能与格氏试剂反应。
在这种情况下,不仅常常使反应产物复杂化,而且还会导致所需反应的失败。
为了使仅在其中的一个官能团上反应,常用的方法是用一种称为保护基的试剂,先将不需要发生反应的基团保护起来,使其在反应条件下不会反应,待所需反应完成后,再去除保护基,使不需要发生反应的基团恢复成原来的状态,从而达到其中某一官能团发生反应,其他的官能团不发生反应的效果。
这就是在有机合成中的基团保护的方法。
采用保护基进行基团保护的方法包含上保护基和去保护基的过程。
上保护基是用保护试剂与需要被保护的基团反应,生成被保护了的基团;去保护基则是待反应结束后,选择合适的反应条件将保护基去除,使被保护的基团恢复到原来的状态。
这涉及到保护、去保护两步反应,增加了两步反应,不仅增加了反应的操作和试剂的使用,也会影响反应的总收率。
因此,反应中保护基的选择十分重要。
理想的保护基应当具备四个条件[1]:(1)能选择性地、容易地与被保护基团反应,达到高转化率。
(2)与保护基反应后所生成的结构部分在其他官能团的反应过程中是稳定的,保护基不会受到破坏。
微项目改进手机电池中的离子导体材料——有机合成在新型材料研发中的应用必备知识·素养奠基一、锂离子电池的工作原理1.电极材料2。
原理(1)放电(2)充电二、手机新型电池中离子导体的结构1。
离子导体中有机溶剂的结构特点(1)作为溶剂应具备溶解并传导锂离子的性能。
(2)酯基的存在能很好地提高有机溶剂对锂盐的溶解性,醚键的存在对锂离子的传导具有很好的效果。
(3)有机溶剂应该性能稳定且为固态,具有交联结构的高分子满足这一要求。
2。
离子导体材料我国科学家提出以二缩三乙二醇二丙烯酸酯与丙烯酸丁酯的共聚物做有机溶剂基体,通过与锂盐复合形成聚合物离子导体材料。
三、合成离子导体材料中有机溶剂的单体1.合成反应中一些反应原理R—C≡N+H2O RCOOH(R为H或烃基)CH2CH—CH3CH2CH—CHO+R—OH RO—CH2—CH2—OH(R为H或烃基)CH3—CH CH2+CO+H2CH3—CH2—CH2—(或)R—CHO+CH3—CHO R—CH CH-CHO(R为H或烃基)2。
合成二缩三乙二醇的方法+H2O锂-铜空气燃料电池容量高、成本低,具有广阔的发展前景。
该电池通过一种复杂的铜腐蚀“现象”产生电力,其中放电过程为2Li+Cu2O+H2O2Cu+2Li++2OH-。
(1)放电时,正极的电极反应式是什么?提示:Cu2O+H2O+2e-2OH—+2Cu。
(2)放电时,锂离子透过固体电解质向哪极移动?提示:阳离子向正极移动,则Li+透过固体电解质向Cu极移动。
(3)整个反应过程中,空气的作用是什么?提示:通空气时,铜电极被腐蚀,表面产生Cu2O,所以空气中的O2起到氧化剂的作用。
关键能力·素养形成项目活动1:设计手机新型电池中离子导体材料的结构2020年5月31日下午4时53分,我国在酒泉卫星发射中心使用长征二号丁运载火箭,成功将高分九号02星、和德四号卫星送入预定轨道,发射取得圆满成功。
此次长二丁火箭遥测系统上采用的一组锂离子蓄电池,替换了原先的一组锌银电池,在满足总体对电池的体积和重量的要求下,同时满足了电性能要求的方案。
有机合成中的新型保护基及其反应研究在有机合成中,保护基是一种常用的化学策略,用于保护化合物中的特定官能团或化学键,以防止不必要的反应发生。
新型保护基的研究和开发对于改进有机合成的效率和选择性具有重要意义。
本文将介绍几种新型保护基及其在有机合成中的应用,并探讨其反应机理和优越性。
一、脱甲基三氟硼基(BnOTf)保护基脱甲基三氟硼基是一种常用的保护基,具有高度的稳定性和可逆性。
其在醇类和胺类化合物中的应用得到了广泛研究。
例如,将醇与BnOTf反应可以得到相应的BnO保护醚,通过进一步的反应可以去除BnO保护基,恢复醇的反应性。
这种反应可在中性条件下进行,避免了使用强碱或强酸所产生的废液处理问题。
二、三氟乙酰基(TFA)保护基三氟乙酰基是一种常用的保护基,具有良好的稳定性和选择性。
其在胺类和羧酸类化合物中的应用被广泛研究。
例如,在胺类化合物中引入TFA保护基可以有效阻止胺基的亲电取代反应和氧化反应,从而保护胺官能团。
在需要去除保护基的时候,可以使用碱性条件或有机碱催化下的中性条件进行脱保护反应。
三、硅保护基硅保护基是有机合成中常用的保护策略之一,具有较高的稳定性和可逆性。
硅保护基多用于保护醇羟基和胺基。
例如,在糖类合成中,可使用硅保护基来保护羟基,防止其在反应中发生不必要的反应。
硅保护基还可通过酸催化条件进行脱保护反应,恢复官能团的反应性。
四、新型氨基甲酸酯保护基氨基甲酸酯保护基是一类新型保护基,具有较好的稳定性和可逆性。
其在胺类和羟基化合物中的应用受到了广泛关注。
例如,在生物活性分子的合成中,可通过引入氨基甲酸酯保护基来保护羟基或胺基,以防止其在反应中发生意外的转化或反应。
在需要去除保护基的时候,可以使用酸性条件进行脱保护反应。
总结起来,新型保护基的研究和应用为有机合成提供了更多的选择和便利。
这些保护基具有较高的稳定性和可逆性,可在特定的反应条件和环境下进行脱保护反应,恢复原有的官能团活性。
随着对新型保护基的研究深入,相信会有更多的新型保护基被发现,并在有机合成中发挥重要的作用。