四年级运算定律与简便运算知识点归纳与练习
- 格式:doc
- 大小:20.57 KB
- 文档页数:4
四年级混合运算规则+简便计算练习运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。
5. 乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c。
6. 减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。
运算法则1. 整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2. 整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3. 整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4. 整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。
如果哪一位上不够商1,要补“0”占位。
每次除得的余数要小于除数。
运算顺序1. 没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
2. 有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。
3. 第一级运算:加法和减法叫做第一级运算。
小学数学四年级四则混合运算及运算法则知识点整理附练习题文章目录四则运算(一)加法运算定律:1、两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b=b+a2、先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。
字母公式:(a+b) +c=a+(b+c)(二)乘法运算定律:1、交换两个因数的位置,积不变,这叫做乘法交换律。
字母公式:a×b=b×a2、先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。
字母公式:(a×b)×c=a×(b×c)3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
用字母公式:(a+b)×c=a×c+b×c或a×(b+c) =a×b+a×c拓展:(a-b)×c=a×c-b×c或a×(b-c) =a×b-a×c(三)减法简便运算:1、一个数连续减去两个数,可以用这个数减去这两个数的和。
用字母表示:a-b-c=a-(b+c)2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
用字母表示:a-b-c=a—c-b(四)除法简便运算:1、一个数连续除以两个数,可以用这个数除以这两个数的积。
用字母表示:a÷b÷c=a÷(b×c)2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。
用字母表示:a÷b÷c=a÷c÷b小学四年级数学“四则运算”知识点详解知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
加、减法的速算与巧算( 基础篇 )1、加法运算定律〔2个〕:☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a + b) + c = a + (b + c)〔提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
〕连加的简便计算方法:①使用加法交换律、结合律凑整〔把和是整十、整百、整千的数先交换再结合在一起。
〕②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+〔40+60〕=93+165+35=〔65+35〕+〔28+72〕=100+98 =488+100 =93+〔165+35〕= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—〔150+128〕=528—〔65+35〕 =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
四年级上册简便运算一、运算定律及性质1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)2、乘法交换律:a×b=b×a 4、乘法结合律:(a×b)×c=a×(b×c) 5、乘法分配律:(a+b)×c=a×c+b×c 6、减法的性质:a-b-c=a-(b+c)7、除法的性质:a÷b÷c=a÷(b×c)1.加法①45+32+55 ②63+28+72+372、减法①145-36-45 ②283-56-44 ③197-(42+97)3、乘法①25×13×4 ②125×32×25 ③24×102 ④21×99 ⑤56×23+44×23⑦178×45-45×78 ⑧34×99+344、除法①3000÷125÷8 ②810÷18 ③720÷18÷4 ④630÷(21×2)三、加减凑整法①145+201 ②234+98 ③163-102 ④236-199四年级下册简便计算归类总结简便计算第一种第二种84x101 (300+6)x12504x25 25x(4+8)第三种第四种99x64 99X13+1399x16 25+199X25 第五种第六种125X32X8 3600÷25÷4 25X32X125 8100÷4÷75 88X125 3000÷125÷8 72X125 1250÷25÷5?第七种1200-624-762100-728-772273-73-27847-527-273第八种278+463+22+37732+580+2681034+780320+102425+14+186第九种214-(86+14)787-(87-29)365-(65+118)455-(155+230)第十种576-285+85825-657+57690-177+77755-287+87第十一种871-299157-99363-199968-599第十二种178X101-17883X102-83X217X23-23X7第十三种64÷(8X2)1000÷(125X4)四年级运算定律与简便计算练习题一、判断题。
加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a+b)+c = a+(b+c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35 =(65+35)+(28+72)=100+98 =488+100 =93+(165+35) = 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a-c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
|字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+245!3.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--例2.简便计算:198-75-98.减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244-(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56|(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
小学四年级:运算定律与简便计算公式整理(附练习题)小学四年级:运算定律与简便计算一、运算定律必须弄清加法交换律 a b = b a例:25 37=37 25加法结合律 a b c=a (b c)例:25 37 63=25 (37 63)(扩展) a-b-c=a-(b c)例:125-37-63=25-(37 63)a-b c=a-(b-c)例:300-159 59=300-(159-59)乘法交换律a×b×c=a×c×b例:25×9×4=25×4×9乘法结合律a×b×c=(a×c) ×b例:128×3×8=(125×8) ×3乘法分配律a×(b c)=a×b a×c例:8×(125 25)=8×125 8×25(扩展)a÷b÷c=a÷(c×b)例:100÷5÷2=100÷(5×2)a÷(c×b)= a÷b÷c例:100÷(5×2)=100÷5÷2二、必须背下来的几个算式2×5=102×50=1004×25=1008×25=20012×5=608×125=100037×3=111333=111×3999=333×3=111×9三、加法简便计算训练1、凑整法简便计算:例:(28 36) 64=28 (36 64)=28 100=128182 18 276 24=(182 18)(276 24)=200 300=500小结:多数相加,看尾数是否能凑成整数,将凑成整数的配对先加。
运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
运算定律与简便计算(一)加减法运算定律1.加法交换律:两个加数交换位置,和不变字母表示:a b b a +=+2.加法结合律:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860 举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法性质:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--例2.简便计算:198-75-98减法性质:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律:交换两个因数的位置,积不变。
(完整版)四年级运算定律与简便计算练习题大全—加法运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=-- 例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
运算定律与简便运算班级:姓名:一、加减法运算定律1、加法交换律定义:两个加数交换位置,和不变字母表示:a+=bba+例如:16+23=23+16 546+78=78+5462、加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)+(=++ba+)c(cab注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例题:(1)50+98+50 (2)488+40+60 (3)165+93+35 3.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b-=--bca-ac例题:(1)198-75-98 (2)528—89—128 (3)226-58-26减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)=--a+-bb(cca例题:(1)369-45-155 (2)896-580-120 (3)528—(150+128)(4)126-(26+88)4、加减法的“符号搬家”:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
字母表示:b-=+a+-abcc例题:(1)256-58 +44 (2)123 + 38 - 23 (3)146 -78 +54二、乘除法运算定律1、乘法交换律定义:交换两个因数的位置,积不变。
字母表示:a=a⨯⨯bb例如:85×18=18×85 23×88=88×232、乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变。
字母表示:)ba⨯⨯=⨯⨯a(c)b(c运用:①使用乘法交换律、结合律凑整(把积是整十、整百、整千的数先交换再结合在一起。
)②熟记25×4=100,125×8=1000。
运算定律与简便计算(一)加减法运算定律1.加法交换律:两个加数交换位置,和不变 字母表示:a b b a +=+2.加法结合律:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860 举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法性质:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=-- 例2.简便计算:198-75-98减法性质:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-120 4.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997 随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244 (4)89+997 (5)103-60 (6)458+996 (7)876-580+220 (8)997+840+260 (9)956—197-56 (二)乘除法运算定律1.乘法交换律:交换两个因数的位置,积不变。
小学数学四年级《运算定律》加减法简便计算技巧总结1、加法运算定律:加法交换律:两个加数相加,交换两个加数的位置,和不变。
【交换位置:a+b=b+a】加法结合律:三个加数相加,先把前两个数相加,或先把后两个数相加,和不变。
【加括号,改变运算顺序:a+b+c=a+(b+c)】2、减法运算性质:一个数连续减去两个数,等于这个数减去这两个数的和【a-b-c=a-(b+c)或a-(b+c)=a-b-c】也可以理解为:减法运算中添括号(或去括号)时,括号的前面如果是减号,则添括号(或去括号)后,要把括号内符号变成相反的运算符号。
3、加减法简便计算:加减法简便计算的基本目标和思路:凑整。
加法交换律、结合律以及减法运算性质可以混合使用,并且同时适用于整数、小数以及分数的简便运算。
4、加法凑整技巧:尾数相加等于10的两个数,可以加出凑整(好朋友数相加)减法凑整技巧:尾数相同的两个数相减,可以减出整数(同尾相减)例题详解:例2:425+14+186=425+(14+186)=425+100=525(加法结合律,14+186可以凑整,用加法结合律)例3:245+180+20+155=(245+155)+(180+20)=400+200=600(加法交换律和加法结合律同时使用,两组加数凑整)例1:75+168+25=75+25+168=100+168=268(加法交换律,交换168和25 的位置,75+25可以凑整)例4:528-53-47=528-(53+47)=528-100=428(减法运算性质,加括号之后括号里面变成加号)例5:545―167―145=545-145-167=400-167=233(带符号搬家,交换167和145的位置,再同尾相减)例6:487―187―139―61=(487-187)-(139+61)=300-200=100(487和187同尾相减,139和61加括号后变成加法凑整)例8: 64.3-18.75+15.7-11.25 =64.3+15.7-18.75-11.25 =(64.3+15.7)-(18.75+11.25) =80-30 =50 (加减混合运算,先带符号搬家,把可以凑整的数组合在一起) 例7:34.5-(17.2+4.5) =34.5-17.2-4.5 =34.5-4.5-17.2 =30-17.2=12.8(去括号、交换位置,34.5与4.5可以同尾相减凑整)。
四年级上册简便运算一、运算定律及性质1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)2、乘法交换律:a×b=b×a4、乘法结合律:(a×b)×c=a×(b×c)5、乘法分配律:(a+b)×c=a×c+b×c6、减法的性质:a-b-c=a-(b+c)7、除法的性质:a÷b÷c=a÷(b×c)1.加法①45+32+55 ②63+28+72+372、减法①145-36-45 ②283-56-44 ③197-(42+97)3、乘法①25×13×4 ②125×32×25 ③24×102 ④21×99 ⑤56×23+44×23⑦178×45-45×78 ⑧34×99+344、除法①3000÷125÷8 ②810÷18 ③720÷18÷4 ④630÷(21×2)三、加减凑整法①145+201 ②234+98 ③163-102 ④236-199四年级下册简便计算归类总结简便计算第一种第二种84x101 (300+6)x12504x25 25x(4+8)第三种第四种99x64 99X13+13第五种第六种125X32X8 3600÷25÷4 25X32X125 8100÷4÷75 88X125 3000÷125÷8 72X125 1250÷25÷5第七种1200-624-762100-728-772273-73-27847-527-273第八种278+463+22+37732+580+2681034+780320+102425+14+186第九种214-(86+14)787-(87-29)365-(65+118)455-(155+230)第十种576-285+85825-657+57690-177+77755-287+87第十一种871-299157-99363-199968-599第十二种178X101-17883X102-83X217X23-23X7第十三种64÷(8X2)1000÷(125X4)四年级运算定律与简便计算练习题一、判断题。
运算定律与简便运算班级:姓名:一、加减法运算定律1、加法交换律定义:两个加数交换位置,和不变字母表示:ab b a 例如:16+23=23+16546+78=78+546 2、加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a 注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例题:(1)50+98+50 (2)488+40+60 (3)165+93+353.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:bc a c b a 例题:(1)198-75-98 (2)528—89—128 (3)226-58-26减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a 例题:(1)369-45-155 (2)896-580-120 (3)528—(150+128)(4)126-(26+88)4、加减法的“符号搬家”:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
字母表示:bc a c b a 例题:(1)256-58 +44(2)123 + 38 - 23 (3)146 -78 +54二、乘除法运算定律1、乘法交换律定义:交换两个因数的位置,积不变。
字母表示:ab b a 例如:85×18=18×85 23×88=88×232、乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变。
字母表示:)()(c b a c b a 运用:①使用乘法交换律、结合律凑整(把积是整十、整百、整千的数先交换再结合在一起。
)②熟记25×4=100,125×8=1000。
运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a+=a+bb例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)+a+b++=b(c)(ca注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b=---aca-cb例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)-=--a+bb(cca例 3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956-197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就能够利用加法交换律将原式中的加数实行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置能够互换。
字母表示:b c a c b a --=--例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们能够把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律实行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们能够把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律实行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的实行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
运算定律与简便运算
班级:姓名:
一、加减法运算定律
1、加法交换律
定义:两个加数交换位置,和不变
a?b?b?a字母表示:例如:16+23=23+16 546+78=78+546
2、加法结合律
定义:先把前两个数相加,或者先把后两个数相加,和不变。
(a?b)?c?a?(b?c)字母表示:注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例题:(1)50+98+50 (2)488+40+60 (3)165+93+35
3.减法交换律、结合律
注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
a?b?c?a?c?b字母表示:例题:(1)198-75-98 (2)528—89—128 (3)226-58-26
减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
1
a?b?c?a?(b?c)字母表示:例题:(1)369-45-155 (2)896-580-120 (3)528—(150+128)(4)126-(26+88)
4、加减法的“符号搬家”:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
a?b?c?a?c?b字母表示:例题:(1)256-58 +44 (2)123 + 38 - 23 (3)146 -78 +54
二、乘除法运算定律
1、乘法交换律
定义:交换两个因数的位置,积不变。
a?b?b?a字母表示:例如:85×18=18×85 23×88=88×23
2、乘法结合律
定义:先乘前两个数,或者先乘后两个数,积不变。
(a?b)?c?a?(b?c)字母表示:运用:
①使用乘法交换律、结合律凑整(把积是整十、整百、整千的数先交换再结合在一起。
)
×4×8
2
3、乘法分配律定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
c?b?a?c)?a?c?c?a?c?b?a?(b(a?b)字母表示:,或者是简便计算中乘法分配律及其逆运算是运用最广泛的一个,一定要掌握它和它的逆运算。
,而不能单纯地依靠记忆,c加上b 个c等于a个c乘法分配律的理解:利用乘法的意义进行理解,(a+b)个只有这样才能在运算中熟练运用,减少失误。
乘法分配律简算应用:c×-b×c= a×cc×c= a×+b×c (a-b)(a+b)①类型一(分解式):c b)××c=(a-b+b)×c a×c-c=(a a×c+b×②类型二(合并式):1) -a = a×(b1) a×(99+×b- a×99+a = a③类型三(合并式特殊情况):102
× a×99 a④类型四(分解式特殊情况):2) +×(100×= a(100-1) = a2
a×100×1 = a×+= a×100-a例题: 256 + 256
×)合并特殊: 99 312-135×2 (135 (40+4)1()分解式: 25 ×(2)合并式:×
(4)分解特殊: 45 × 102 (5)分解特殊: 99×26 (6)合并式:35×8 + 35×6-4×35
★乘法结合律与乘法分配律的区别:
乘法结合律的特征是几个数连乘。
3
乘法分配律特征是两数的和乘一个数或两个积的和。
+×4)×4025 ()×25 (2例题:(1)乘法结合律:(40)乘法分配率:4
4、除法交换律、结合律
注:除法交换律、结合律是由乘法交换律和结合律衍生出来的。
除法交换律:如果一个数连续除以两个数,那么后面两个除数的位置可以互换。
a?b?c?a?c?b字母表示:例题:(1)4200÷4÷70 (2)350÷2÷7 (3)660÷12÷11
除法结合律:如果一个数连续除以两个数,那么相当于这个数除以去后面两个数的积。
a?b?c?a?(b?c)字母表示:
注意:①要掌握逆运算。
②有时候需要把其中一个数拆成两个数相乘再运用除法结合律。
例题:(1)3200÷25÷4 (2)3000÷(25×30)(3)360÷24
5、乘除法的“符号搬家”:在计算没有括号的乘、除混合运算时,计算时可以带着运算符号“搬家”。
a?b?c?a?c?b字母表示:
运用:在计算没有括号的乘、除混合运算时,第一个数的位置不变,其余的因数、除数可以带着运算符号“搬家”。
例题:(1)27 ×13 ÷9 (2)250÷8×4
4
★计算时要自觉运用定理使计算简便:
一看:运算符号,数据特点;二想:如何简算,依据是何;
三算:认真计算,小心别错;四查:细心检查,准确无误。
★易错题(运算顺序错误)
(1)120×4÷120×4 (2)735-35×20 (3)36-36÷6-6
(4)100-36+64 (5)102+1-102+1 (6)25×99+99
运算定律与简便运算练习
1、加法交换律和加法结合律
88+56+12 178+350+22 163+49+251 47+236+64
)
156 14 254+744+246+4625+71+75+29 243+89+111+57 286+54++
、减法的性质2 )135+)+-(--—- 45845155 2354456544 5246246694 287-(987
5
3、加减混合运算(加减法“符号搬家”)
235+4067+765 3569+526-1569 36+64-36+64 45627-258-742-1627
4、乘法交换律和乘法结合律
8×142×125 (125×25)×4 25×125×8×4 (25×125)×8×4
(将一个因数分解成两个因数相乘,再用结合律):
48×125 24×25 64×50×125 ×64×125
25
5、乘法分配律①分解式 200+1) 25)×(40-4×((125+9()×8 25+12)×4 24
②合并式56 15 456141564 6440640664 136366464×+××+××-××25-25×
③分解式特殊情况6 105×99 426×101 199×99 99×11 239×101
④合并式特殊情况99×99+99 89×99+89 165×99+165 79×25+25
76×101-76 101×897-897
6、除法的性质÷15÷12 16800÷8÷44500÷÷15 360025 248000÷8÷125
550×÷( 560814÷(11÷)2× 330)48 22 720÷7
7、乘、除混合的简算(乘除法“符号搬家”)4500×102÷90 3600÷80×2 125÷20×8 250÷75×30
8。