202x高考数学刷题首秧第八章概率与统计考点测试55用样本估计总体文含解析
- 格式:docx
- 大小:404.03 KB
- 文档页数:12
高考数学用样本估计总体专项测试(含解析)一样情形下,假如总体的容量较大,不便分析其数据特点,我们能够通过随机抽取一定的样本。
以下是用样本估量总体专项测试,期望考生能够认真练习。
1.甲、乙两名篮球运动员每场竞赛的得分情形用茎叶图表示如右:则下列说法中正确的个数为()①甲得分的中位数为26,乙得分的中位数为36;②甲、乙比较,甲的稳固性更好;③乙有的叶集中在茎3上;④甲有的叶集中在茎1,2,3上.A.1B.2C.3D.42.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是()A.55.2,3.6B.55.2,56.4C.64.8,63.6D.64.8,3.63.某中学高三(2)班甲、乙两名学生自高中以来每次考试成绩的茎叶图如图,下列说法正确的是()A.乙学生比甲学生发挥稳固,且平均成绩也比甲学生高B.乙学生比甲学生发挥稳固,但平均成绩不如甲学生高C.甲学生比乙学生发挥稳固,且平均成绩比乙学生高D.甲学生比乙学生发挥稳固,但平均成绩不如乙学生高4.为了研究某药品的疗效,选取若干名理想者进行临床试验.所有理想者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组.下图是依照试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.185.(2021福建宁德模拟)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A.46,45,56B.46,45,53C.47,45,56D.45,47,536.某工厂对一批产品进行了抽样检测.下图是依照抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范畴是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克同时小于104克的产品的个数是()A.90B.75C.60D.457.某赛季,甲、乙两名篮球运动员都参加了11场竞赛,他们每场竞赛得分的情形用右图所示的茎叶图表示,若甲运动员的中位数为a,乙运动员的众数为b,则a-b= .8.为了调查某厂工人一辈子产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85), [85,95],由此得到频率分布直方图如图,则由此估量该厂工人一天生产该产品数量在[55,70)的人数约占该厂工人总数的百分率是.9.(2021广东,文17)某车间20名工人年龄数据如下表:年龄(岁) 工人数(人) 19 1 28 3 29 3 30 5 31 4 32 3 40 1 合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.能力提升组10.在发生某公共卫生事件期间,有专业机构认为该事件在一段时刻没有发生大规模群体感染的标志为连续10天,每天新增疑似病例不超过7人.依照过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为311.样本(x1,x2,,xn)的平均数为,样本(y1,y2,,ym)的平均数为),若样本(x1,x 2,,xn,y1,y2,,ym)的平均数= +(1-),其中0,则n,m的大小关系为()A.nm C.n=m D.不能确定12.(2021课标全国Ⅰ,文18)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125) 频数6 26 38 2 2 8(1)在答题卡上作出这些数据的频率分布直方图;(2)估量这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)依照以上抽样调查数据,能否认为该企业生产的这种产品符合质量指标值不低于95的产品至少要占全部产品80%的规定?参考答案1.C 解析:由茎叶图可知乙的集中趋势更好,故②错误,①③④正确.2.D 解析:每一个数据都加上60时,平均数也应加上60,而方差不变.3.A 解析:从茎叶图可知乙同学的成绩在80~100分分数段的有9次,而甲同学的成绩在80~100分分数段的只有7次;再从题图上还能够看出,乙同学的成绩集中在90~100分分数段的最多,而甲同学的成绩集中在80~90分分数段的最多.故乙同学比甲同学发挥较稳固且平均成绩也比甲同学高.4.C 解析:设样本容量为n,由题意,得(0.24+0.16)1n=20,解得n=50.因此第三组频数为0.36150=18.因为第三组中没有疗效的有6人,因此第三组中有疗效的人数为18-6=12.5.A 解析:茎叶图中共有30个数据,因此中位数是第15个和第16个数字的平均数,即(45+47)=46,排除C,D;再运算极差,最小数据是12,最大数据是68,因此68-12=56,故选A.6.A 解析:样本中产品净重小于100克的频率为(0.050+0.100)2=0.3,又频数为36,样本容量为=120.样本中净重大于或等于98克同时小于104克的产品的频率为(0.100+0. 150+0.125)2=0.75,样本中净重大于或等于98克同时小于104克的产品的个数为1200.75= 90.7.8 解析:由茎叶图可知,a=19,b=11,a-b=8.8.52.5% 解析:结合直方图能够看出:生产数量在[55,65)的人数频率为0. 0410=0.4,生产数量在[65,75)的人数频率为0.02510=0.25,而生产数量在[65,7 0)的人数频率约为0.25=0.125,因此生产数量在[55,70)的人数频率约为0.4+0. 125=0.525,即52.5%.9.解:(1)由图可知,众数为30.极差为:40-19=21.(2)1 92 8889993 0000011112224 0(3)依照表格可得:=30,s2=[(19-30)2+3(28-30)2+3(29-30)2+5(30-30)2+4(31-30)2+3(32-30)2+(40-30)2]=12.6.10.D 解析:依照信息可知,连续10天内,每天的新增疑似病例不能有超过7的数,选项A中,中位数为4,可能存在大于7的数;同理,在选项C中也有可能;选项B中的总体方差大于0,叙述不明确,假如数目太大,也有可能存在大于7的数;选项D中,依照方差公式,假如有大于7的数存在,那么方差可不能为3,故答案选D.11.A 解析:由题意知样本(x1,,xn,y1,,ym)的平均数为,又= +(1-),即=,1-=.死记硬背是一种传统的教学方式,在我国有悠久的历史。
高考数学中的概率与统计题详解概率与统计是高考数学中的重要内容之一,涉及概率、统计两个部分。
概率是研究随机事件发生的可能性,统计则是根据观察到的现象,对总体进行推断。
在高考中,概率与统计题往往需要运用一定的公式和推理能力来解答。
下面将详细介绍高考中常见的概率与统计题,并提供相关的解题技巧。
一、概率题概率题常见于高考数学中,考察学生对随机事件和概率的理解与计算能力。
下面将从基本定义、计算公式和常见类型等方面对概率题进行详解。
1.基本定义概率是事件发生的可能性大小的度量,用一个介于0和1之间的数表示。
当事件不可能发生时,概率为0;当事件一定发生时,概率为1。
2.计算公式(1)事件A的概率:P(A) = 事件A的可能结果数 / 样本空间的可能结果数。
(2)互斥事件的概率:P(A或B) = P(A) + P(B)。
(3)独立事件的概率:P(A和B) = P(A) × P(B)。
3.常见类型(1)选择题:将概率题与其他数学知识相结合,如求百分比、比例等。
解题时应根据题目给出的条件,利用计算公式进行计算。
(2)排列组合问题:对于不同颜色、大小、形状的球,求取满足某个条件的组合数。
解题时应根据题目所给条件,使用排列组合公式进行计算。
(3)事件的复合:求两个或多个事件复合后的概率。
解题时应根据题目所给条件,利用计算公式进行计算。
二、统计题统计题常见于高考数学中,考察学生对收集、整理和分析数据的能力,以及对统计方法的应用。
下面将从数据收集与整理、统计指标和抽样调查等方面对统计题进行详解。
1.数据收集与整理统计题要求学生根据给定的数据进行分析和计算。
在实际情境中,常见的数据收集方法有观察、问卷调查、实验等。
解题时应根据题目所给的数据,进行整理和清晰的分类。
2.统计指标统计指标是对统计数据进行度量和描述的指标。
常见的统计指标有均值、中位数、众数、标准差等。
解题时应根据题目所要求的统计指标,运用相应的公式进行计算。
江苏省苏州市高考数学一轮复习:55 用样本估计总体姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·武汉模拟) 如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A . 11B . 11.5C . 12D . 12.52. (2分)在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A . 92,2B . 92,2.8C . 93,2D . 93,2.83. (2分)(2017·银川模拟) 某校为了解学生对数学学案质量的满意度,从高一、高二两个年级分别随机调查了20个学生,得到对学案满意度评分(满分100分)的茎叶图如图:则下列说法错误的是()A . 高一学生满意度评分的平均值比高二学生满意度评分的平均值高B . 高一学生满意度评分比较集中,高二学生满意度评分比较分散C . 高一学生满意度评分的中位数为80D . 高二学生满意度评分的中位数为744. (2分) (2020·重庆模拟) 为了更好地支持“中小型企业”的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:①样本数据落在区间的频率为0.45;②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;③样本的中位数为480万元.其中正确结论的个数为()A . 0B . 1C . 2D . 35. (2分)设等差数列的公差为d,若的方差为2,则d等于()A . 1B . 2C . ±1D . ±26. (2分)在一次模拟考试后,从高三某班随机抽取了20位学生的数学成绩,其分布如下:分组[90,100][100,110)[110,120)[120,130)[130,140)[140,150)频数126731分数在130分(包括130分)以上者为优秀,据此估计该班的优秀率约为()A . 10%B . 20%C . 30%D . 40%7. (2分)对于样本频率分布直方图与总体密度曲线的关系,下列说法正确的是()A . 频率分布直方图与总体密度曲线无关B . 频率分布直方图就是总体密度曲线C . 样本总量很大的频率分布直方图就是总体密度曲线D . 如果样本容量无限增大,分组的组距无限减小,那么频率分布直方图就会无限接近于总体密度曲线8. (2分) 10名工人某天生产同一种零件,生产的件数是15,17,14,10,15,17,17,16,14,12;设其平均数为,中位数为,众数为,则有()A .B .C .D .9. (2分) (2016高二下·南安期中) 从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图由图中数据可知身高在[120,130]内的学生人数为()A . 20B . 25C . 30D . 3510. (2分)为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第1小组的频数为6,则报考飞行员的学生人数是A . 36B . 40C . 48D . 5011. (2分) (2020高三上·泸县期末) 某家庭去年收入的各种用途占比统计如下面的折线图,今年收入的各种用途占比统计如下面的条形图.已知今年的“旅行”费用比去年增加了3500元,则该家庭今年“衣食住”费用比去年增加了()A . 2000元B . 2500元C . 3000元D . 3500元12. (2分)(2017·包头模拟) 在某中学举行的环保知识竞赛中,将三个年级参赛的学生的成绩进行整理后分为5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80~100分的学生人数是()A . 15B . 18C . 20D . 25二、填空题 (共5题;共5分)13. (1分) (2019高一下·郑州期末) 水痘是一种传染性很强的病毒性疾病,易在春天爆发.市疾控中心为了调查某校高一年级学生注射水症疫苗的人数,在高一年级随机抽取5个班级,每个班抽取的人数互不相同,若把每个班级抽取的人数作为样本数据.已知样本平均数为7,样本方差为4,则样本数据中的最大值是________.14. (1分)(2018·新疆模拟) 一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图.为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在(元)月收入段应抽出________人.15. (1分)(2018高一下·南阳期中) 已知样本数据的方差,则样本数据的平均数为________.16. (1分) (2016高一下·南市期中) 某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如图所示,则这组数据的中位数与众数分别为________.17. (1分) (2017高一下·河北期末) 某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的(产品净重,单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,下列命题中:①样本中净重大于或等于98克并且小于102克的产品的个数是60;②样本的众数是101;③样本的中位数是;④样本的平均数是101.3.正确命题的代号是________(写出所有正确命题的代号).三、解答题 (共5题;共60分)18. (10分)(2020·漳州模拟) 某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示参考数据:参考公式:回归直线方程,其中(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不同,现对两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:使用寿命/材料类1个月2个月3个月4个月总计型A20353510100B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料?19. (10分)(2018·丰台模拟) 某地区工会利用“健步行APP”开展健步走积分奖励活动.会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分).为了解会员的健步走情况,工会在某天从系统中随机抽取了1000名会员,统计了当天他们的步数,并将样本数据分为,,,,,,,,九组,整理得到如下频率分布直方图:(Ⅰ)求当天这1000名会员中步数少于11千步的人数;(Ⅱ)从当天步数在,,的会员中按分层抽样的方式抽取6人,再从这6人中随机抽取2人,求这2人积分之和不少于200分的概率;(Ⅲ)写出该组数据的中位数(只写结果).20. (10分) (2018高三上·云南期末) 为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为15.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过65公斤的学生人数,求的分布列及数学期望.21. (15分)某购物中心为了了解顾客使用新推出的某购物卡的顾客的年龄分布情况,随机调查了100位到购物中心购物的顾客年龄,并整理后画出频率分布直方图如图所示,年龄落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.(1)求顾客年龄值落在区间[75,85]内的频率;(2)拟利用分层抽样从年龄在[55,65),[65,75)的顾客中选取6人召开一个座谈会,现从这6人中选出2人,求这两人在不同年龄组的概率.22. (15分) (2016高一下·福州期中) 某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共60分)18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、。
第二节用样本估计总体课标解读考向预测1.会用统计图表对总体进行估计,会求n 个数据的第p 百分位数.2.能用样本的数字特征估计总体集中趋势和总体离散程度.用样本估计总体在高考中出题频率较高,常结合频率分布直方图、样本的数字特征出题.预计2025年高考将会以与统计图表的识读、成对数据的统计分析相综合的形式呈现.必备知识——强基础1.总体百分位数的估计(1)第p 百分位数的定义一般地,一组数据的第p 百分位数是这样一个值,它使得这组数据中至少有01p %的数据小于或等于这个值,且至少有(100-p )%的数据大于或等于这个值.(2)四分位数常用的分位数有第25百分位数,第50百分位数(即中位数),第75百分位数.这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数.其中第0225百分位数也称为第一四分位数或下四分位数,第0375百分位数也称为第三四分位数或上四分位数.2.样本的数字特征(1)众数:一组数据中04出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于05最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把06a 1+a 2+…+a n n称为a 1,a 2,…,a n 这n 个数的平均数.(4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x -,则这组数据的标准差和方差分别是s =1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].3.总体平均数、方差、标准差与样本平均数、方差、标准差名称定义总体均值(总体平均数)、方差、标准差一般式:如果总体中有N个个体,它们的变量值分别为Y1,Y2,…,Y N,则称Y-=Y1+Y2+…+Y NN=1N∑Ni=1Y i为07总体均值,又称总体平均数,称S2=1N∑Ni=1(Y i-Y-)2为08总体方差,S=S2为09总体标准差加权式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数为f i(i=1,2,…,k),则总体均值为Y-=101N∑ki=1f i Y i,总体方差为S2=111N∑ki=1f i(Y i-Y-)2样本均值(样本平均数)、方差、标准差如果从总体中抽取一个容量为n的样本,它们的变量值分别为y1,y2,…,y n,则称y-=y1+y2+…+y nn=1n∑ni=1y i为12样本均值,又称样本平均数,称s2=1n∑ni=1(y i-y-)2为13样本方差,s=s2为14样本标准差说明:(1)在简单随机抽样中,我们常用样本平均数、方差、标准差去估计总体平均数、方差、标准差.(2)总体平均数、方差、标准差是一个确定的数,样本平均数、方差、标准差具有随机性(因为样本具有随机性).(3)一般情况下,样本量越大,估计越准确1.频率分布直方图与众数、中位数、平均数的关系(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.平均数、方差的公式推广若数据x1,x2,…,x n的平均数为x-,方差为s2,那么mx1+a,mx2+a,mx3+a,…,mx n +a的平均数是m x-+a,方差为m2s2.1.概念辨析(正确的打“√”,错误的打“×”)(1)对一组数据来说,平均数和中位数总是非常接近.()(2)一组数据的方差越大,说明这组数据越集中.()(3)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.()答案(1)×(2)×(3)√2.小题热身(1)(人教A 必修第二册习题9.2T1改编)下列一组数据的第25百分位数是()2.1,3.0,3.2,3.8,3.4,4.0,4.2,4.4,5.3,5.6A .3.2B .3.0C .4.4D .2.5答案A解析把该组数据按照由小到大的顺序排列,可得2.1,3.0,3.2,3.4,3.8,4.0,4.2,4.4,5.3,5.6,由i =10×25%=2.5,不是整数,得第3个数据3.2是第25百分位数.(2)(多选)(人教B 必修第二册习题5-1B T3改编)给出一组数据:1,3,3,5,5,5,下列说法正确的是()A .这组数据的极差为4B .这组数据的平均数为3C .这组数据的中位数为4D .这组数据的众数为3和5答案AC解析这组数据的极差为5-1=4,A 正确;这组数据的平均数为1+3×2+5×36=113,B 错误;这组数据的中位数为3+52=4,C 正确;这组数据的众数为5,D 错误.(3)(人教B 必修第二册练习B T4改编)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1∶2∶1,用比例分配的分层随机抽样的方法从3个分厂生产的电子产品中共抽取100件进行使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的平均使用寿命分别为980h ,1020h ,1032h ,则抽取的100件产品的平均使用寿命为________h.答案1013解析由比例分配的分层随机抽样的知识可知,从第一、二、三分厂抽取的电子产品件数分别为25,50,25,则抽取的100件产品的平均使用寿命为1100×(980×25+1020×50+1032×25)=1013(h).(4)已知一组数据的频率分布直方图如图,则众数是________,平均数是________.答案6567解析因为最高小长方形底边中点的横坐标为65,所以众数为65;平均数x -=(55×0.030+65×0.040+75×0.015+85×0.010+95×0.005)×10=67.考点探究——提素养考点一百分位数的计算例1(1)(2023·江苏南通海安质量监测)“双减”政策实施后,学生的课外阅读增多.某班50名学生到图书馆借书数量统计如下:借书数量/本5678910频数/人58131194则这50名学生的借书数量的上四分位数是()A .8B .8.5C .9D .10答案C解析由50×75%=37.5,故第75百分位数为借书数量从小到大排序后的第38个,又5+8+13+11=37<38<5+8+13+11+9=46,故上四分位数(第75百分位数)是9.(2)某校为了了解高三年级学生的身体素质状况,在开学初举行了一场身体素质体能测试,以便对体能不达标的学生进行有针对性的训练,促进他们体能的提升,现从整个年级测试成绩中抽取100名学生的测试成绩,并把测试成绩分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]六组,绘制成频率分布直方图(如图所示).其中分数在[90,100]这一组内的纵坐标为a ,则该次体能测试成绩的80%分位数约为________分.答案92解析由频率分布直方图知,10×(0.002+0.004+0.014+0.020+a+0.035)=1,得a=0.025.因为0.02+0.04+0.14+0.20+0.35=0.75,所以该次体能测试成绩的80%分位数落在[90,100]内,设其为x,则由(x-90)×0.025=0.05,解得x=92.【通性通法】计算一组n个数据第p百分位数的步骤【巩固迁移】1.为了养成良好的运动习惯,某人记录了自己一周内每天的运动时长(单位:分钟),分别为53,57,45,61,79,49,x,若这组数据的第80百分位数与第60百分位数的差为3,则x =()A.58或64B.59或64C.58D.59答案A解析将已知的6个数从小到大排序为45,49,53,57,61,79.若x≤57,则这组数据的第80百分位数与第60百分位数分别为61和57,它们的差为4,不符合条件;若x≥79,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若57<x<79,则这组数据的第80百分位数与第60百分位数分别为x和61(或61和x),则|x-61|=3,解得x=58或x=64.故选A.2.(2024·安徽十校联考)学校组织班级知识竞赛,某班的8名学生的成绩(单位:分)分别是68,63,77,76,82,88,92,93,则这8名学生成绩的75%分位数是()A.88分B.89分C.90分D.92分答案C解析8名学生的成绩从小到大排列为63,68,76,77,82,88,92,93,因为8×75%=6,所以75%分位数为第6个数和第7个数的平均数,即12×(88+92)=90(分).考点二总体集中趋势的估计例2(1)(2024·山东临沂模拟)10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则()A.a>b>c B.c>b>aC.c>a>b D.b>c>a答案B解析将生产的件数由小到大排列为10,12,14,14,15,15,16,17,17,17,a=110×(15+17+14+10+15+17+17+16+14+12)=14.7,b=15,c=17.因此c>b>a.故选B.(2)(多选)(2023·湖北荆州中学模拟)某公司为提高职工政治素养,对全体职工进行了一次时事政治测试,随机抽取了100名职工的成绩,并将其制成如图所示的频率分布直方图,以样本估计总体,则下列结论中正确的是()A.该公司职工的测试成绩不低于60分的人数约占总人数的80%B.该公司职工测试成绩的中位数约为70分C.该公司职工测试成绩的平均值约为68分D.该公司职工测试成绩的众数约为60分答案BC解析对于A,该公司职工的测试成绩不低于60分的频率为(0.02+0.015)×20=0.70,∴该公司职工的测试成绩不低于60分的人数约占总人数的70%,故A错误;对于B,测试成绩在[20,60)的频率为(0.005+0.01)×20=0.3,测试成绩在[60,80)的频率为0.02×20=0.4,∴该公司职工测试成绩的中位数约为60+0.5-0.30.4×20=70分,故B 正确;对于C ,该公司职工测试成绩的平均值约为x -=30×0.005×20+50×0.01×20+70×0.02×20+90×0.015×20=68分,故C 正确;对于D ,该公司职工测试成绩的众数约为60+802=70分,故D 错误.故选BC.【通性通法】频率分布直方图中的数字特征(1)众数:最高矩形的底边中点的横坐标.(2)中位数:中位数左边和右边的矩形的面积和应该相等.(3)平均数:各组区间的中点值与对应频率之积的和.【巩固迁移】3.某市市民用水拟实行阶梯水价,每人月用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w 至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w =3时,估计该市居民该月的人均水费.解(1)如题图所示,用水量在[0.5,2)的频率为(0.2+0.3+0.4)×0.5=0.45,用水量在[0.5,3)的频率为(0.2+0.3+0.4+0.5+0.3)×0.5=0.85.∴用水量小于等于2立方米的频率为0.45,用水量小于等于3立方米的频率为0.85,又w 为整数,∴为使80%以上的居民在该月的用水价格为4元/立方米,w 至少定为3.(2)当w =3时,该市居民该月的人均水费估计为(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.15×3×4+[0.05×(3.5-3)+0.05×(4-3)+0.05×(4.5-3)]×10=10.5(元).即当w =3时,该市居民该月的人均水费估计为10.5元.考点三总体离散程度的估计例3甲、乙两名学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲8281797895889384乙9295807583809085(1)求两位学生预赛成绩的平均数和方差;(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.解(1)x -甲=18×(82+81+79+78+95+88+93+84)=85,x -乙=18×(92+95+80+75+83+80+90+85)=85,s 2甲=18×[(82-85)2+(81-85)2+(79-85)2+(78-85)2+(95-85)2+(88-85)2+(93-85)2+(84-85)2]=35.5,s 2乙=18×[(92-85)2+(95-85)2+(80-85)2+(75-85)2+(83-85)2+(80-85)2+(90-85)2+(85-85)2]=41.(2)由(1)知x -甲=x -乙,s 2甲<s 2乙,甲的成绩较稳定,所以派甲参赛比较合适.【通性通法】标准差(方差)反映了数据的离散与集中、波动与稳定的程度.标准差(方差)越大,数据的离散程度越大;标准差(方差)越小,数据的离散程度越小.【巩固迁移】4.(2023·全国乙卷)某厂为比较甲、乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为x i ,y i (i =1,2,…,10).试验结果如下:试验序号i 12345678910伸缩率x i545533551522575544541568596548伸缩率y i536527543530560533522550576536记z i =x i -y i (i =1,2,…,10),z 1,z 2,…,z 10的样本平均数为z -,样本方差为s 2.(1)求z -,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z -≥2s 210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).解(1)x -=110×(545+533+551+522+575+544+541+568+596+548)=552.3,y -=110×(536+527+543+530+560+533+522+550+576+536)=541.3,z -=x --y -=552.3-541.3=11,z i =x i -y i 的值分别为9,6,8,-8,15,11,19,18,20,12,故s 2=110×[(9-11)2+(6-11)2+(8-11)2+(-8-11)2+(15-11)2+(11-11)2+(19-11)2+(18-11)2+(20-11)2+(12-11)2]=61.(2)由(1)知,z -=11,2s 210=2 6.1=24.4,故有z -≥2s 210,所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.考点四分层随机抽样的均值与方差例4为调查某地区中学生每天的睡眠时间,采用样本量比例分配的分层随机抽样,现抽取初中生800人,其每天睡眠时间的均值为9小时,方差为0.5,抽取高中生1200人,其每天睡眠时间的均值为8小时,方差为1,则估计该地区中学生每天睡眠时间的方差为________.答案 1.04解析该地区中学生每天睡眠时间的平均数为8001200+800×9+12001200+800×8=8.4(小时),该地区中学生每天睡眠时间的方差为8001200+800×[0.5+(9-8.4)2]+12001200+800×[1+(8-8.4)2]=1.04.【通性通法】在分层随机抽样中,如果第一层的样本量为m ,平均值为x -,方差为s 21;第二层的样本量为n ,平均值为y -,方差为s 22,则样本的平均值为w -=m x -+n y -m +n,样本的方差为s 2=1m +n {m [s 21+(x --w -)2]+n [s 22+(y --w -)2]}.特别地,在比例分配的分层随机抽样中,我们可以直接用样本平均数w -估计总体平均数W -,用样本方差s 2估计总体方差S 2.【巩固迁移】5.(2023·安徽宣城模拟)某学校有男生400人,女生600人,为调查该校全体学生每天运动时间的情况,按照男女比例通过分层随机抽样的方法取到一个样本,样本中男生每天运动时间的平均值为80分钟,方差为10,女生每天运动时间的平均值为60分钟,方差为20.结合数据,估计该校全体学生每天运动时间的方差为()A .15B .16C .96D .112答案D解析由题意,用比例分配的分层随机抽样的方式抽取样本,且该样本中男、女生的比为400600=23,不妨设抽取的男、女生人数分别为2n ,3n ,那么样本的总数为5n .则所有样本的平均值为15n ×(80×2n +60×3n )=68,方差为2n 5n ×[10+(80-68)2]+3n5n×[20+(60-68)2]=112.故选D.6.为了了解全区科级干部“党风廉政知识”的学习情况,采用比例分配的分层随机抽样方法,从全区320名正科级干部和1280名副科级干部中抽取40名科级干部预测全区科级干部“党风廉政知识”的学习情况.现将这40名科级干部分为正科级干部组和副科级干部组,利用同一份试卷分别进行测试.经过测试后,两组各自将测试成绩统计分析如下表:分组人数平均成绩正科级干部组a 80副科级干部组b70则40名科级干部测试成绩的平均分x -=________.答案72解析样本量与总体中的个体数的比为40320+1280=140,则抽取的正科级干部人数a =320×140=8,副科级干部人数b =1280×140=32.所以这40名科级干部测试成绩的平均分x -=80×8+70×3240=72.课时作业一、单项选择题1.(2023·天津河西区三模)学校组织班级知识竞赛,某班的12名学生的成绩(单位:分)分别是58,67,73,74,76,82,82,87,90,92,93,98,则这12名学生成绩的第三四分位数是()A .88分B .89分C .90分D .91分答案D解析12名学生的成绩(单位:分)由小到大排列为58,67,73,74,76,82,82,87,90,92,93,98,∵12×75%=9,∴这12名学生成绩的第三四分位数是90+922=91(分).2.(2024·重庆南开中学月考)为了解某高中学生的身高情况,按年级采用比例分配的分层随机抽样的方法抽取样本,抽到高一、高二、高三年级的学生人数分别为100,200,300,样本中高一、高二、高三这三个年级学生的平均身高分别为x -,y -,z -,则估计该高中学生的平均身高为()A .16x -+13y -+12z-B .x -+y -+z -2C .12x -+13y -+16z-D .x -+y -+z -3答案A解析样本量为100+200+300=600,样本平均数为100600x -+200600y -+300600z -=16x -+13y -+12z -,所以估计该高中学生的平均身高为16x -+13y -+12z -.3.(2022·全国甲卷)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差答案B解析讲座前问卷答题的正确率的中位数为70%+75%2=72.5%>70%,故A 错误;讲座后问卷答题的正确率只有一个是80%,4个是85%,剩下的全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,故B 正确;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故C 错误;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前问卷答题的正确率的极差为95%-60%=35%>20%,故D 错误.故选B.4.给定一组数据5,5,4,3,3,3,2,2,2,1,则这组数据()A .众数为2B .平均数为2.5C .方差为1.6D .标准差为4答案C解析由题中数据可得,众数为2和3,故A 错误;平均数x -=5+5+…+2+110=3,故B错误;方差s 2=(5-3)2+(5-3)2+…+(2-3)2+(1-3)210=1.6,标准差为 1.6≠4,故C 正确,D 错误.5.(2023·河北唐山一中模拟)对某种电子元件使用寿命跟踪调查,所得样本的频率分布直方图如图.由图可知,这一批电子元件使用寿命的85%分位数为()A .500hB .450hC .350hD .550h答案A解析电子元件寿命小于500h 的百分比为+32000+1400+85%,则这批电子元件使用寿命的85%分位数为500h .故选A .6.某市教育部门组织高中教师在暑假期间进行培训,培训后统一举行测试.随机抽取100名教师的测试成绩(单位:分,满分100分)进行统计,得到如图所示的频率分布折线图,则下列说法正确的是()A .这100名教师的测试成绩的极差是20分B .这100名教师的测试成绩的众数是90分C .这100名教师的测试成绩的中位数是87.5分D .这100名教师中测试成绩不低于90分的人数占比超过50%答案C解析对于A ,由题意知,这100名教师的测试成绩的最高分与最低分无法确定,故极差无法确定,故A 错误;对于B ,由题图易知这100名教师的测试成绩的众数为87.5分,故B 错误;对于C ,设这100名教师的测试成绩的中位数为x 分,则(0.02+0.04)×5+(x -85)×0.08=0.5,解得x =87.5,故C 正确;对于D ,这100名教师中测试成绩不低于90分的人数占比为(0.03+0.03)×5×100%=30%,30%<50%,故D 错误.故选C.7.已知两组数据x 1,x 2,x 3,x 4,x 5和y 1,y 2,y 3,y 4,y 5的中位数、方差均相同,则两组数据合并为一组数据后,()A .中位数一定不变,方差可能变大B .中位数一定不变,方差可能变小C .中位数可能改变,方差可能变大D .中位数可能改变,方差可能变小答案A解析不妨设x 1≤x 2≤x 3≤x 4≤x 5,y 1≤y 2≤y 3≤y 4≤y 5,则两组数据x 1,x 2,x 3,x 4,x 5和y 1,y 2,y 3,y 4,y 5的中位数分别为x 3,y 3,则x 3=y 3,两组数据合并为一组数据后,中位数为x 3+y 32=x 3=y 3,故中位数一定不变,设x 1,x 2,x 3,x 4,x 5的平均数为x -,方差为s 21,y 1,y 2,y 3,y 4,y 5的平均数为y -,方差为s 21,则∑5i =1x i =5x -,∑5i =1x 2i =5(s 21+x -2),∑5i =1y i =5y -,∑5i =1y 2i =5(s 21+y -2),则两组数据合并为一组数据后的平均数z -=110(∑5i =1x i +∑5i =1y i )=110(5x -+5y -)=x -+y -2,方差s 2=110[∑5i =1(x i -z -)2+∑5i =1(y i -z -)2]=110(∑5i =1x 2i +∑5i =1y 2i -10z -2)=110[5(s 21+x -2)+5(s 21+y -2)-10z -2]=s 21+x -2+y -22-z -2=s 21+x -2+y -22-=s 21+(x --y -)24≥s 21,当且仅当x -=y -时,等号成立,故方差可能变大,一定不会变小.故选A.8.某高校分配给某中学一个保送名额,该中学进行校内举荐评选,评选条件除了要求该生获得该校“三好学生”称号,还要求学生在近期连续3次大型考试中,每次考试的名次都在全校前5名(每次考试无并列名次).现有甲、乙、丙、丁四位同学都获得了“三好学生”称号,四位同学在近期连续3次大型考试名次的数据分别为甲同学:平均数为3,众数为2;乙同学:中位数为3,众数为3;丙同学:众数为3,方差小于3;丁同学:平均数为3,方差小于3.则一定符合推荐要求的同学是()A .甲和乙B .乙和丁C .丙和丁D .甲和丁答案D解析对于甲同学,平均数为3,众数为2,则3次考试的成绩的名次为2,2,5,满足要求;对于乙同学,中位数为3,众数为3,可举反例:3,3,6,不满足要求;对于丙同学,众数为3,方差小于3,可举特例:3,3,6,则平均数为4,方差s 2=13×[2×(3-4)2+(6-4)2]=2<3,不满足要求;对于丁同学,平均数为3,方差小于3,设丁同学3次考试的名次分别为x 1,x 2,x 3,若x 1,x 2,x 3中至少有一个大于等于6,则方差s 2=13[(x 1-3)2+(x 2-3)2+(x 3-3)2]>3,与已知条件矛盾,所以x 1,x 2,x 3均不大于5,满足要求.二、多项选择题9.(2024·重庆模拟)一组数据按从小到大的顺序排列为2,3,3,x ,7,10,若这组数据的平均数是中位数的54倍,则下列说法正确的是()A .x =4B .众数为3C .中位数为4D .方差为233答案BCD解析一组数据按从小到大的顺序排列为2,3,3,x ,7,10,∵这组数据的平均数是中位数的54倍,∴16×(2+3+3+x +7+10)=54×3+x 2,解得x =5,故A 错误;众数为3,故B 正确;中位数为3+52=4,故C 正确;平均数为16×(2+3+3+5+7+10)=5,方差为16×[(2-5)2+(3-5)2+(3-5)2+(5-5)2+(7-5)2+(10-5)2]=233,故D 正确.故选BCD.10.(2023·湖北武汉二中模拟)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则下列说法正确的是()A .甲的成绩的平均数等于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的第80百分位数等于乙的成绩的第80百分位数D .甲的成绩的极差大于乙的成绩的极差答案AC解析由题图可得,甲的成绩的平均数为4+5+6+7+85=6,乙的成绩的平均数为3×5+6+95=6,A 正确;甲的成绩的中位数为6,乙的成绩的中位数为5,B 错误;甲的成绩的第80百分位数为7+82=7.5,乙的成绩的第80百分位数为6+92=7.5,所以二者相等,C 正确;甲的成绩的极差为8-4=4,乙的成绩的极差为9-5=4,D 错误.故选AC.三、填空题11.(2023·四川资阳中学第一次质量检测)某歌手电视大奖赛中,七位评委对某选手打出如下分数:7.9,8.1,8.4,8.5,8.5,8.7,9.9,则其第50百分位数为________.答案8.5解析由题意可知,共有7个数据并且已经按照从小到大的顺序排列,其第50百分位数即为这组数据的中位数,所以其第50百分位数是第4个数据,为8.5.12.(2024·江西八所重点中学联考)某工厂为了解产品的生产情况,随机抽取了50个样本,若样本数据x 1,x 2,…,x 50的方差为8,则数据3x 1-1,3x 2-1,…,3x 50-1的方差为________.答案72解析样本数据x 1,x 2,…,x 50的方差为8,所以数据3x 1-1,3x 2-1,…,3x 50-1的方差为32×8=72.13.若已知30个数x 1,x 2,…,x 30的平均数为6,方差为9;现从原30个数中剔除x 1,x 2,…,x 10这10个数,且剔除的这10个数的平均数为8,方差为5,则剩余的20个数x 11,x 12,…,x 30的方差为________.答案8解析由题意得x 1+x 2+…+x 30=6×30=180,x 21+x 22+…+x 230=9×30+30×62=1350,x 1+x 2+…+x 10=8×10=80,x 21+x 22+…+x 210=5×10+10×82=690,所以剩余的20个数的平均数为180-8020=5,x 211+x 212+…+x 230=1350-690=660,所以剩余的20个数的方差为660-20×2520=8.14.已知一个样本的样本量为10,平均数为15,方差为3,现从样本中去掉一个数据15,此时样本的平均数为x -,方差为s 2,则x -=________,s 2=________.答案15103解析设这10个数据为x 1,x 2,…,x 9,15,则x -=15×10-159=15.又s 2=(x 1-15)2+(x 2-15)2+…+(x 9-15)29,(x 1-15)2+(x 2-15)2+…+(x 9-15)2+(15-15)210=3,所以s 2=309=103.四、解答题15.(2023·哈尔滨九中三模)某经销商采购了一批水果,根据某些评价指标进行打分,现从中随机抽取20筐(每筐1kg),得分数据如下:17,23,29,31,34,40,46,50,51,51,58,62,62,68,71,78,79,80,85,95.根据以往的大数据认定:得分在区间(0,25],(25,50],(50,75],(75,100]内的分别对应四级、三级、二级、一级.(1)试求这20筐水果得分的平均数;(2)用样本估计总体,经销商参考以下两种销售方案进行销售:方案一:将得分的平均数换算为等级,按换算后的等级出售;方案二:分等级出售.不同等级水果的售价如下表所示:等级一级二级三级四级售价(万元/吨)21.81.41.2请从经销商的角度,根据售价分析采用哪种销售方案较好,并说明理由.解(1)这20筐水果得分的平均数为120×(17+23+29+31+34+40+46+50+51+51+58+62+62+68+71+78+79+80+85+95)=55.5.(2)方案一:由于得分的平均数55.5∈(50,75],所以可以估计这批水果的销售单价为1.8万元/吨.方案二:设这批水果售价的平均值为x -万元/吨,由已知数据得,得分在(0,25]内的有17,23,共2个,所以估计四级水果所占比例为110;得分在(25,50]内的有29,31,34,40,46,50,共6个,所以估计三级水果所占比例为310;得分在(50,75]内的有51,51,58,62,62,68,71,共7个,所以估计二级水果所占比例为720;得分在(75,100]内的有78,79,80,85,95,共5个,所以估计一级水果所占比例为14.则x -=2×14+1.8×720+1.4×310+1.2×110=1.67(万元/吨).所以从经销商的角度考虑,采用方案一的售价较高,所以采用方案一较好.16.电动摩托车的续航里程,是指电动摩托车在蓄电池满电量的情况下一次能行驶的最大距离,为了解A ,B 两个不同型号电动摩托车的续航里程,现从某卖场库存电动摩托车中随机抽取A ,B 两个型号的电动摩托车各5台,在相同条件下进行测试,统计结果如下:电动摩托车编号12345A 型续航里程(km)120125122124124B 型续航里程(km)118123127120a已知A ,B 两个型号被测试电动摩托车续航里程的平均值相等,(1)求a 的值;(2)小李需要购买一款电动摩托车,从中位数和方差相结合的角度,帮小李选择一款电动摩托车,并说明理由.解(1)因为A ,B 两个型号被测试电动摩托车续航里程的平均值相等,所以120+125+122+124+1245=118+123+127+120+a5,解得a =127.(2)A 型号被测试电动摩托车续航里程从小到大排列为120,122,124,124,125;B 型号被测试电动摩托车续航里程从小到大排列为118,120,123,127,127.所以A 型号被测试电动摩托车续航里程的中位数为124km ,B 型号被测试电动摩托车续航里程的中位数为123km ,即A 型号的中位数大于B 型号的中位数,A 型号被测试电动摩托车续航里程的平均数为x -A =120+125+122+124+1245=123,则A 型号被测试电动摩托车续航里程的方差为s 2A =(120-123)2+(125-123)2+(122-123)2+2×(124-123)25=165,B 型号被测试电动摩托车续航里程的方差为s 2B =(118-123)2+(123-123)2+(120-123)2+2×(127-123)25=665,所以B 型号的方差大于A 型号的方差,所以B 型号被测试电动摩托车续航里程数不稳定,波动比较大,而A 型号的中位数大于B 型号的中位数,所以小李应选择A 型号电动摩托车.17.(多选)(2024·重庆诊断)为了解市民对亚运会体育节目收视情况,随机抽取了200名观众进行调查,其中女性占40%.根据调查结果分别绘制出男、女观众收看亚运会系列节目时长的频率分布直方图,则下列说法正确的是()A .m =0.1B .男观众收看节目时长的众数为8小时C .女观众收看节目的平均时长小于男观众收看节目的平均时长D .收看节目达到9小时的观众中女性人数是男性人数的13答案ABC解析由男观众收看亚运会系列节目时长的频率分布直方图,得(0.050+0.075×2+0.200+m )×2=1,解得m =0.1,故A 正确;由男观众收看亚运会系列节目时长的频率分布直方图,得男观众收看节目时长的众数为7+92=8小时,故B 正确;女观众收看节目的平均时长为(4×0.1+6×0.2+8×0.15+10×0.05)×2=6.6(小时),男观众收看节目的平均时长为(4×0.05+6×0.075+8×0.2+10×0.1+12×0.075)×2=8.3(小时),女观众收看节目的平均时长小于男观众收看节目的平均时长,故C 正确;收看节目达到9小时的观众中,女性人数为200×40%×0.05×2=8,男性人数为200×60%×0.175×2=42,故D 错误.18.(多选)(2023·湖北武汉调研)某市今年夏天迎来罕见的高温炎热天气,当地气象部门统计。
习题解答习题5.11.设样本值如下:15, 20, 32, 26, 37, 18, 19, 43计算样本均值、样本方差、2阶样本矩及2阶样本中心矩.解 由样本均值的计算公式,有()8111152032263718194326.2588i i x x ===⨯+++++++=∑由样本方差的计算公式,有()28211102.2181i i s x x==-=-∑由2阶样本矩的计算公式,有82211778.58i i a x ===∑由2阶样本中心矩的计算公式,有()2821189.448i i b x x==-=∑2. 设总体~(12,4)X N ,125(,,,)X X X 是来自总体X 的样本,求概率12345{max(,,,,)12}P X X X X X >.解 12345{m a x (,,,,)12}P X X X X X > []551311(0) 1()232=-Φ=-=3. 设总体X ~ P (λ),X 是容量为n 的样本的均值,求 ()E X 和 ()D X . 解 因总体X ~ P (λ),故有(),()E X D X λλ==,于是()()E X E X λ==()()D X D X n nλ== 4. 某保险公司记录的6n =起火灾事故的损失数据如下(单位:万元):1.86, 0.75, 3.21,2.45, 1.98, 4.12. 求该样本的经验分布函数.解 将样本观测值排序可得:0.75 1.86 1.98 2.45 3.21 4.12<<<<< 则经验分布函数为60, 0.751, 0.75 1.8661, 1.86 1.9831(), 1.98 2.4522, 2.45 3.2135, 3.21 4.1261, 4.12x x x F x x x x x <⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩5.求标准正态分布的上侧0.01分位数和上侧0.48分位数 .解 由题知,X ~ (0,1)N ,求X 的上侧α分位数. 即求u α使满足{}P X u αα>=得{}1P X u αα≤=-即()1u ααΦ=-取0.01α=,查标准正态分布表得上侧0.01分位数为0.01 2.33u u α==取0.48α=,查标准正态分布表得上侧0.48分位数为0.480.05u u α==习题5.21.设总体~(8,36)X N ,129(,,,)X X X 是取自总体X 的样本,X 是样本均值,求{|7|2}P X -< .解 因~(8,36)X N ,且样本容量9n =,故36~(8,), ~(8,4)9X N X N 即 ,于是 9858{|7|2}{59}()()22P X P X ---<=<<=Φ-Φ (0.5)( 1.5)(0.5)(1.5)10.69150.933210.6247=Φ-Φ-=Φ+Φ-=+-=2.设 2~(9)X χ ,求λ使其满足()0.95P X λ<=解 由()0.95P X λ<=,得()0.05P X λ≥=,因为2~(9)X χ,所以查表可得20.05(9)16.919λχ==3. 设总体~(0,1X N ,1210(,,,)X X X 是取自总体X 的样本,求2221210()E X X X+++及2221210()D X X X +++.解 由总体~(0,1)X N 可知~(0,1) (1,2,,10)i X N i =,且1210,,,X X X 相互独立,于是22221210()~(10)X X X χ+++故有2221210()10E X X X +++=2221210()21020D X X X +++=⨯=4. 设总体X ~ N (20 ,3),从中独立地抽取容量分别为10和15的两个样本,求它们的样本均值之差的绝对值大于0.3的概率.解 设这两个样本分别为1210,,,X X X 和1215,,,Y Y Y , 则对样本均值有101110i i X X ==∑ ~15131(20,),1015i i N Y Y ==∑~3(20,)15N依定理 X Y -~1(0,)2N ,所以{}0.3P X Y P ⎫->=>1P ⎫=-≤1=-ΦΦ(1210.6744⎡⎤=-Φ-=⎢⎥⎣⎦(查标准正态分布表可得)5.设X ~ t (12) ,(1) 求 a 使得()0.05P X a <=;(2)求 b 使得()0.99P X b >= 解 (1)由()0.05P X a <=利用t 分布的对称性可得()0.05P X a >-=,查表可得0.05(12) 1.7823 1.7823a t a -==⇒=-(2)由()0.99P X b >=得()0.01P X b ≤=,又由t 分布的对称性可得()0.01P X b >-=于是0.01(12) 2.6810 2.6810b t b -==⇒=-6.设~(8,12)X F ,求 λ 使得()0.01P X λ<=.解 由()0.01P X λ<= 得 ()0.99P X λ>=,于是查表可得0.990.0111(8,12)0.176(12,8) 5.67f f λ====习题5.31.设总体X ~ N (μ ,4),(X 1 ,X 2 ,… ,X 16)为其样本,2S 为样本方差,求: (1) P ()666.62<S ; (2) P ()865.4279.22<<S . 解 因为()221n S σ-~()21n χ-所以本题中2154S ~()215χ 则 (1) {}(){}22215156.666 6.6661524.997544P S P S P χ⎧⎫<=<⨯=<⎨⎬⎩⎭(){}211524.997510.050.95P χ=-≥=-=(2) {}221515152.279 4.865 2.279 4.865444P S P S ⎧⎫<<=⨯<<⨯⎨⎬⎩⎭(){}28.546251518.24375P χ=<<(){}(){}22158.546251518.24375P P χχ=>-≥0.900.250.65=-=2. 总体2~(0,)X N σ,1225(,,,)X X X 是总体X 的样本,2X S 和分别是样本均值和样本方差,求λ,使5()0.99XP Sλ<=. 解 根据抽样分布定理知5~(24)Xt S = 又由5()0.99XP Sλ<=得 5()0.01XP Sλ>= 故查表可得0.01(24) 2.4922t λ==3.设总体X ~ N (30 ,64),为使样本均值大于28的概率不小于0.9 ,样本容量n 至少应是多少?解 因为X ~(30,64)N , 所以样本均值X .~64(30,)N n因此X ()0,1N , 故{}{}28128P X P X >=-≤1X P ⎧⎫=-≤1⎛=-Φ ⎝0.9=Φ≥1.29,解得 27n ≥,所以n 至少应取27.*4.设总体X ~ N )16(1,μ 与总体Y ~ N )36(2,μ 相互独立,(X 1 ,X 2 ,… ,X 13)和(Y 1 ,Y 2 ,… ,Y 10)分别为来自总体X 和总体Y 的样本.试求两总体样本方差之比落入区间(0.159 ,1.058)内的概率.解 因为()221n S σ-~()21n χ-,所以本题中211216S ~()222912,36S χ~()29χ又因为21212222121291694936S S F S S ==~()12,9F 从而221122229990.159 1.0580.159 1.058444S S P P S S ⎧⎫⎧⎫<<=⨯<<⨯⎨⎬⎨⎬⎩⎭⎩⎭(){}0.3577512,9 2.3805P F =<<0.85=(查F 分布表*5. 设从两个正态总体~(4,1)~(6,1)X N Y N 和中分别独立地抽取两个样本1219(,,,)X X X 和1216(,,,)Y Y Y ,样本方差分别为2212S S 和.求λ,使2122()0.5S P S λ<=.解 根据抽样分布定理可知2122~(18,15)S F S又由2122()0.05S P S λ<=可得2122()0.95S P S λ>=,于是查表可得0.950.0511(18,15)0.44(15,18) 2.27f f λ====*6.设总体X 与总体Y 相互独立,且都服从正态分布N (0 ,9),(X 1 ,X 2 ,… ,X 9)和(Y 1 ,Y 2 ,… ,Y 9)分别为来自总体X 和Y 的样本.试证明统计量T =∑∑==91291i ii iYX服从自由度为9的t 分布.证明 由正态分布的性质及样本的独立性知91ii X=∑~2(0,9)N得9119i i X =∑~(0,1)N 又因为i Y ~(0,9) (1,2,,9)N i =所以()22222291212913339Y Y Y Y Y Y ⎛⎫⎛⎫⎛⎫+++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭~()29χ由于两个总体X 和Y 是相互独立的,所以其相应的样本也是相互独立的,故 9119i i X =∑与92119i i Y =∑也相互独立,于是由t 分布的定义知991ii XX T ==∑∑ ~ ()9t综合练习五一、填空题1.设总体X 的一组样本观测值为1.4 ,2.3 ,1.8 ,3.4 ,2.7则样本均值 x= ( 2.32 ) ,样本方差 2s = ( 0.607 ) .2.设总体X 服从正态分布N (2 ,5),(X 1 ,X 2 ,… ,X 10)为其样本,则样本均值X 的分布为 ( 122N ⎛⎫ ⎪⎝⎭, ).3.设总体X 服从具有n 个自由度的2χ 分布,(X 1 ,X 2 ,… ,X n )为其样本,X为样本均值,则有 ()( )E X n = ,()( 2 )D X = .4.设总体X ~ N (μ ,2σ),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别为样本均值和样本方差,则有 X ~( 2N n σμ⎛⎫ ⎪⎝⎭,),22)1(σS n - ~(2(1)n χ- ),nSX μ- ~( t (n - 1) ).5.设总体X ~ N (1 ,4),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)2()(X X X b X X a --+-则当a = (81 ) 、1()24b =时有T ~ 2χ(2) . 二、选择题1.设总体X ~ N (μ ,1),其中 μ 为未知参数,若(X 1 ,X 2 ,… ,X n )为来自总体X 的样本,则下列样本函数中( (b ) ) 不是统计量.(a )∑=ni i X1;(b )∑=-ni iX12)(μ ;(c) X 1 X 2 … X n ; (d )∑=ni i X12.2.设总体X ~ N (2 ,4),(X 1 ,X 2 ,… ,X 9)为其样本,X 为样本均值,则下列统计量中服从标准正态分布的是( (c ) ).(a ) X ; (b))2(43-X ; (c ))2(23-X ; (d ) )2(29-X . 3.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)(2)(3X X X X X +++则有T ~ ( (b ) ) .(a ) t (5) ; (b ) F (1 ,1) ; (c ) F (2 ,3) ; (d ) F (3 ,2) . 4.设总体X ~ N ⎪⎪⎭⎫ ⎝⎛410,,(X 1 ,X 2 ,… ,X 5)为其样本,令T=则有T ~( (d ) ).(a ) t (1) ; (b ) t (2) ; (c ) t (3) ; (d ) t (4) . 5.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别是样本均值和样本标准差,则 ( (c ) ) .(a ) n X ~ N (0 ,1): (b ) X ~ N (0 ,1); (c )∑=ni i X 12 ~ 2χ(n ) ; (d )SX~ t (n - 1) . 6.设随机变量X 和Y 都服从标准正态分布,则 ( (c ) ) .(a ) Y X + 服从正态分布; (b ) 22Y X + 服从 2χ 分布;(c ) 2X 和 2Y 都服从 2χ 分布; (d )22Y X 服从F 分布.三、解答题1.设总体~(2,16)X N ,12(,,,)n X X X 是总体X 的样本,令2211n i i A X n ==∑,求2A 的数学期望2()E A .解 因为~(2,16)X N ,所以~(2,16) (1,2,,)i X N i n =,则有22()()()16420i i i E X D X E X =+=+= 于是22111()()2020n i i E A E X n n n===⨯⨯=∑2.设总体~(15,9),X N ,129(,,,)X X X 是总体X 的样本,X 是样本均值,.求常数c ,使()0.95.P X c ≤=解 根据抽样分布定理可知~(15,1)X N 又由()0.95P X c ≤=可得15()()0.951c P X c -≤=Φ= 查表可得15 1.645c -=,于是得16.645c =3.设一组数据20.5,15.5,30.2,20.5,18.6, 21.3,18.6,23.4来自于总体,X 求经验分布函数.解 将样本观测值排序可得:15.518.618.620.520.521.323.430.2<=<=<<< 则由定义可得经验分布函数为80, 15.51, 15.518.683, 18.620.585(), 20.521.386, 21.323.487, 23.430.081, 30.2x x x F x x x x x ≤⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩4.设总体X ~ N (0 ,4),(X 1 ,X 2 ,… ,X 9)为其样本.求系数a 、b 、c ,使得T = 298762543221)()()(X X X X c X X X b X X a ++++++++服从 2χ 分布,并求其自由度.解 由于129,,,X X X 相互独立且来自总体X ~(0,4)N ,则由正态分布的线性运算性质有12X X +~(0,8)N ,345X X X ++~(0,12)N ,6789X X X X +++~(0,16)N于是,由2χ分布与正态分布的关系,有()()()22212345678981216X X X X X X X X X T ++++++=++服从2χ(3)分布,因此111,,81216a b c ===,自由度为3。
考点测试用样本估计总体高考概览考纲研读.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.理解样本数据标准差的意义和作用,会计算数据的标准差.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题一、基础小题.某班的全体学生参加英语测试,成绩的频率分布直方图如图所示,数据的分组依次为[,),[,),[,),[,].若低于分的人数是,则该班的学生人数是( )....答案解析根据频率分布直方图的特点可知,低于分的频率是(.+.)×=.,所以该班的学生人数是=.故选..在样本的频率分布直方图中,共有个小长方形,若中间一个小长方形的面积等于其他个小长方形的面积的和的,且样本容量为,则中间一组的频数为( )......答案解析设中间一组的频数为,依题意有=-,解得=..研究人员随机调查统计了某地名“上班族”每天在工作之余使用手机上网的时间,并将其绘制为如图所示的频率分布直方图,若同一组数据用该区间的中点值作代表,则可估计该地“上班族”每天在工作之余使用手机上网的平均时间是( )..小时..小时..小时..小时答案解析(×.+×.+×.+×.)×=...对于一组数据(=,,,…,),如果将它们改变为+(=,,,…,),其中≠,则下列结论正确的是( ).平均数与方差均不变.平均数变,方差保持不变.平均数不变,方差变.平均数与方差均发生变化答案解析由平均数的定义,可知每个个体增加,则平均数也增加,方差不变.故选..甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁平均环数....方差....从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是( ).甲.乙.丙.丁答案解析由表格中数据,可知丙平均环数最高,且方差最小,说明丙技术稳定,且成绩好.选..某工厂对一批新产品的长度(单位:)进行检测,如图是检测结果的频率分布直方图,据此估计这批产品长度的中位数为( )......答案解析自左至右各小矩形的面积依次为.,.,.,.,.,设中位数是,则由.+.+.·(-)=.,得=..选..甲、乙两名同学在次数学测试中的成绩如茎叶图所示,其中甲同学成绩的众数是,乙同学成绩的中位数是,则成绩较稳定的是.答案甲解析根据众数及中位数的概念易得=,=,故甲同学成绩的平均数为=,乙同学成绩的平均数为=,故甲同学成绩的方差为×(++++)=,乙同学成绩的方差为×(++++++)=>,故成绩较稳定的是甲.二、高考小题.(·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ).新农村建设后,种植收入减少.新农村建设后,其他收入增加了一倍以上.新农村建设后,养殖收入增加了一倍.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案解析设新农村建设前的收入为,而新农村建设后的收入为,则新农村建设前种植收入为.,而新农村建设后的种植收入为.,所以种植收入增加了,所以项不正确;新农村建设前其他收入为.,新农村建设后其他收入为.,故增加了一倍以上,所以项正确;新农村建设前,养殖收入为.,新农村建设后为.,增加了一倍,所以项正确;新农村建设后,养殖收入与第三产业收入的总和占经济收入的+=>,所以超过了经济收入的一半,所以正确.故选..(·山东高考)某高校调查了名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[.,],样本数据分组为[.,),[,.),[.,),[,.),[.,].根据直方图,这名学生中每周的自习时间不少于.小时的人数是( )....答案解析由频率分布直方图,知这名学生每周的自习时间不少于.小时的频率为-(.+.)×.=.,则这名学生中每周的自习时间不少于.小时的人数为×.=.故选..(·全国卷Ⅰ)为评估一种农作物的种植效果,选了块地作试验田.这块地的亩产量(单位:)分别为,,…,,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ).,,…,的平均数.,,…,的标准差.,,…,的最大值.,,…,的中位数答案解析因为可以用极差、方差或标准差来描述数据的离散程度,所以要评估亩产量稳定程度,应该用样本数据的极差、方差或标准差.故选..(·江苏高考)已知位裁判给某运动员打出的分数的茎叶图如图所示,那么这位裁判打出的分数的平均数为.答案解析由茎叶图可知,位裁判打出的分数分别为,,,,,故平均数为=.三、模拟小题.(·山东济南一模)已知某个数的平均数为,方差为,现加入一个新数据,此时这个数的平均数为,方差为,则( ).=,< .=,>.>,< .>,>答案解析∵某个数的平均数为,∴这个数的和为×=,∵加入一个新数据,∴==;又∵这个数的方差为,且加入一个新数据,∴这个数的方差==<.故选..(·河北石家庄教学质量检测)某学校,两个班的兴趣小组在一次对抗赛中的成绩如茎叶图所示,通过茎叶图比较两个班兴趣小组成绩的平均值及标准差.①班兴趣小组的平均成绩高于班兴趣小组的平均成绩;②班兴趣小组的平均成绩高于班兴趣小组的平均成绩;③班兴趣小组成绩的标准差大于班兴趣小组成绩的标准差;④班兴趣小组成绩的标准差大于班兴趣小组成绩的标准差.其中正确结论的编号为( ).①④.②③.②④.①③答案解析班兴趣小组的平均成绩为=,其方差为×[(-)+(-)+…+(-)]=.,则其标准差为≈.;班兴趣小组的平均成绩为=,其方差为×[(-)+(-)+…+(-)]=.,则其标准差为≈..故选..(·湖南衡阳二模)已知样本,,…,的平均数为;样本,,…,的平均数为(≠),若样本,,…,,,,…,的平均数=+(-),其中<<,则,(,∈*)的大小关系为( ).=.≥ .< .>答案解析由题意得=(+)=+-,∴=,∵<<,∴<<,又,∈*,∴<+,∴<.故选.一、高考大题.(·全国卷Ⅰ)某家庭记录了未使用节水龙头天的日用水量数据(单位:)和使用了节水龙头天的日用水量数据,得到频数分布表如下:未使用节水龙头天的日用水量频数分布表日用水量[,.)[.,.)[.,.)[.,.)[.,.)[.,.)[.,.]频数使用了节水龙头天的日用水量频数分布表日用水量[,.)[.,.)[.,.)[.,.)[.,.)[.,.]频数()作出使用了节水龙头天的日用水量数据的频率分布直方图:()估计该家庭使用节水龙头后,日用水量小于.的概率;()估计该家庭使用节水龙头后,一年能节省多少水?(一年按天计算,同一组中的数据以这组数据所在区间中点的值作代表)解()()根据以上数据,该家庭使用节水龙头后天日用水量小于.的频率为.×.+×.+.×.+×.=.,因此该家庭使用节水龙头后日用水量小于.的概率的估计值为..()该家庭未使用节水龙头天日用水量的平均数为=×(.×+.×+.×+.×+.×+.×+.×)=..该家庭使用了节水龙头后天日用水量的平均数为=×(.×+.×+.×+.×+.×+.×)=..估计使用节水龙头后,一年可节省水(.-.)×=.()..(·北京高考)某大学艺术专业名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了名学生,记录他们的分数,将数据分成组:[,),[,),…,[,],并整理得到如右频率分布直方图:()从总体的名学生中随机抽取一人,估计其分数小于的概率;()已知样本中分数小于的学生有人,试估计总体中分数在区间[,)内的人数;()已知样本中有一半男生的分数不小于,且样本中分数不小于的男女生人数相等.试估计总体中男生和女生人数的比例.解()根据频率分布直方图可知,样本中分数不小于的频率为(.+.)×=.,所以样本中分数小于的频率为-.=.,所以从总体的名学生中随机抽取一人,其分数小于的概率估计为..()根据题意,样本中分数不小于的频率为(.+.+.+.)×=.,样本中分数在区间[,)内的人数为-×.-=,所以总体中分数在区间[,)内的人数估计为×=.()由题意可知,样本中分数不小于的学生人数为(.+.)××=,所以样本中分数不小于的男生人数为×=,所以样本中的男生人数为×=,女生人数为-=,所以样本中男生和女生人数的比例为∶=∶,所以根据分层抽样原理,估计总体中男生和女生人数的比例为∶..(·四川高考)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年位居民每人的月均用水量(单位:吨),将数据按照[,.),[.,),…,[,.]分成组,制成了如图所示的频率分布直方图.()求直方图中的值;()设该市有万居民,估计全市居民中月均用水量不低于吨的人数,并说明理由;()若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由.解()由频率分布直方图,知月均用水量在[,.)中的频率为.×.=.,同理,在[.,),[.,),[,.),[,.),[.,),[,.]中的频率分别为.,.,.,.,.,..由.+.+.+.+.+.+.+.+.=.解得=..()由(),位居民每人月均用水量不低于吨的频率为.+.+.=..由以上样本的频率分布,可以估计全市万居民中月均用水量不低于吨的人数为×.=.()因为前组的频率之和为.+.+.+.+.+.=.>.,而前组的频率之和为.+.+.+.+.=.<.,所以.≤<.由.×(-.)=.-.,解得=..所以,估计月用水量标准为.吨时,的居民每月的用水量不超过标准.二、模拟大题.(·南昌二模)某地区为了解学生学业水平考试的状况,从参加学业水平考试的学生中抽出名,其数学成绩(均为整数)的频率分布直方图如图所示.()估计这次考试数学成绩的平均分和众数;()假设在(,]段的学生中有人得满分分,有人得分,其余学生的数学成绩都不相同.现从分以上的学生中任取人,求这两人成绩相同的概率.解()利用中值估算抽样学生数学成绩的平均分为×.×+×.×+×.×+×.×+×.×+×.×=(分).众数的估计值为分.()由频率分布直方图知,在人中,分以上的学生数为×.×=(人).设“从人中任取人,这人成绩相同”为事件,记这人编号为,,,,,,,,其中号和号成绩为分,号、号、号的成绩为分.由题意,从人中任取人,基本事件为(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),共个,其中事件所包含的基本事件的个数为,由古典概型的概率公式得所求概率()==..(·福州毕业质检)某技术公司新开发一种产品,分别由,两条生产线生产.为了检测该产品的某项质量指标值(记为),现随机抽取这两条生产线的产品各件,由检测结果得到如下频率分布直方图:()该公司规定:当≥时,产品为正品;当<时,产品为次品.试估计,两条生产线生产的产品正品率分别是多少?()分别估计,两条生产线的产品质量指标值的平均数(同一组数据中的数据用该组区间的中点值作代表),从平均数结果看,哪条生产线的质量指标值更好?()根据()的结果,能否认为该公司生产的产品符合“质量指标值不低于的产品至少要占全部产品”的规定?解()由频率估计概率,生产线的产品为正品的概率为(.+.+.)×=.;生产线的产品为正品的概率为(.+.+.)×=..()设生产线的产品质量指标值的平均数为,生产线的产品质量指标值的平均数为,由频率分布直方图,可得=×.+×.+×.+×.+×.=.,=×.+×.+×.+×.+×.=.,由以上计算结果可得>,因此生产线的产品质量指标值更好.()由()知,生产线的产品质量指标值更高,它不低于的产品所占比例的估计值为(.+.)×=.<.,所以生产线的产品质量指标值的估计值也小于.,故不能认为该公司生产的产品符合“质量指标值不低于的产品至少要占全部产品”的规定.。
数学高三数学概率与统计知识总结与题型解析概率与统计是高中数学中的一个重要部分,也是数学高考中的一个重点考点。
掌握好概率与统计的知识对于高三学生来说非常重要。
本文将对高三数学概率与统计的知识进行总结,并解析一些常见的题型。
一、概率的基本概念和性质概率是研究随机试验结果出现的可能性的数学理论。
在概率的研究中,有几个基本概念和性质需要掌握。
1.1 试验、样本空间和事件随机试验是指具有以下三个特点的试验:可以在相同的条件下重复进行,每次试验的结果不确定,且试验的结果有多种可能性。
样本空间是指一个随机试验的所有可能结果的集合。
事件是样本空间的一个子集,表示随机试验中我们关心的一些结果。
1.2 概率的定义和性质概率的定义可以通过两种方式来描述:频率定义和古典定义。
频率定义是指当试验重复进行很多次时,事件发生的频率趋近于概率值。
古典定义是指在满足条件的情况下,事件发生的可能性与样本空间中元素个数的比值。
概率具有以下几个性质:非负性、规范性、可列可加性、互斥性和独立性。
1.3 条件概率和乘法定理条件概率是指在另一个事件已经发生的条件下,某个事件发生的概率。
条件概率可以通过乘法定理来计算。
二、离散型随机变量离散型随机变量是指在有限或可数无限个取值中取一个确定值的变量。
离散型随机变量具有以下几个重要的性质:概率函数、分布函数、数学期望、方差等。
2.1 二项分布二项分布是指在n次独立的伯努利试验中,事件发生的次数所符合的概率分布。
如果事件发生的概率为p,不发生的概率为q=1-p,那么在n次试验中,事件发生k次的概率可以由二项分布来计算。
2.2 泊松分布泊松分布是在一定时间或空间范围内,某个事件发生的概率符合的分布。
泊松分布的参数λ表示单位时间或单位空间内事件的平均发生率。
三、连续型随机变量连续型随机变量是指在一个或者几个区间内取值的变量。
连续型随机变量具有以下几个重要的性质:概率密度函数、分布函数、数学期望、方差等。
课时过关检测(六十五)用样本的数字特征估计总体【原卷版】1.数据1,2,3,4,5,6的60%分位数为()A .3B .3.5C .3.6D .42.若数据x 1,x 2,…,x n 的平均数为x -,方差为s 2,则2x 1+3,2x 2+3,…,2x n +3的平均数和方差分别为()A .x -和s 2B .2x -+3和4s 2C .2x -+3和s 2D .2x -+3和4s 2+12s +93.为了反映各行业对仓储物流业务需求变化的情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.由2019年1月至2020年7月的调查数据得出的中国仓储指数,绘制出如下折线图.根据该折线图,下列结论正确的是()A .2019年各月的仓储指数最大值是在3月份B .2020年1月至7月的仓储指数的中位数为55C .2020年1月与4月的仓储指数的平均数为52D .2019年1月至4月的仓储指数相对于2020年1月至4月,波动性更大4.已知样本甲:x 1,x 2,x 3,…,x n 与样本乙:y 1,y 2,y 3,…,y n ,满足y i =2x 3i +1(i =1,2,…,n ),则下列叙述中一定正确的是()A .样本乙的极差等于样本甲的极差B .样本乙的众数大于样本甲的众数C .若某个x i 为样本甲的中位数,则y i 是样本乙的中位数D .若某个x i 为样本甲的平均数,则y i 是样本乙的平均数5.已知样本x 1,x 2,…,x n 的平均数为x ,样本y 1,y 2,…,y m 的平均数为y (x ≠y ),若样本x 1,x 2,…,x n ,y 1,y 2,…,y m 的平均数z =ax +(1-a )y ,其中0<a <12,则n ,m (n ,m∈N*)的大小关系为()A.n=m B.n≥mC.n<m D.n>m6.(多选)甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表:班级参加人数中位数方差平均数甲55149191135乙55151110135下列结论中,正确的是()A.甲、乙两班学生成绩的平均水平相同B.乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)C.甲班的成绩波动情况比乙班的成绩波动大D.甲班成绩的众数小于乙班成绩的众数7.(多选)某篮球爱好者在一次篮球训练中,需进行五轮投篮,每轮投篮5次.统计各轮投进球的个数,获知其前四轮投中的个数分别为2,3,4,4,则第五轮结束后,下列数字特征有可能发生的是()A.平均数为3,极差是3B.中位数是3,极差是3C.平均数为3,方差是0.8D.中位数是3,方差是0.568.已知一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,则这组数据的平均数为________,方差为_________.9.某经销商从外地一水殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图:(1)估计这批小龙虾重量的第10百分位数与第90百分位数;(2)该经销商将这批小龙虾分成三个等级,如表:等级三等品二等品一等品重量/克[5,25)[25,45)[45,55]试估计这批小龙虾划为几等品比较合理?10.(多选)2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静/韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程/金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该队选手的成绩时从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分,则7个有效评分与9个原始评分相比,可能变化的数字特征是()A.中位数B.平均数C.方差D.极差11.(多选)随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,如图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是()A.1月至8月空气质量合格天数超过20天的月份有5个B.第二季度与第一季度相比,空气质量合格天数的比重下降了C.8月是空气质量最好的一个月D.6月的空气质量最差12.某快递网点收取快递费用的标准是重量不超过1kg的包裹收费10元,重量超过1kg 的包裹,除收费10元之外,超过1kg的部分,每超出1kg(不足1kg,按1kg计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均数和中位数;(2)该快递网点负责人从收取的每件快递的费用中抽取5元作为工作人员的工资和网点的利润,剩余的作为其他费用.已知该网点有工作人员3人,每人每天工资100元,以样本估计总体,试估计该网点每天的利润有多少元?13.记样本x 1,x 2,…,x m 的平均数为x -,样本y 1,y 2,…,y n 的平均数为y -(x -≠y -).若样本x 1,x 2,…,x m ,y 1,y 2,…,y n 的平均数为z -=14x -+34y -,则mn的值为()A .3B .4C .14D .1314.某校有高中生2000人,其中男女生比例约为5∶4,为了获得该校全体高中生的身高信息,采取了以下两种方案:方案一:采用比例分配的分层随机抽样方法,抽收了样本量为n 的样本,得到如图所示的频数分布表和频率分布直方图.方案二:采用分层随机抽样方法,抽取了男、女生样本量均为25的样本,计算得到男生样本的均值为170,方差为16,女生样本的均值为160,方差为20.身高(单位:cm)[145,155)[155,165)[165,175)[175,185)[185,195]频数mpq64(1)根据图表信息,求n ,q 并补充完整频率分布直方图,估计该校高中生的身高均值;(同一组中的数据以这组数据所在区间中点的值为代表)(2)计算方案二中总样本的均值及方差;(3)计算两种方案总样本均值的差,并说明用方案二总样本的均值作为总体均值的估计合适吗?为什么?课时过关检测(六十五)用样本的数字特征估计总体【解析版】1.数据1,2,3,4,5,6的60%分位数为()A .3B .3.5C .3.6D .4解析:D由6×60%=3.6,所以数据1,2,3,4,5,6的60%分位数是第四个数,故选D .2.若数据x 1,x 2,…,x n 的平均数为x -,方差为s 2,则2x 1+3,2x 2+3,…,2x n +3的平均数和方差分别为()A .x -和s 2B .2x -+3和4s 2C .2x -+3和s 2D .2x -+3和4s 2+12s +9解析:B原数据乘以2加上3得到一组新数据,则由平均数、方差的性质可知得到的新数据的平均数和方差分别是2x -+3和4s 2.3.为了反映各行业对仓储物流业务需求变化的情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.由2019年1月至2020年7月的调查数据得出的中国仓储指数,绘制出如下折线图.根据该折线图,下列结论正确的是()A .2019年各月的仓储指数最大值是在3月份B .2020年1月至7月的仓储指数的中位数为55C .2020年1月与4月的仓储指数的平均数为52D .2019年1月至4月的仓储指数相对于2020年1月至4月,波动性更大解析:D2019年各月的仓储指数最大值是在11月份,所以A 错误;由题图可知,2020年1月至7月的仓储指数的中位数约为53,所以B 错误;2020年1月与4月的仓储指数的平均数约为51+552=53,所以C 错误;由题图可知,2019年1月至4月的仓储指数比2020年1月至4月的仓储指数波动更大,故选D .4.已知样本甲:x 1,x 2,x 3,…,x n 与样本乙:y 1,y 2,y 3,…,y n ,满足y i =2x 3i +1(i =1,2,…,n ),则下列叙述中一定正确的是()A .样本乙的极差等于样本甲的极差B .样本乙的众数大于样本甲的众数C .若某个x i 为样本甲的中位数,则y i 是样本乙的中位数D .若某个x i 为样本甲的平均数,则y i 是样本乙的平均数解析:C ∵y i =2x 3i +1,∴y i 关于x i 单调递增,甲样本极差为x n -x 1,乙样本极差为y n-y 1=2(x 3n -x 31)=2(x n -x 1)(x 2n +x n x 1+x 21),两个数据大小关系不定,∴样本乙的极差不一定等于样本甲的极差,A 错误;样本乙的众数不一定大于样本甲的众数,B 错误;若x i 为样本甲的平均数,y i 不一定是样本乙的平均数,D 错误;若x i 为样本甲的中位数时,则y i 一定是样本乙的中位数,C 正确.5.已知样本x 1,x 2,…,x n 的平均数为x ,样本y 1,y 2,…,y m 的平均数为y (x ≠y ),若样本x 1,x 2,…,x n ,y 1,y 2,…,y m 的平均数z =ax +(1-a )y ,其中0<a <12,则n ,m (n ,m ∈N *)的大小关系为()A .n =mB .n ≥mC .n <mD .n >m解析:C 由题意得z =1n +m (nx +my )=n n +mx ,∴a =n n +m,∵0<a <12,∴0<n n +m <12,又n ,m ∈N *,∴2n <n +m ,∴n <m .故选C .6.(多选)甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表:班级参加人数中位数方差平均数甲55149191135乙55151110135下列结论中,正确的是()A .甲、乙两班学生成绩的平均水平相同B .乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)C .甲班的成绩波动情况比乙班的成绩波动大D .甲班成绩的众数小于乙班成绩的众数解析:ABC甲、乙两班成绩的平均数都是135,故两班成绩的平均水平相同,∴A 正确;s 2甲=191>110=s 2乙,∴甲班成绩不如乙班稳定,即甲班成绩波动较大,∴C 正确;甲、乙两班人数相同,但甲班成绩的中位数为149,乙班成绩的中位数为151,从而易知乙班每分钟输入汉字数≥150个的人数要多于甲班,∴B 正确;由题表看不出两班学生成绩的众数,∴D 错误.7.(多选)某篮球爱好者在一次篮球训练中,需进行五轮投篮,每轮投篮5次.统计各轮投进球的个数,获知其前四轮投中的个数分别为2,3,4,4,则第五轮结束后,下列数字特征有可能发生的是()A .平均数为3,极差是3B .中位数是3,极差是3C .平均数为3,方差是0.8D .中位数是3,方差是0.56解析:BCD2+3+4+4=13,①若平均数为3,则第五轮投中的个数为2,所以极差为4-2=2,方差为15×[(2-3)2×2+(3-3)2+(4-3)2×2]=0.8,即选项A 错误,C 正确;②若中位数为3,则第五轮投中的个数为0或1或2或3,当投中的个数为0时,极差为4,平均数为2.6,方差为15×[(0-2.6)2+(2-2.6)2+(3-2.6)2+(4-2.6)2×2]=2.24;当投中的个数为1时,极差为3,平均数为2.8,方差为15×[(1-2.8)2+(2-2.8)2+(3-2.8)2+(4-2.8)2×2]=1.36;当投中的个数为2时,极差为2,方差为0.8;当投中的个数为3时,极差为2,平均数为3.2,方差为15×[(2-3.2)2+(3-3.2)2×2+(4-3.2)2×2]=0.56,即选项B 和D 均正确.故选B 、C 、D .8.已知一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,则这组数据的平均数为________,方差为_________.解析:∵-1,0,4,x,7,14的中位数为5,∴4+x2=5,∴x =6,∴这组数据的平均数是-1+0+4+6+7+146=5,这组数据的方差是16×(36+25+1+1+4+81)=743.答案:57439.某经销商从外地一水殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图:(1)估计这批小龙虾重量的第10百分位数与第90百分位数;(2)该经销商将这批小龙虾分成三个等级,如表:等级三等品二等品一等品重量/克[5,25)[25,45)[45,55]试估计这批小龙虾划为几等品比较合理?解:(1)因为40×10%=4,所以第10百分位数为第4项与第5项的平均数,在[5,15)范围内约为5+152=10.因为40×90%=36,所以第90百分位数为第36项与第37项的平均数,在[35,55]范围内,约为35+552=45,所以估计这批小龙虾重量的第10百分位数为10,第90百分位数为45.(2)由(1)知,这批小龙虾重量集中在[10,45]范围内,所以划为二等品比较合理.10.(多选)2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静/韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程/金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该队选手的成绩时从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分,则7个有效评分与9个原始评分相比,可能变化的数字特征是()A .中位数B .平均数C .方差D .极差解析:BCD因为7个有效评分是9个原始评分中去掉一个最高分、一个最低分,所以中位数不变,平均数、方差、极差可能发生变化,所以可能变化的数字特征是平均数、方差、极差,故选B 、C 、D .11.(多选)随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,如图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是()A .1月至8月空气质量合格天数超过20天的月份有5个B .第二季度与第一季度相比,空气质量合格天数的比重下降了C .8月是空气质量最好的一个月D .6月的空气质量最差解析:ABC1月至8月空气质量合格天数超过20天的月份有:1月,2月,6月,7月,8月,共5个,所以A 是正确的;第一季度合格天数的比重为22+26+1931+29+31≈0.7363,第二季度合格天数的比重为19+13+2530+31+30≈0.6264,所以第二季度与第一季度相比,空气质量合格的天数的比重下降了,所以B 是正确的;8月空气质量合格天气达到30天,是空气质量最好的一个月,所以C 是正确的;5月空气质量合格天气只有13天,5月份的空气质量最差,所以D 是错误的,故选A 、B 、C .12.某快递网点收取快递费用的标准是重量不超过1kg 的包裹收费10元,重量超过1kg 的包裹,除收费10元之外,超过1kg 的部分,每超出1kg(不足1kg ,按1kg 计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均数和中位数;(2)该快递网点负责人从收取的每件快递的费用中抽取5元作为工作人员的工资和网点的利润,剩余的作为其他费用.已知该网点有工作人员3人,每人每天工资100元,以样本估计总体,试估计该网点每天的利润有多少元?解:(1)每天包裹数量的平均数为0.1×50+0.1×150+0.5×250+0.2×350+0.1×450=260(件),因为[0,200)的频率为0.2,[200,300)的频率为0.5,中位数为200+0.5-0.20.5×100=260(件),所以该网点每天包裹的平均数和中位数都为260件.(2)由(1)可知平均每天的揽件数为260件,利润为260×5-3×100=1000(元),所以该网点平均每天的利润有1000元.13.记样本x 1,x 2,…,x m 的平均数为x -,样本y 1,y 2,…,y n 的平均数为y -(x -≠y -).若样本x 1,x 2,…,x m ,y 1,y 2,…,y n 的平均数为z -=14x -+34y -,则mn的值为()A .3B .4C .14D .13解析:D由题意知x 1+x 2+…+x m =m x -,y 1+y 2+…+y n =n y -,z -=(x 1+x 2+…+x m )+(y 1+y 2+…+y n )m +n =m x -+n y -m +n =m x -m +n +n y -m +n =14x -+34y -,所以m m +n =14,n m +n =34,可得3m =n ,所以m n =13.14.某校有高中生2000人,其中男女生比例约为5∶4,为了获得该校全体高中生的身高信息,采取了以下两种方案:方案一:采用比例分配的分层随机抽样方法,抽收了样本量为n 的样本,得到如图所示的频数分布表和频率分布直方图.方案二:采用分层随机抽样方法,抽取了男、女生样本量均为25的样本,计算得到男生样本的均值为170,方差为16,女生样本的均值为160,方差为20.身高(单位:cm)[145,155)[155,165)[165,175)[175,185)[185,195]频数mpq64(1)根据图表信息,求n ,q 并补充完整频率分布直方图,估计该校高中生的身高均值;(同一组中的数据以这组数据所在区间中点的值为代表)(2)计算方案二中总样本的均值及方差;(3)计算两种方案总样本均值的差,并说明用方案二总样本的均值作为总体均值的估计合适吗?为什么?解:(1)因为身高在区间[185,195]的频率为0.008×10=0.08,频数为4,所以样本量n =40.08=50,m =0.008×10×50=4,p =0.04×10×50=20,q =50-4-20-6-4=16,所以身高在[165,175)的频率为1650=0.32,小矩形的高为0.032,所以身高在[175,185)的频率为650=0.12,小矩形的高为0.012,由此补全频率分布直方图:由频率分布直方图可知样本的身高均值为(150×0.008+160×0.04+170×0.032+180×0.012+190×0.008)×10=167.2,所以由样本估计总体可知,估计该校高中生的身高均值为167.2.(2)把男生样本记为x 1,x 2,x 3,…,x 25,其均值为x -,方差为s 2x ,把女生样本记为y 1,y 2,y 3,…,y 25,其均值为y -,方差为s 2y ,总体样本均值记为z -,方差记为s 2,所以z -=2525+25x -+2525+25y -=25×170+25×16050=165,s 2=150{25[s 2x +(x --z -)2]+25[s 2y +(y --z -)2]}=150{25[16+(170-165)2]+25[20+(160-165)2]}=43.(3)两种方案总样本均值的差为167.2-165=2.2,所以用方案二总体样本均值作为总体均值的估计不合适,原因是没有进行等比例的分层随机抽样,每个个体被抽到的可能性不同,因此代表性较差.。
2025年高考数学一轮复习-抽样方法、统计图表、用样本估计总体-专项训练基础巩固练1.(2023连云港期中)下列一组数据的第30百分位数是()2.1,3.0,3.2,3.8,3.4,4.0,4.2,4.4,5.3,5.6.A.3.0B.3.2C.3.3D.4.42.从某中学抽取10名同学,得到他们的数学成绩(单位:分)如下:88,85,82,92,90,92,96,92,96,98.这10名同学数学成绩的众数、中位数分别为()A.92,92B.92,96C.96,92D.92,903.(2023宿迁月考)统计某样本数据得到的频率分布直方图如图所示,已知该样本容量为300,则样本数据落在[6,14)内的频数为()A.68B.170C.204D.2404.如图,这是某市2023年国庆节假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断,则下列判断正确的为()A.日成交量的中位数是16B.日成交量超过日平均成交量的有2天C.10月7日认购量的增幅大于10月7日成交量的增幅D.日认购量的方差大于日成交量的方差5.(多选题)在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.方法1:采用简单随机抽样的方法,将零件分别编号为00,01,02,…,99,用抽签法抽取20个.方法2:采用分层随机抽样的方法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下列说法正确的是()A.无论采用哪种抽样方法,这100个零件中每一个零件被抽到的可能性都是15B.采用不同的方法,这100个零件中每一个零件被抽到的可能性各不相同C.在上述两种抽样方法中,方法2抽到的样本比方法1抽到的样本更能反映总体的特征D.在上述两种抽样方法中,方法1抽到的样本比方法2抽到的样本更能反映总体的特征6.(多选题)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()甲乙A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的平均数等于乙的成绩的平均数C.甲的成绩的第80百分位数等于乙的成绩的第80百分位数D.甲的成绩的极差等于乙的成绩的极差7.在一次竞选中,规定一个人获胜的条件如下:(1)在竞选中得票最多;(2)得票数不低于总票数的一半.在计票时,周鹏得票的数据丢失.候选人赵明钱红孙华李丽周鹏得票数3001003060x如果周鹏获胜,那么周鹏的得票数x的最小值为.8.(2023盐城调研)已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数据的方差为.9.某大学艺术专业400名学生参加某次测评,根据男、女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成[20,30),[30,40),…,[80,90]七组,并整理得到如图所示的频率分布直方图:(1)从样本中随机抽取一人,求其分数小于70的频率.(2)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男、女生人数相等.试估计总体中男生和女生人数的比.综合提升练10.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,并得到频率分布直方图如图:则这20名工人一天生产该产品的数量的中位数为()A.65B.64C.62.5D.6011.一组数据的平均数为a,方差为b,将这组数据的每个数都乘m(m>0)后得到一组新数据,则下列说法正确的是()A.这组新数据的平均数为aB.这组新数据的平均数为a+mC.这组新数据的方差为mbD.这组新数据的方差为m2b12.(多选题)(2023徐州质检)在第一次全市高三年级统考后,数学老师为了解本班学生的本次数学考试情况,将全班50名学生的数学成绩绘制成了频率分布直方图.已知该班级学生的数学成绩(单位:分)全部介于65到145之间(满分150分),将数学成绩按如下方式分成八组:第一组[65,75),第二组[75,85),…,第八组[135,145].按上述分组方法得到的频率分布直方图的一部分如图所示,则下列结论正确的是()A.第七组的频率为0.008B.该班级数学成绩的中位数的估计值为101C.该班级数学成绩的平均分的估计值大于95D.该班级数学成绩的方差的估计值大于2613.已知甲、乙两组数据如下表所示,其中a,b∈N*,若甲、乙两组数据的平均数相等,要使甲组数据的方差小于乙组数据的方差,则(a,b)为.(只需填一组)甲12ab10乙12471114.某校从高一年级中随机抽取部分学生,将他们的期末数学测试成绩分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]6组加以统计,得到如图所示的频率分布直方图.据此统计,期末数学测试成绩不少于第60百分位数的分数至少为.15.6月17日是联合国确定的“世界防治荒漠化和干旱日”,为增强全社会对防治荒漠化的认识与关注,聚焦联合国2030年可持续发展目标——实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗圃中随机地抽测了200株树苗的高度(单位:cm),得到如图所示的频率分布直方图.(1)求频率分布直方图中a的值及众数、中位数.(2)已知树高为185cm及以上的是可以移栽的合格树苗.①求合格树苗的平均高度(结果精确到个位);②从样本中按分层抽样的方法抽取20株树苗进一步研究,不合格树苗、合格树苗分别应抽取多少株?创新应用练16.某小区毗邻一条公路,为了解交通噪声,有关部门连续25天监测噪声值(单位:分贝),得到频率分布直方图(图1),发现噪声污染严重,采取了在公路旁加装隔声板等治理措施,而后,再连续25天监测噪声值,得到频率分布直方图(图2).图1图2同一组中的数据用该组区间的中点值作代表,请解答下列问题:(1)根据上面两个频率分布直方图,估计治理后比治理前的平均噪声值降低了分贝.(2)国家“城市区域环境噪声”规定:重度污染:>65分贝;中度污染:60~65分贝;轻度污染:55~60分贝;较好:50~55分贝;好:≤50分贝.把上述两个样本数据的频率视为概率,根据图1估算出该小区噪声治理前一年内(365天)噪声中度污染及以上的天数为277,根据图2估计一年内(365天)噪声中度污染及以上的天数比治理前减少了天.(精确到1天)参考答案1.C2.A3.C4.D5.AC6.BCD7.4908 839.解(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从样本中随机抽取一人,其分数小于70的频率为0.4.(2)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60 12=30,所以样本中的男生人数为30×2=60,女生人数为100-60=40,男生和女生人数的比为60∶40=3∶2.所以根据分层抽样原理,估计总体中男生和女生人数的比为3∶2.10.C11.D12.BCD13.(4,8)或(5,7)或(6,6)或(7,5)或(8,4)(填其中一个即可)14.7415.解(1)∵(0.0015+0.0110+0.0225+0.0300+a+0.0080+0.0020)×10=1,∴a=0.0250.众数为185+1952=190.设中位数为x,∵(0.0015+0.0110+0.0225)×10=0.35<0.5,(0.0015+0.0110+0.0225+0.030)×10=0.65>0.5,∴185<x<195,(0.0015+0.0110+0.0225)×10+0.030(x-185)=0.5,∴x=190.(2)∵树苗高度为185cm及以上的频率是(0.0300+0.0250+0.0080+0.0020)×10=0.65, =[190×(0.030×10)+200×(0.0250×10)+210×(0.0080×10)+220×(0.002 0×10)]÷0.65≈197(cm).(3)应抽取不合格的树苗20×0.35=7(株),合格的树苗20×0.65=13(株),故不合格树苗、合格树苗分别应抽取7株和13株.16.(1)2.56(2)138。
2020年高考理科数学《概率与统计》题型归纳与训练【题型归纳】题型一 古典概型与几何概型例1、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 . 【答案】【解析】因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为. 例2、市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示:(1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的两类人群在该项措施的态度上有何不同;(2)现从样本中月收入在)20,10[和)70,60[的市民中各随机抽取一个人进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率. 【答案】(1)详见解析;(2)2011. 【解析】(1)由表知,样本中月收入低于20(百元)的共有5人,其中持赞成态度的共有2人,故赞成人数的频率为52,月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人,故赞成人数的频率为7564, ∵527564>,∴根据样本估计总体的思想可知月收入不低于30(百元)的人群对该措施持赞成态度的比月收入低于20(百元)的人群持赞成态度的比例要高.(2) 将月收入在)20,10[内,不赞成的3人记为321,,a a a ,赞成的2人记为54,a a ,将月收入在)70,60[内,不赞成的1人记为1b ,赞成的3人记为,,,432b b b 从月收入在)20,10[和)70,60[内的人中各随机抽取1人,基本事件总数20=n ,其中事件“抽取的两个人恰好对该措施一个赞成一个不赞成”包含的基本事件有5840155408-=),(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(1514433323423222413121b a b a b a b a b a b a b a b a b a b a b a 共11个,∴抽取的两个人恰好对该措施一个赞成一个不赞成的概率2011=P . 【易错点】求解古典概型问题的关键:先求出基本事件的总数,再确定所求目标事件包含基本事件的个数,结合古典概型概率公式求解.一般涉及“至多”“至少”等事件的概率计算问题时,可以考虑其对立事件的概率,从而简化运算. 【思维点拨】1. 求复杂互斥事件概率的方法一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式()()1P A P A =-,即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便.2.求古典概型的概率的基本步骤:算出所有基本事件的个数;求出事件A 包含的基本事件个数;代入公式,求出()P A ;几何概型的概率是几何度量之比,主要使用面积、体积之比与长度之比. 题型二 统计与统计案例例1、某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:],90,80[,),40,30[),30,20[Λ并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间)50,40[内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】(Ⅰ)4.0;(Ⅱ)20;(Ⅲ)2:3.【解析】(Ⅰ)根据频率分布直方图可知,样本中分数不小于70的频率为6.010)04.002.0(=⨯+,所以样本中分数小于70的频率为4.06.01=-.(Ⅱ)根据题意,样本中分数不小于50的频率为,分数在区间内的人数为.所以总体中分数在区间内的人数估计为. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为6010010)04.002.0(=⨯⨯+,所以样本中分数不小于70的男生人数为302160=⨯.所以样本中的男生人数为60230=⨯,女生人数为4060100=-,男生和女生人数的比例为2:340:60=,所以根据分层抽样的原理,总体中男生和女生人数的比例估计为2:3. 【易错点】求解统计图表问题,重要的是认真观察图表,发现有用信息和数据.对于频率分布直方图,应注意图中的每一个小矩形的面积是落在该区间上的频率,所有小矩形的面积和为1,当小矩形等高时,说明频率相等,计算时不要漏掉其中一个. 【思维点拨】1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少.2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数较多.3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成. 4.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中: (1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 5.求回归直线方程的关键①正确理解计算^^,a b 的公式和准确的计算.②在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关(0.010.020.040.02)100.9+++⨯=[40,50)1001000.955-⨯-=[40,50)540020100⨯=系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值. 6.独立性检验的关键①根据22⨯列联表准确计算2K ,若22⨯列联表没有列出来,要先列出此表. ②2K 的观测值k 越大,对应假设事件0H 成立的概率越小,0H 不成立的概率越大. 题型三 概率、随机变量及其分布例1、“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为; ②若,则, .【答案】(1) (2) (3)的分布列为;.【解析】(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为A x Z ()2,N μσZ ()14.55,38.45()10,30X X 11.95σ=≈()2~,Z N μσ()0.6826P Z μσμσ-<≤+=(22)0.9544P Z μσμσ-<≤+=26.5x =0.6826X ()2E X =x.(2)①∵服从正态分布,且, ,∴, ∴落在内的概率是. ②根据题意得, ; ; ; ; . ∴的分布列为∴. 50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=Z ()2,N μσ26.5μ=11.95σ≈(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=Z ()14.55,38.450.68261~4,2X B ⎛⎫ ⎪⎝⎭()404110216P X C ⎛⎫=== ⎪⎝⎭()41411124P X C ⎛⎫=== ⎪⎝⎭()42413228P X C ⎛⎫=== ⎪⎝⎭()43411324P X C ⎛⎫=== ⎪⎝⎭()444114216P X C ⎛⎫=== ⎪⎝⎭X ()1422E X =⨯=【思维点拨】1.条件概率的两种求解方法: (2)基本事件法,借助古典概型概率公式,先求事件A 包含的基本事件数)(A n ,再求事件AB 所包含的基本事件数()AB n ,得)()()|(A n AB n A B P =. 2.判断相互独立事件的三种常用方法:(1)利用定义,事件B A ,相互独立⇔)()()(B P A P AB P ⋅=.(2)利用性质,A 与B 相互独立,则A 与A B ,与B ,B A 与也都相互独立. (3)具体背景下,①有放回地摸球,每次摸球的结果是相互独立的. ②当产品数量很大时,不放回抽样也可近似看作独立重复试验.3. 求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.4. 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检验该概率模型是否满足公式k n k k n p p C k X P --==)1()(的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.5. 求离散型随机变量的均值与方差的基本方法有:(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量X 的均值、方差,求X 的线性函数b aX Y +=的均值、方差,可直接用均值、方差的性质求解,即b X aE b aX E +=+)()(,)()(2X D a b aX D =+(b a ,为常数).(3)如能分析所给随机变量服从常用的分布,可直接利用它们的均值、方差公式求解,即若X 服从两点分布,则p X E =)(,)1()(p p X D -=;若),(~p n B X ,则np X E =)(,)1()(p np X D -=.【巩固训练】题型一 古典概型与几何概型1.已知,,则函数在区间上为增函数的概率是( )A .B .C .D . {}0 1 2a ∈,,{}1 1 3 5b ∈-,,,()22f x ax bx =-()1 +∞,512131416【答案】A【解析】①当时,,情况为符合要求的只有一种; ②当时,则讨论二次函数的对称轴要满足题意则产生的情况表示: ,8种情况满足的只有4种; 综上所述得:使得函数在区间为增函数的概率为:1251214=+=P .2.在区间上任取一数,则的概率是( )A .B .C .D . 【答案】C【解析】由题设可得,即;所以,则由几何概型的概率公式.故应选C .(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.【答案】(1) 0.4;(2) 45;(3)74. 【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为0a =()2f x bx =- 1 1 3 5b =-,,,1b =-0a ≠22b b x a a -=-=1ba≤() a b ,()()()1 1 1 1 1 3-,,,,,()()()()()1 5 2 1 2 1 2 3 2 5-,,,,,,,,,()22f x ax bx =-()1 +∞,()0,4x 1224x -<<12131434211<-<x 32<<x 4,1==D d 41=P考向二 统计与统计案例1.为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:现从所有试验动物中任取一只, (Ⅰ)求列联表中的数据,,,的值; (Ⅱ)绘制发病率的条形统计图,并判断疫苗是否有效? (Ⅲ)能够有多大把握认为疫苗有效?22⨯x y A B【答案】(Ⅰ),,,;(Ⅱ)详见解析;(Ⅲ)至少有%9.99的把握认为疫苗有效.【解析】(Ⅰ)设“从所有试验动物中任取一只,取到“注射疫苗”动物”为事件A, 由已知得,所以,,,.发病率的条形统计图如图所示,由图可以看出疫苗影响到发病率.10y =40B =40x =60A =302()1005y P A +==10y =40B =40x =60A =未注射 注射. 所以至少有%9.99的把握认为疫苗有效.2.在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在市的区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个分店的年收入之和.(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程; (Ⅱ)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(Ⅰ)中的线性回归方程,估算该公司应在区开设多少个分店,才能使区平均每个分店的年利润最大? 参考公式:, , .【答案】(1);(2)公司应在区开设4个分店,才能使区平均每个分店的年利润最大.【解析】(1)10085)())(()(,4,42112121^=---=--===∑∑∑∑====x x y yx x x n xyx n yx b y x ni ini iini ini iiΘ,6.0^^=-=x b y a , ∴y 关于x 的线性回归方程6.085.0+=x y .(2) ,区平均每个分店的年利润 ,∴时, 取得最大值,故该公司应在区开设4个分店,才能使区平均每个分店的年利润最大.10000005016.6710.8285020603=≈>⨯⨯S A x y x y x y x A z ,x y 20.05 1.4z y x =--A A y b x a ∧∧∧=+1221ni i i nii x y nxyb x nx ∧==-==-∑∑()()()121niii n ii x x y y x x ==---∑∑a y b x ∧∧=-0.850.6y x =+A A 20.05 1.4z y x =--=20.050.850.8x x -+-A 0.80.050.85z t x x x ==--+800.0150.85x x ⎛⎫=-++ ⎪⎝⎭4x =t A A3. 某商场对商品30天的日销售量y (件)与时间t (天)的销售情况进行整理,得到如下数据,经统计分析,日销售量y (件)与时间t (天)之间具有线性相关关系.(1)请根据表中提供的数据,用最小二乘法求出y 关于t 的线性回归方程a t b y +=. (2)已知商品30天内的销售价格z (元)与时间t(天)的关系为,),200(,20),3020(,100⎩⎨⎧∈<<+∈≤≤+-=N t t t N t t t z 根据(1)中求出的线性回归方程,预测t 为何值时,商品的日销售额最大.参考公式:2121^)(t n tyt n yt b ni ini ii--=∑∑==,t b y a ^^-=.【答案】(1)40^+-=t y ;(2)预测当20=t 时,商品的日销售额最大,最大值为1600元. 【解析】(1)根据题意,6)108642(51=++++⨯=t ,34)3033323738(51=++++⨯=y , 980301033832637438251=⨯+⨯+⨯+⨯+⨯=∑=i i i y t ,22010864222222512=++++=∑=i i t ,所以回归系数为1652203465980)(22121^-=⨯-⨯⨯-=--=∑∑==t n tyt n yt b ni ini ii,406)1(34^^=⨯--=-=t b y a ,故所求的线性回归方程为40^+-=t y . (2)由题意得日销售额为,,3020),40)(100(,200),40)(20(⎩⎨⎧∈≤≤+-+-∈<<+-+=Nt t t t Nt t t t L当N t t ∈<<,200时,900)10(80020)40)(20(22+--=++-=+-+=t t t t t L , 所以当;90010max ==L t 时,当N t t ∈≤≤,3020时,900)70(4000140)40)(100(22--=+-=+-+-=t t t t t L , 所以当.160020max ==L t 时,综上所述,预测当20=t 时,A 商品的日销售额最大,最大值为1600元. 题型三 概率、随机变量及其分布A A A A1.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者654321,,,,,A A A A A A 和4名女志愿者4321,,,B B B B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I )求接受甲种心理暗示的志愿者中包含1A 但不包含的频率。
课时作业1.(2022·毛坦厂中学月考)一个容量为32的样本,已知某组样本的频率为0.375,则该组样本的频数为( )A.4 B.8C.12 D.16【答案】 C2.(2022·西藏拉萨中学月考)某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小队积分的方差为( )A.0.5 B.0.75C.1 D.1.25【解析】 四个小队积分分别为11.5,13.5,13.5,11.5,平均数为11.5+13.5+13.5+11.54=12.5,故四个小队积分的方差为14[(11.5-12.5)2×2+(13.5-12.5)2×2]=1,故选C.【答案】 C3.(2022·龙岩质检)党的十八大以来,脱贫攻坚取得显著成绩.2013年至2016年4年间,累计脱贫5 564万人,2017年各地根据实际进行创新,精准、高效地完成了脱贫任务.某地区对当地3 000户家庭的2017年所的年收入情况调查统计,年收入的频率分布直方图如图所示,数据(单位:千元)的分组依次为[20,40),[40,60),[60,80),[800,100],则年收入不超过6万的家庭大约为( )A.900户B.600户C.300户D.150户【解析】 由频率分布直方图可得年收入不超过6万的家庭的概率为:(0.005+0.01)×20=0.3,所以年收入不超过6万的家庭大约为:3 000×0.3=900,故选A.【答案】 A4.(2022·江苏模拟)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.在这些用户中,用电量落在区间[150,250]内的户数为( )A.48 B.52C.60 D.70【解析】 由题意可知,这些用户中,用电量落在区间[150,250]内的频率为1-(0.002 4+0.003 6+0.002 4+0.001 2)×50=0.52,所以用电量落在区间[150,250]内的户数为100×0.52=52,故选D.【答案】 D5.(多选) (2022·江苏模拟)已知数据x1,x2,…,x n的平均数为,标准差为s,则( ) A.数据x21,x2,…,x2n的平均数为,标准差为s2B.数据2x1,2x2,…,2x n的平均数为,标准差为2sC.数据x1+2,x2+2,…,x n+2的平均数为x+2,方差为s2D.数据2x1-2,2x2-2,…,2x n-2的平均数为-2,方差为2s2【解析】 取x1=1,x2=3,则=2,x21=1,x2=9,=5,故,A错误;数据2x1,2x2,…,2x n的平均数为2x,标准差为2s,B正确;数据x1+2,x2+2,…,x n+2的平均数为x+2,方差为s2,C正确;数据2x1-2,2x2-2,…,2x n-2的平均数为2x-2,方差为4s2,D错误.故选BC.【答案】 BC6.(多选)(2022·石家庄五校联考)下图统计了截止到2019年年底中国电动汽车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法错误的是( )A.私人类电动汽车充电桩保有量增长率最高的年份是2018年B.公共类电动汽车充电桩保有量的中位数是25.7万台C.公共类电动汽车充电桩保有量的平均数为23.12万台D.从2017年开始,我国私人类电动汽车充电桩占比均超过50%【解析】 私人类电动汽车充电桩保有量增长率最高的年份是2016年,A错误;这5次统计的公共类电动汽车充电桩保有量的中位数是21.4万台,B错误;因为4.9+14.1+21.4+30+44.7=23.02,故C项错误,D项显然正确.故选:ABC.5【答案】 ABC7.某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其平均数和方差分别为x 和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的平均数和方差分别为( )【解析】 因为每个数据都加上100,所以平均数也增加100,而离散程度应保持不变,即方差不变.【答案】 D8.(2022·宁夏长庆中学)某校为了了解全校高中学生十一小长假参加实践活动的情况,抽查了100名学生,统计他们假期参加实践活动的时间,绘成的频率分布直方图如图所示,估计这100名学生参加实践活动时间的中位数是( )A.7.2 B.7.16C.8.2 D.7【解析】 因为在频率分布直方图中,中位数两侧的面积相等,所以0.04×2+0.12×2+(x-6)×0.15=0.5,可解出x=7.2,故选A.【答案】 A9.(2022·泉州质检)已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为,方差为s2,则( )【解析】 分别根据数据的平均数和方差的计算公式,求得x,s2的值,即可得到答案.由题意,可得=70×50+80-60+70-9050=70,设收集的48个准确数据分别记为x1,x2, (x48)则75=150[(x1-70)2+(x2-70)2+…+(x48-70)2+(60-70)2+(90-70)2]=150[(x1-70)2+(x2-70)2+…+(x48-70)2+500],s2=150[(x1-70)2+(x2-70)2+…+(x48-70)2+(80-70)2+(70-70)2]=150[(x1-70)2+(x2-70)2+…+(x48-70)2+100]<75,所以s2<75.故选A.【答案】 A10.(多选)(2022·重庆模拟)2020年12月31日,我国第一支新冠疫苗“国药集团中国生物新冠灭活疫苗”获得国家药监局批准附条件上市,保护率为79.34%,中和抗体阳转率为99.52%,该疫苗将面向全民免费.所谓疫苗的保护率,是通过把人群分成两部分,一部分称为对照组,即注射安慰剂;另一部分称为疫苗组,即注射疫苗来进行的.当从对照组和疫苗组分别获得发病率后,就可以计算出疫苗的保护率=(对照组发病率-疫苗组发病率)/对照组发病率×100%.关于注射疫苗,下列说法正确的是( )A.只要注射了新冠疫苗,就一定不会感染新冠肺炎B.新冠疫苗的高度阳转率,使得新冠肺炎重症感染的风险大大降低C.若对照组10 000人,发病100人;疫苗组2 000人,发病80人,则保护率为60% D.若某疫苗的保护率为80%,对照组发病率为50%,那么在1 000个人注射了该疫苗后,一定有1 000个人发病【解析】 显然选项A错误,对于选项B:新冠疫苗的阳转率高说明有高滴度的抗体,当感染新冠肺炎后,肺炎症状将会大大降低,进而减少重症率,所以选项B正确,对于选项C:由保护率的计算公式可得:对照组和疫苗组的发病率分别为1%,0.4%,代入可得保护率为60%,所以选项C正确,对于选项D:虽然根据公式算出样本中疫苗组的发病率为10%,但实际是否会发病是随机事件,所以选项D错误.【答案】 BC11.样本中共有五个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本方差为________.【解析】 由题意知15(a+0+1+2+3)=1,解得a=-1,所以样本方差为s2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.【答案】 212.(2022·西城一模)在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:①甲校学生成绩的优秀率大于乙校学生成绩的优秀率;②甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;③甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是________.【解析】 不能确定甲乙两校的男女比例,故①不正确;因为甲乙两校的男生的优秀率均大于女生成绩的优秀率,故甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率,故②正确;因为不能确定甲乙两校的男女比例,故不能确定甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系,故③正确.【答案】 ②③13.(2022·顺德二模)为了解某市公益志愿者的年龄分布情况,有关部门通过随机抽样,得到如图的频率分布直方图.(1)求a的值,并估计该市公益志愿者年龄的平均数(同一组中的数据用该组区间的中点值作代表);(2)根据世界卫生组织确定新的年龄分段,青年是指年龄15~44岁的年轻人.据统计,该市人口约为300万人,其中公益志愿者约占总人口的40%.试根据直方图估计该市青年公益志愿者的人数.【解】 (1)∵(0.005+0.01+0.02+a+0.025+0.01)×10=1,∴a=0.03该市公益志愿者的平均年龄:=20×0.05+30×0.1+40×0.2+50×0.3+60×0.25+70×0.1=49(2)由频率分布直方图可得年龄15~44岁的频率为:(0.005+0.01+0.02×910)×10=0.33,∴估计该市青年公益志愿者的人数为:300×40%×0.33=39.6(万) 14.(2022·临沂三模)某地教育主管部门对所管辖的学校进行年终督导评估,为了解某学校师生对学校教学管理的满意度,分别从教师和不同年级的学生中随机抽取若干师生,进行评分(满分100分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:满意度评分低于 60分 60分到 79分 80分到 89分 90分及 以上 满意度等级 不满意基本 满意满意 非常满意 已知满意度等级为基本满意的有136人.(1)求表中a 的值及不满意的人数;(2)从等级为不满意师生中按评分分层抽取6人了解不满意的原因,并从6人中选取2人担任整改监督员,求2人中恰有1人评分在[40,50)的概率;(3)若师生的满意指数不低于0.8,则该校可获评“教学管理先进单位”,根据你所学的统计知识,判断是否能获奖,并说明理由.(注:满意指数=满意程度的平均分100) 【解】 (1)由频率和为1,得(0.002+0.004+0.014+0.020+a +0.025)×10=1,解得a =0.035,设不满意的人数为x ,则(0.002+0.004)∶(0.014+0.020)=x ∶136, 解得x=24;(2)按评分分层抽取6人,应在评分在[40,50)的师生中抽取2人,分别记作A、B,在评分在[50,60)的师生中抽取4人,分别记为c、d、e、f,从这6人中选2人的所有基本事件为AB、Ac、Ad、Ae、Af、Bc、Bd、Be、Bf、cd、ce、cf、de、df、ef共15种,其中恰有1人评分在[40,50)包含的基本事件为Ac、Ad、Ae、Af、Bc、Bd、Be、Bf共8种,记“2人中恰有1人的评分在[40,50)”为事件A,则P(A)=8 15;(3)师生的满意指数为1100×(45×0.02+55×0.04+65×0.14+75×0.2+85×0.35+95×0.25)=0.807;师生的满意指数不低于0.8,可获评“教学管理先进单位”.。
高考数学中的概率与统计问题解析在高考数学中,概率与统计是必考内容之一。
因为这两个概念在现实生活中的应用非常广泛,所以掌握好这些知识不仅对考试有好处,而且对日常生活也会有很大帮助。
下面就从概率与统计两个方面,为大家详细解析高考数学中的相关问题。
一、概率概率是研究随机事件发生的可能性的一种数学方法。
在高考数学中,概率主要出现在两个方面,一是基本概念,二是题目应用。
1.1 基本概念在高考数学中,我们首先需要掌握的是概率的基本概念,包括术语的定义、公式的推导等。
下面,我们以事件的概念为例,对概率的基本概念进行解析。
(1)事件的概念事件是指一个特定的结果或者一组结果,它是随机试验中的某种可能结果。
例如,抛硬币出现正面或反面,就是一个随机试验,正面和反面分别是两个可能事件。
(2)样本空间和事件的关系样本空间是指随机试验所有可能结果的集合,而事件是样本空间的子集。
例如,抛硬币出现正面或反面,样本空间就是{正,反},其中正是一个事件,反也是一个事件。
(3)概率的定义概率是指某个事件发生的可能性大小,用一个实数来表示。
在高考数学中,概率的计算公式为:$$ P(A)=\frac{m}{n} $$其中,P(A)表示事件A发生的概率,m表示事件A包含的样本点的个数,n表示样本空间中的样本点的总个数。
(4)概率的性质在高考数学中,概率具有以下几个性质:- 非负性:概率不会小于0。
- 规范性:整个样本空间的概率为1。
- 可加性:当A、B是两个互不相交的事件时,它们的概率之和等于它们的并的概率,即$$ P(A \bigcup B)=P(A)+P(B) $$1.2 题目应用在高考数学中,概率的题目多种多样,基本都是考察学生对于概率概念和解决实际问题的能力。
下面,我们以两道高考真题为例,来看一下如何应用概率解题。
【例题1】已知某城市三天中降雪的概率分别为0.25、0.3、0.3,三天降雪的概率为0.15,那么这个城市至少有一天降雪的概率是多少?解析:这道题考察的是概率的不定性,也就是求至少一个事件发生的概率。
新教材高考数学一轮复习:五十四 用样本估计总体(建议用时:45分钟)A 组 全考点巩固练1.某市3月1日至3月10日的最低气温(单位:℃)的情况绘制的折线统计图如图所示.由图可知,这10天最低气温的80%分位数是( )A .-2B .0C .1D .2D 解析:由折线图可知,这10天的最低气温按照从小到大排列为-3,-2,-1,-1,0,0,1,2,2,2.因为共有10个数据,所以10×80%=8,是整数,则这10天最低气温的80%分位数是2+22=2. 2.某班的全体学生参加英语测试,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60B 解析:由频率分布直方图知低于60分的频率为(0.010+0.005)×20=0.3.所以该班学生人数n =150.3=50. 3.(2020·河北衡水高三模拟)某学校对100间学生公寓的卫生情况进行综合评比,依考核分数分为A ,B ,C ,D 四个等级,其中分数在[60,70)为D 等级;分数在[70,80)为C 等级;分数在[80,90)为B 等级;分数在[90,100]为A 等级.考核评估后,得其频率分布折线图如图所示,估计这100间学生公寓评估得分的平均数是()A.80.25 B.80.45C.80.5 D.80.65C解析:由折线图可知,A等级分数在[90,100]频率为0.025×10=0.25;B等级分数在[80,90)频率为0.020×10=0.20;C等级分数在[70,80)频率为0.040×10=0.40;D等级分数在[60,70)频率为0.015×10=0.15.平均数为65×0.15+75×0.40+85×0.20+95×0.25=80.5.故选C.4.(2020·滨州模拟)随着我国经济实力的不断提升,居民收入也在不断增加.某家庭2018年全年的收入与2014年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如下折线图,则()A.该家庭2018年食品的消费额是2014年食品的消费额的一半B.该家庭2018年教育医疗的消费额与2014年教育医疗的消费额相当C.该家庭2018年休闲旅游的消费额是2014年休闲旅游的消费额的五倍D.该家庭2018年生活用品的消费额是2014年生活用品的消费额的两倍C解析:选项A中,2018年食品消费占0.2,2014年食品消费占0.4,因2018年全年的收入与2014年全年的收入相比增加了一倍,所以两年的食品消费额相当,故A项错误.选项B中,2018年教育医疗消费占0.2,2014年教育医疗消费占0.2,因2018年全年的收入与2014年全年的收入相比增加了一倍,所以2018年教育医疗消费额是2014年的两倍,故B项错误.选项C 中,2018年休闲旅游消费占0.25,2014年休闲旅游消费占0.1,因2018年全年的收入与2014年全年的收入相比增加了一倍,所以2018年休闲旅游消费消费额是2014年的五倍,故C 项正确.选项D 中,2018年生活用品消费占0.3,2014年生活用品消费占0.15,因2018年全年的收入与2014年全年的收入相比增加了一倍,所以2018年生活用品消费额是2014年的四倍,故D 项错误.5.(多选题)疫苗的研制需要经过临床试验阶段,抗体产生的初次应答和再次应答两个阶段都需经过一定的潜伏期,潜伏期长短与抗原的性质有关.疫苗经5~7天,类毒素在2~3周后,血液中才出现抗体,初次应答所产生的抗体量一般不多,持续时间也较短,从抗体出现的种类来看,IgM(免疫球蛋白M)出现最早,但消失也快,在血液中只维持数周至数月.IgG(免疫球蛋白G)出现稍迟于IgM ,当IgM 接近消失时,IgG 达高峰,它在血液中维持时间可达数年之久.当第二次接受相同抗原时,机体可出现再次反应,开始时抗体有所下降,这是因为原有抗体被再次进入的抗原结合所致.如图是某种疫苗试验得到的有关测试数据绘制出的图形,则下列关于该图形说法正确的是( AC )A .初次抗原刺激阶段,在10天内试验个体对抗原刺激不够灵敏,产生IgG 的浓度比较低B .初次抗原刺激阶段,IgG 峰值出现早于IgM 峰值C .再次抗原刺激阶段,总抗体量大概8天左右达到峰值,且潜伏期比初次抗原刺激阶段要短D .在试验的两个阶段IgG 的峰值出现比IgM 出现最早,但IgG 消失也快6.某校女子篮球队7名运动员身高(单位:cm)的数据分别为171,172,17x,174,175,180,181.已知记录的平均身高为175 cm ,但记录中有一名运动员身高的末位数字不清晰.如果把其末位数字记为x ,那么x 的值为________.2 解析:170+17×(1+2+x +4+5+10+11)=175,17×(33+x )=5,即33+x =35,解得x =2.7.一组样本数据的频率分布直方图如图所示,估计此样本数据的50%分位数为________.1009解析:样本数据低于10的比例为(0.08+0.02)×4=0.40,样本数据低于14的比例为0.4+0.09×4=0.40+0.36=0.76,所以此样本数据的50%分位数在[10,14]内,估计此样本数据的50%分位数为10+0.10.36×4=1009. B 组 新高考培优练8.(2021·深圳月考)已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为s 2,则( )A.x =70,s 2<75B.x =70,s 2>75C.x >70,s 2<75D.x <70,s 2>75A 解析:由题意,根据平均数的计算公式,可得x =70×50+80-60+70-9050=70. 设收集的48个准确数据分别记为x 1,x 2,…,x 48,则75=150[(x 1-70)2+(x 2-70)2+…+(x 48-70)2+(60-70)2+(90-70)2] =150[(x 1-70)2+(x 2-70)2+…+(x 48-70)2+500], s 2=150[(x 1-70)2+(x 2-70)2+…+(x 48-70)2+(80-70)2+(70-70)2] =150[(x 1-70)2+(x 2-70)2+…+(x 48-70)2+100]<75,故s 2<75.故选A. 9.(多选题)(2020·泰安一模)某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则( )注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多ABC 解析:选项A ,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术和运营岗位的人数占比分别为39.6%和17%,则“90后”从事技术和运营岗位的人数占总人数的56%×(39.6%+17%)≈31.7%.“80前”和“80后”中必然也有从事技术和运营岗位的人,则总的占比一定超过三成,故选项A 正确.选项B ,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术岗位的人数占比为39.6%,则“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%.“80前”和“80后”中必然也有从事技术岗位的人,则总的占比一定超过20%,故选项B 正确.选项C ,“90后”从事运营岗位的人数占总人数的比为56%×17%≈9.5%,大于“80前”的总人数所占比3%,故选项C 正确.选项D ,“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%,“80后”的总人数占比为41%,条件中未给出从事技术岗位的占比,故不能判断,所以选项D 错误.10.(2020·海淀模拟)已知样本x 1,x 2,…,x n 的平均数为x ,样本y 1,y 2,…,y m 的平均数为y (x ≠y ).若样本x 1,x 2,…,x n ,y 1,y 2,…,y m 的平均数z =ax +(1-a )y ,其中0<a <12,则n ,m (n ,m ∈N *)的大小关系为( )A .n =mB .n ≥mC .n <mD .n >mC 解析:由题意得z =1n +m (nx +my )=n n +m x +⎝ ⎛⎭⎪⎫1-n n +m y ,所以a =n n +m. 因为0<a <12,所以0<n n +m <12. 又n ,m ∈N *,所以2n <n +m ,所以n <m .11.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量结果得如下频数分布表:质量指标[75,85)[85,95)[95,105)[105,115)[115,125] 值分组频数62638228(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表).(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解:(1)样本数据的频率分布直方图如图所示.(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.。
专练55 随机抽样与用样本估计总体一、选择题1.某创业公司共有36名职工,为了了解该公司职工的年龄构成情况,随机采访了9位代表,得到的数据分别为36,36,37,37,40,43,43,44,44,若用样本估计总体,年龄在(x-s,x+s)内的人数占公司人数的百分比是(其中x是平均数,s为标准差,结果精确到1%)() A.14%B.25%C.56%D.67%2.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的X围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于小时的人数是()A.56B.60C.120D.1403.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差4.某学校从高三甲、乙两个班中各选6名同学参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的众数是85,乙班学生成绩的平均分为81,则x+y的值为().7C.8D.95.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半6.近年呼吁高校招生改革的呼声越来越高,在赞成高校招生改革的市民中按年龄分组,得到样本频率分布直方图如图,其中年龄在[30,40)岁的有2500人,年龄在[20,30)岁的有1200人,则m 的值为()A .. C ..7.(多选)[2021·全国新高考Ⅰ卷]有一组样本数据x 1,x 2,…,x n ,由这组数据得到新样本数据y 1,y 2,…,y n ,其中y i =x i +c (i =1,2,…,n ),c 为非零常数,则()A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同8.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差9.某产品的广告费用x 与销售额y 的统计数据如表所示:根据上表可得经验回归方程为y =x +a ,下列说法正确的是()A .回归直线y ^=x +a ^必经过样本点(2,19),(6,44)B .这组数据的样本点中心(x -,y -)未必在回归直线y ^=x +a ^上C .回归系数的含义是广告费用每增加1万元,销售额实际增加万元D .据此模型预报广告费用为7万元时销售额约为万元二、填空题10.[2020·某某卷]已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是________. 11.某电子商务公司对10000名网络购物者2021年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.12.在一容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未被污损,即9,10,11,1■,■,那么这组数据的方差s 2可能的最大值是________.[能力提升] 13.[2021·某某南开中学月考]今年入夏以来,我市天气反复,降雨频繁.如图统计了上个月前15天的气温,以及相对去年同期的气温差(今年气温-去年气温,单位:摄氏度),以下判断错误的是()A .今年每天气温都比去年同期的气温高B .今年的气温的平均值比去年同期的气温的平均值低C .去年8~11号气温持续上升D .今年8号气温最低14.[2020·全国卷Ⅲ]在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且 i =14pi =1,则下面四种情形中,对应样本的标准差最大的一组是()A .p 1=p 4=,p 2=p 3=B .p 1=p 4=,p 2=p 3=C .p 1=p 4=,p 2=p 3=D .p 1=p 4=,p 2=p 3=15.已知一组正数x 1,x 2,x 3的方差s 2=13(x 21+x 22+x 23-12),则数据x 1+1,x 2+1,x 3+1的平均数为________.16.已知样本容量为200,在样本的频率分布直方图中,共有n 个小矩形,若中间一个小矩形的面积等于其余(n -1)个小矩形面积和的13,则该组的频数为________.专练55 随机抽样与用样本估计总体1.C 因为x -=36+36+37+37+40+43+43+44+449=40,s 2=19(16+16+9+9+0+9+9+16+16)=1009,即s =103,年龄在(x --s ,x -+s )即⎝⎛⎭⎫1103,1303内的人数为5,所以所求百分比为59≈=56%,故选C.2.D 由频率分布直方图知,200名学生每周的自习时间不少于小时的频率为1-+0.10)×=,则这200名学生中每周的自习时间不少于小时的人数为200×=140.3.A 记9个原始评分分别为a ,b ,c ,d ,e ,f ,g ,h ,i (按从小到大的顺序排列),易知e 为7个有效评分与9个原始评分的中位数,故不变的数字特征是中位数,故选A.4.D 由题意得x =5,又乙班学生成绩的平均分为81, ∴70×2+80×3+90+8+y +1+1+26=81,得y =4,∴x +y =5+4=9.5.A 设建设前经济收入为a ,则建设后经济收入为2a ,由题图可得下表:6.C 由题意得,年龄在X 围[30,40)岁的频率为×10=,则赞成高校招生改革的市民有25000.25=10000人,因为年龄在X 围[20,30)岁的有1200人,则m =12001000010=0.012.故选C. 7.CDA :E (y )=E (x +c )=E (x )+c 且c ≠0,故平均数不相同,错误;B :若第一组中位数为x i ,则第二组的中位数为y i =x i +c ,显然不相同,错误;C :D (y )=D (x )+D (c )=D (x ),故方差相同,正确.D :由极差的定义知:若第一组的极差为x max -x min ,则第二组的极差为y max -y min =(x max+c )-(x min +c )=x max -x min ,故极差相同,正确.故选CD.8.C 甲的平均数是4+5+6+7+85=6,中位数是6,极差是4,方差是(-2)2+(-1)2+02+12+225=2;乙的平均数是5+5+5+6+95=6,中位数是5,极差是4,方差是(-1)2+(-1)2+(-1)2+02+325=125,比较可得选项C 正确.9.D 由表格中的数据可得x -=2+3+4+5+65=4,y -=19+25+34+38+445=32,将点(x -,y -)的坐标代入经验回归方程得×4+a ^=32,解得a ^=,所以回归方程为y ^=x +6.8.对于A 选项,当x =2时,y ^=×2+=,A 选项错误;对于B 选项,这组数据的样本点中心(x -,y -)必在回归直线y ^=x +a ^上,B 选项错误; 对于C 选项,回归系数的含义是广告费用每增加1万元,销售额约增加万元,C 选项错误;对于D 选项,当x =7时,y ^=×7+=,所以据此模型预报广告费用为7万元时销售额约为万元,D 选项正确. 故选D. 10.2解析:由平均数公式可得4+2a +(3-a )+5+65=4,解得a =2.11.(1)3(2)6000解析:×+++++a )=1,解得a =3.(2)消费金额在区间[0.5,0.9]内的购物者的频率为×+++0.2)=,所以所求购物者的人数为×10000=6000.12.解析:设这组数据的最后两个数据为10+x ,y (x ∈N ,x ≤9) ∵9+10+11+10+x +y =10×5=50, ∴x +y =10, ∴y =10-x .∴s 2=15[1+0+1+x 2+(y -10)2]=15(2+2x 2).∵x ≤9,∴当x =9时,s 2取得最大值32.8.13.A 由图可知,1号温差为负值,所以今年1号气温低于去年同期的气温,故选项A 不正确;除6,7号,今年气温略高于去年同期的气温外,其他日子,今年气温都低于去年同期的气温,所以今年的气温的平均值比去年同期的气温的平均值低,选项B 正确;今年8~11号气温上升,但是气温差逐渐下降,说明去年8~11号气温持续上升,选项C 正确;由图可知,今年8号气温最低,选项D 正确.故选A.14.B 根据均值E (X )=∑i =14x i p i ,方差D (X )=∑i =14[x i -E (X )]2·p i 以及方差与标准差的关系,得各选项对应样本的标准差如下表.由此可知选项15.3解析:∵s 2=13[](x 1-x -)2+(x 2-x -)2+(x 3-x -)2 =13[]x 21+x 22+x 23-2x -(x 1+x 2+x 3)+3x -2 =13[]x 21+x 22+x 23-3x-2, 又s 2=13(x 21+x 22+x 23-12),∴3x -2=12, ∴x -=2.∴x 1+1,x 2+1,x 3+1的平均数为x 1+x 2+x 3+33=3.16.50解析:设除中间一个小矩形外的(n -1)个小矩形面积的和为P ,则中间一个小矩形面积为13P ,P +13P =1,P =34,则中间一个小矩形的面积等于13P =14,200×14=50,即该组的频数为50.。
考点规范练55 用样本估计总体考点规范练A 册第39页基础巩固1.(2020全国Ⅲ,理3)在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑i=14p i =1,则下面四种情形中,对应样本的标准差最大的一组是( ) A.p 1=p 4=0.1,p 2=p 3=0.4 B.p 1=p 4=0.4,p 2=p 3=0.1 C.p 1=p 4=0.2,p 2=p 3=0.3D.p 1=p 4=0.3,p 2=p 3=0.2 答案:B解析:四个选项的数据都具有对称性,平均数均为2.5,其中B 选项的数据中,极端值最多,数据波动程度最大,故选B .2.某中学高三(2)班甲、乙两名学生自高中以来每次考试成绩的茎叶图如图,下列说法正确的是( )A.乙学生比甲学生发挥稳定,且平均成绩也比甲学生高B.乙学生比甲学生发挥稳定,但平均成绩不如甲学生高C.甲学生比乙学生发挥稳定,且平均成绩比乙学生高D.甲学生比乙学生发挥稳定,但平均成绩不如乙学生高 答案:A3.某仪器厂从新生产的一批零件中随机抽取40个检测,根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图如图所示,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在( )A.第3组B.第4组C.第5组D.第6组 答案:B解析:由题图可得,前第四组的频率为(0.037 5+0.062 5+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,即中位数落在第4组,故选B . 4.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为( )A.2B.3C.4D.5答案:B解析:依题意可得10×(0.005+0.01+0.02+a+0.035)=1,则a=0.03.所以身高在[120,130),[130,140),[140,150]三组内的学生人数比例为3∶2∶1. 所以从身高在[140,150]内的学生中选取的人数应为13+2+1×18=3.5.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:以上两组数据的方差中较小的一个为s ,则s =( ) A .25 B .725 C .35D.2答案:A解析:由题意,得x 甲=6+7+7+8+75=7,x 乙=6+7+6+7+95=7,s 甲2=15[(6-7)2+(7-7)2+(7-7)2+(8-7)2+(7-7)2]=25, s 乙2=15[(6-7)2+(7-7)2+(6-7)2+(7-7)2+(9-7)2]=65,所以两组数据的方差中较小的一个s 2=25.6.某学校从高二甲、乙两个班中各选6名同学参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的众数是85,乙班学生成绩的平均分是81,则x+y 的值为( )A.6B.7C.8D.9答案:D解析:由众数的定义知x=5,由乙班的平均分为81得78+70+y+81+81+80+926=81,解得y=4, 故x+y=9.7.若数据x1,x2,…,x n的平均数为x,方差为s2,则2x1+3,2x2+3,…,2x n+3的平均数和方差分别为()A.x和s2B.2x+3和4s2C.2x+3和s2D.2x+3和4s2+12s+9答案:B解析:原数据乘以2加上3得到一组新数据,则由平均数、方差的性质可知得到的新数据的平均数、方差分别是2x+3和4s2.8.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.答案:0.1解析:这组数据的平均数为15×(4.7+4.8+5.1+5.4+5.5)=5.1,方差为15×[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.9.一个容量为200的样本的频率分布直方图如图所示,则样本数据落在[5,9)内的频率和频数分别为.答案:0.2,40解析:由频率=小长方形的面积=小长方形的高×组距,可得样本数据落在[5,9)内的频率为0.05×4=0.2.又频率=频数样本容量,已知样本容量为200,所以所求频数为200×0.2=40.10.某地有甲、乙两名航模运动员参加了国家队集训,现分别从他们在集训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:8281797895889384乙:9295807583809085(1)画出甲、乙两名航模运动员成绩的茎叶图,指出乙航模运动员成绩的中位数;(2)现要从中派一人参加国际比赛,从平均成绩和方差的角度考虑,你认为派哪名航模运动员参加合适?请说明理由. 解:(1)茎叶图如下.乙航模运动员成绩的中位数为84. (2)派甲参加比较合适,理由如下:x 甲=18(70×2+80×4+90×2+9+8+8+4+2+1+5+3)=85, x 乙=18(70×1+80×4+90×3+5+3+5+2+5)=85,s 甲2=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(95-85)2+(93-85)2]=35.5, s 乙2=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41. 因为x 甲=x 乙,s 甲2<s 乙2,所以甲的成绩比较稳定,派甲参加比较合适.能力提升11.若一组数据2,4,6,8的中位数、方差分别为m ,n ,且ma+nb=1(a>0,b>0),则1a +1b 的最小值为( ) A.6+2√3 B.4+3√5C.9+4√5D.20答案:D解析:∵数据2,4,6,8的中位数是5,方差是14(9+1+1+9)=5, ∴m=5,n=5.∴ma+nb=5a+5b=1(a>0,b>0).∴1a +1b =(1a +1b )(5a+5b )=5(2+ba +ab )≥20(当且仅当a=b 时等号成立),故选D .12.某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在[40,90]之间,其得分的频率分布直方图如图所示,则下列结论错误的是( )A.得分在[40,60)之间的共有40人B.从这100名参赛者中随机抽取1人,其得分在[60,80)的概率为0.5C.这100名参赛者得分的中位数为65D.估计得分的众数为55答案:C解析:根据频率和为1,得(a+0.035+0.030+0.020+0.010)×10=1,解得a=0.005,则得分在[40,60)的频率是0.40,得分在[40,60)之间的有100×0.40=40(人),故A 正确;得分在[60,80)的频率为0.5,用频率估计概率,知从这100名参赛者中随机抽取1人,得分在[60,80)的概率为0.5,故B 正确;根据频率分布直方图知,最高的小矩形对应的底边中点为50+602=55,则估计得分的众数为55,故D 正确.13.样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y(x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =αx +(1-α)y ,其中0<α<12,则n ,m 的大小关系为( ) A.n<m B.n>mC.n=mD.不能确定答案:A解析:由题意知样本(x 1,…,x n ,y 1,…,y m )的平均数为z =nx+my m+n=nm+n x +mm+n y.又z =αx +(1-α)y ,即α=nm+n ,1-α=mm+n . 因为0<α<12, 所以0<nm+n <12,即2n<m+n ,所以n<m ,故选A.14.在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大构成等比数列{a n }.已知a 2=2a 1,且样本容量为300,则小长方形面积最大的一组的频数为 . 答案:160解析:∵小长方形的面积由小到大构成等比数列{a n },且a 2=2a 1, ∴样本的频率构成一个等比数列,且公比为2,∴a1+2a1+4a1+8a1=15a1=1,,∴a1=115∴小长方形面积最大的一组的频数为300×8a1=160.15.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.解:(1)依题意,得10(2a+0.02+0.03+0.04)=1,解得a=0.005.(2)这100名学生语文成绩的平均分为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分).(3)数学成绩在[50,60)的人数为100×0.05=5,=20,数学成绩在[60,70)的人数为100×0.4×12=40,数学成绩在[70,80)的人数为100×0.3×43=25,数学成绩在[80,90)的人数为100×0.2×54所以数学成绩在[50,90)之外的人数为100-5-20-40-25=10.高考预测16.某学校随机抽取20个班,调查各班有网上购物经历的人数,所得数据的茎叶图如图所示,以5为组距将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()答案:A解析:由组距可知选项C,D不对;由茎叶图可知[0,5)有1人,[5,10)有1人,故第一、二小组频率相同,频率分布直方图中矩形的高应相等,可排除B.故选A.。
考点测试55 用样本估计总体高考概览高考在本考点的常考题型为选择题、填空题,分值为5分,中、低等难度 考纲研读1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点2.理解样本数据标准差的意义和作用,会计算数据的标准差3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释 4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题一、基础小题1.某班的全体学生参加英语测试,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60 答案 B解析 根据频率分布直方图的特点可知,低于60分的频率是(0.005+0.01)×20=0.3,所以该班的学生人数是150.3=50.故选B .2.在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的14,且样本容量为80,则中间一组的频数为( )A .0.25B .0.5C .20D .16 答案 D解析 设中间一组的频数为x ,依题意有x 80=141-x80,解得x =16.3.研究人员随机调查统计了某地1000名“上班族”每天在工作之余使用手机上网的时间,并将其绘制为如图所示的频率分布直方图,若同一组数据用该区间的中点值作代表,则可估计该地“上班族”每天在工作之余使用手机上网的平均时间是( )A.1.78小时 B.2.24小时C.3.56小时 D.4.32小时答案 C解析(1×0.12+3×0.2+5×0.1+7×0.08)×2=3.56.4.对于一组数据x i(i=1,2,3,…,n),如果将它们改变为x i+C(i=1,2,3,…,n),其中C≠0,则下列结论正确的是( )A.平均数与方差均不变B.平均数变,方差保持不变C.平均数不变,方差变D.平均数与方差均发生变化答案 B解析由平均数的定义,可知每个个体增加C,则平均数也增加C,方差不变.故选B.5.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁平均环数8.38.88.88.7x方差s23.53.62.25.4从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是( ) A .甲 B .乙 C .丙 D .丁 答案 C解析 由表格中数据,可知丙平均环数最高,且方差最小,说明丙技术稳定,且成绩好.选C .6.某工厂对一批新产品的长度(单位:mm)进行检测,如图是检测结果的频率分布直方图,据此估计这批产品长度的中位数为( )A .20B .25C .22.5D .22.75 答案 C解析 自左至右各小矩形的面积依次为0.1,0.2,0.4,0.15,0.15,设中位数是x ,则由0.1+0.2+0.08·(x -20)=0.5,得x =22.5.选C .7.甲、乙两名同学在7次数学测试中的成绩如茎叶图所示,其中甲同学成绩的众数是85,乙同学成绩的中位数是83,则成绩较稳定的是________.答案 甲解析 根据众数及中位数的概念易得x =5,y =3,故甲同学成绩的平均数为78+79+80+85+85+92+967=85,乙同学成绩的平均数为72+81+81+83+91+91+967=85,故甲同学成绩的方差为17×(49+36+25+49+121)=40,乙同学成绩的方差为17×(169+16+16+4+36+36+121)=3987>40,故成绩较稳定的是甲.二、高考小题8.(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案 A解析设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入为0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的总和占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D正确.故选A.9.(2016·山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56 B.60 C.120 D.140答案 D解析由频率分布直方图,知这200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.故选D.10.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数 答案 B解析 因为可以用极差、方差或标准差来描述数据的离散程度,所以要评估亩产量稳定程度,应该用样本数据的极差、方差或标准差.故选B .11.(2018·江苏高考)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.答案 90解析 由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为89+89+90+91+915=90.三、模拟小题12.(2018·山东济南一模)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x ,方差为s 2,则( )A .x =4,s 2<2 B .x =4,s 2>2 C .x >4,s 2<2 D .x >4,s 2>2 答案 A解析 ∵某7个数的平均数为4,∴这7个数的和为4×7=28,∵加入一个新数据4,∴x =28+48=4;又∵这7个数的方差为2,且加入一个新数据4,∴这8个数的方差s2=7×2+4-428=74<2.故选A . 13.(2018·河北石家庄教学质量检测)某学校A ,B 两个班的兴趣小组在一次对抗赛中的成绩如茎叶图所示,通过茎叶图比较两个班兴趣小组成绩的平均值及标准差.①A 班兴趣小组的平均成绩高于B 班兴趣小组的平均成绩; ②B 班兴趣小组的平均成绩高于A 班兴趣小组的平均成绩; ③A 班兴趣小组成绩的标准差大于B 班兴趣小组成绩的标准差;④B班兴趣小组成绩的标准差大于A班兴趣小组成绩的标准差.其中正确结论的编号为( )A .①④B .②③C .②④D .①③ 答案 A解析 A 班兴趣小组的平均成绩为53+62+64+…+92+9515=78,其方差为115×[(53-78)2+(62-78)2+…+(95-78)2]=121.6,则其标准差为121.6≈11.03;B 班兴趣小组的平均成绩为45+48+51+…+9115=66,其方差为115×[(45-66)2+(48-66)2+…+(91-66)2]=175.2,则其标准差为175.2≈13.24.故选A .14.(2018·湖南衡阳二模)已知样本x 1,x 2,…,x n 的平均数为x ;样本y 1,y 2,…,y m 的平均数为y (x ≠y ),若样本x 1,x 2,…,x n ,y 1,y 2,…,y m 的平均数z =ax +(1-a )y ,其中0<a <12,则n ,m (n ,m ∈N *)的大小关系为( )A .n =mB .n ≥mC .n <mD .n >m 答案 C解析 由题意得z =1n +m (nx +my )=n n +m x +1-n n +m y ,∴a =n n +m ,∵0<a <12,∴0<n n +m<12,又n ,m ∈N *,∴2n <n +m ,∴n <m .故选C .一、高考大题1.(2018·全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用 水量 [0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7] 频数 13249265使用了节水龙头50天的日用水量频数分布表日用 水量 [0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6] 频数151310165(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)解(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35 m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x1=150×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.该家庭使用了节水龙头后50天日用水量的平均数为x2=150×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).2.(2017·北京高考)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如右频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.解 (1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4,所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4. (2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9, 样本中分数在区间[40,50)内的人数为100-100×0.9-5=5, 所以总体中分数在区间[40,50)内的人数估计为400×5100=20.(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60, 所以样本中分数不小于70的男生人数为60×12=30,所以样本中的男生人数为30×2=60, 女生人数为100-60=40,所以样本中男生和女生人数的比例为60∶40=3∶2,所以根据分层抽样原理,估计总体中男生和女生人数的比例为3∶2.3.(2016·四川高考)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨),一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.解(1)由频率分布直方图,知月均用水量在[0,0.5)中的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5a+0.20+0.26+0.5a+0.06+0.04+0.02=1.解得a=0.30.(2)由(1),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为300000×0.12=36000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以2.5≤x<3.由0.3×(x-2.5)=0.85-0.73,解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.二、模拟大题4.(2018·南昌二模)某地区为了解学生学业水平考试的状况,从参加学业水平考试的学生中抽出160名,其数学成绩(均为整数)的频率分布直方图如图所示.(1)估计这次考试数学成绩的平均分和众数;(2)假设在(90,100]段的学生中有3人得满分100分,有2人得99分,其余学生的数学成绩都不相同.现从90分以上的学生中任取2人,求这两人成绩相同的概率.解(1)利用中值估算抽样学生数学成绩的平均分为45×0.005×10+55×0.015×10+65×0.020×10+75×0.030×10+85×0.025×10+95×0.005×10=72(分).众数的估计值为75分.(2)由频率分布直方图知,在160人中,90分以上的学生数为160×0.005×10=8(人).设“从8人中任取2人,这2人成绩相同”为事件A,记这8人编号为1,2,3,4,5,6,7,8,其中4号和5号成绩为99分,6号、7号、8号的成绩为100分.由题意,从8人中任取2人,基本事件为(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8),共28个,其中事件A所包含的基本事件的个数为4,由古典概型的概率公式得所求概率P(A)=428=17.5.(2018·福州毕业质检)某技术公司新开发一种产品,分别由A,B两条生产线生产.为了检测该产品的某项质量指标值(记为Z),现随机抽取这两条生产线的产品各100件,由检测结果得到如下频率分布直方图:(1)该公司规定:当Z≥76时,产品为正品;当Z<76时,产品为次品.试估计A,B两条生产线生产的产品正品率分别是多少?(2)分别估计A,B两条生产线的产品质量指标值的平均数(同一组数据中的数据用该组区间的中点值作代表),从平均数结果看,哪条生产线的质量指标值更好?(3)根据(2)的结果,能否认为该公司生产的产品符合“质量指标值不低于84的产品至少要占全部产品40%”的规定?解(1)由频率估计概率,A生产线的产品为正品的概率为(0.05375+0.03500+0.01125)×8=0.8;B生产线的产品为正品的概率为(0.06250+0.03375+0.00250)×8=0.79.(2)设A生产线的产品质量指标值的平均数为x,B生产线的产品质量指标值的平均数为y,由频率分布直方图,可得x=64×0.05+72×0.15+80×0.43+88×0.28+96×0.09=81.68,y=64×0.05+72×0.16+80×0.5+88×0.27+96×0.02=80.4,由以上计算结果可得x>y,因此A生产线的产品质量指标值更好.(3)由(2)知,A生产线的产品质量指标值更高,它不低于84的产品所占比例的估计值为(0.03500+0.01125)×8=0.37<0.4,所以B生产线的产品质量指标值的估计值也小于0.4,故不能认为该公司生产的产品符合“质量指标值不低于84的产品至少要占全部产品40%”的规定.如有侵权请联系告知删除,感谢你们的配合!。