16.2.3二次根式的运算
- 格式:doc
- 大小:71.77 KB
- 文档页数:3
16.2 二次根式的乘除(第2课时)一、内容和内容解析1.内容二次根式的除法法则及其逆用,最简二次根式的概念。
2.内容解析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.二、目标和目标解析1.教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3) 理解最简二次根式的概念.2.目标解析(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.三、教学问题诊断分析本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.四、教学过程设计1.复习提问,探究规律问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?师生活动学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.2.观察思考,理解法则问题2 教材第8页“探究”栏目,计算结果如何?有何规律?师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:.问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?师生活动学生思考,回答。
人教版数学八年级下册16.2《二次根式的乘除》教学设计3一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行学习的。
二次根式的乘除法运算是初中数学中的重要内容,也是后续学习高中数学的基础。
本节内容主要让学生掌握二次根式的乘除法运算规则,理解并掌握二次根式乘除法运算的性质和规律,提高学生的数学运算能力。
二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和加减法运算,但对于二次根式的乘除法运算可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生理解二次根式的乘除法运算规则,通过大量的练习,让学生熟练掌握二次根式的乘除法运算。
三. 教学目标1.让学生掌握二次根式的乘除法运算规则。
2.提高学生的数学运算能力。
3.培养学生的逻辑思维能力。
四. 教学重难点1.二次根式的乘除法运算规则。
2.二次根式的混合运算。
五. 教学方法1.讲解法:教师通过讲解,让学生理解二次根式的乘除法运算规则。
2.练习法:让学生通过大量的练习,熟练掌握二次根式的乘除法运算。
3.小组合作法:让学生通过小组合作,共同探讨二次根式的乘除法运算,培养学生的团队协作能力。
六. 教学准备1.PPT课件:教师需要准备PPT课件,用于展示二次根式的乘除法运算规则。
2.练习题:教师需要准备适量的练习题,用于让学生进行练习。
七. 教学过程1.导入(5分钟)教师通过复习二次根式的性质和加减法运算,引导学生进入二次根式的乘除法运算学习。
2.呈现(10分钟)教师通过PPT课件,呈现二次根式的乘除法运算规则,让学生初步了解二次根式的乘除法运算。
3.操练(10分钟)教师让学生进行二次根式的乘除法运算练习,引导学生掌握二次根式的乘除法运算规则。
4.巩固(10分钟)教师通过讲解和练习,让学生巩固二次根式的乘除法运算规则。
5.拓展(10分钟)教师引导学生进行二次根式的混合运算,提高学生的数学运算能力。
沪科版八年级数学下册教学设计《第16章二次函数16.2二次根式的运算(第2课时)》一. 教材分析《第16章二次函数16.2二次根式的运算(第2课时)》这一节的内容,主要是对二次根式的运算进行深入的讲解和练习。
在前一课时,学生已经了解了二次根式的定义和性质,本课时将在此基础上,进一步学习二次根式的加减乘除运算,以及混合运算的法则。
教材通过具体的例题和练习题,使学生掌握二次根式的运算方法,提高他们的数学运算能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对二次根式的概念和性质有一定的了解。
但学生在进行二次根式运算时,容易出错,对混合运算的法则理解不够深入。
因此,在教学过程中,教师需要引导学生通过观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
三. 说教学目标1.知识与技能:学生会运用二次根式的加减乘除法则进行计算,解决一些简单的实际问题。
2.过程与方法:学生通过观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
3.情感态度与价值观:学生能够感受到数学与生活的联系,增强他们对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够掌握二次根式的加减乘除运算方法,解决一些简单的实际问题。
2.教学难点:学生对混合运算的法则的理解和运用。
五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、讨论法、练习法等教学方法。
通过引导学生观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。
同时,我将运用多媒体教学手段,展示二次根式的运算过程,使学生更加直观地理解二次根式的运算方法。
六. 说教学过程1.导入:通过复习上一课时所学的内容,引导学生回顾二次根式的定义和性质,为新课的学习做好铺垫。
2.教学新课:讲解二次根式的加减乘除运算方法,通过具体的例题,使学生掌握二次根式的运算规律。
3.巩固练习:学生进行一些相关的练习题,巩固新学的知识。
4.课堂小结:教师引导学生总结本节课所学的内容,使学生对二次根式的运算有一个清晰的认识。
16.2 二次根式的乘除第2课时一、教学目标【知识与技能】1.会进行简单的二次根式的除法运算.2.使学生能利用商的算术平方根的性质进行二次根式的化简与运算.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】1.在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.2.引导学生用从特殊到一般的方法及类比的方法,解决数学问题.【情感态度与价值观】在经历探索二次根式除法运算法则的过程中,认识到事物之间的相互联系,获得成就感,建立学习数学的信心和兴趣.二、课型新授课三、课时第2课时共2课时四、教学重难点【教学重点】会进行简单的二次根式的除法运算,会用商的算术平方根的性质进行二次根式的化简与运算.【教学难点】二次根式的除法与商的算术平方根的关系及应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-3)站在水平高度为h米的地方看到可见的水平距离为d米,它们近似地符合公式为d=8√ℎ5.问题1 某一登山者爬到海拔100米处,即ℎ5=20时,他看到的水平线的距离d1是多少?学生答:d1=8√20=16√5问题2 该登山者接着爬到海拔200米的山顶,即ℎ5=40时,此时他看到的水平线的距离d2是多少?学生答:d1=8√40=16√10问题3 他从海拔100米处登上海拔200米高的山顶,那么他看到的水平线的距离是原来的多少倍?解:d2d1=√1016√5教师提出问题:乘法法则是如何得出的?二次根式的除法该怎样算呢?除法有没有类似的法则?(二)探索新知1.探究二次根式的除法(出示课件5) 教师依次出示下列问题: 计算下列各式:(1)√4√9=___÷___=__;√49=_____;(2)√16√25=___÷___=__;√1625=______;(3)√36√49=___÷___=__;√3649=_______;学生依次解答如下:学生1答:(1)√4√9=2÷3=23;√49=23;学生2答:(2)√16√25=4÷5=45;√1625=45;学生3答:(3)√36√49=6÷7=67;√3649=67;教师问: 观察两者有什么关系?出示课件6: 观察三组式子的结果,我们得到下面三个等式: 依次展示学生答案: 学生1答:(1)√4√9=√49;学生2答:(2)√16√25=√1625;学生3答:(3)√36√49=√3649.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√a√b的结果吗?(出示课件7)学生回答:√a√b =√ab.教师问:在前面发现的规律√a√b =√ab中,a,b的取值范围有没有限制呢?学生讨论回答:a≥0,b>0师生一起归纳总结:(出示课件8)二次根式的除法法则:√a √b =√ab(a≥0,b>0)教师问:你能利用文字描述二次根式的除法法则吗?学生答:算术平方根的商等于被开方数商的算术平方根.教师追问:当二次根式根号外的因数(式)不为1时,如何处理呢?学生答:类比单项式除以单项式法则进行化简.教师总结如下:文字叙述:算术平方根的商等于被开方数商的算术平方根.当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得√an√b =mn√ab(a≥0,b>0,n≠0)考点1:利用二次根式的除法法则计算根号外因数是1的二次根式计算:(出示课件9) (1)√24√3;(2)√32÷√118;师生共同讨论解答如下: 解:(1)√24√3=√243=√8=2√2;(2)√32÷√118=√32÷118=√32×18=√3×9=3√3;教师追问:像(2)除式中有分数或分式时,如何化简呢? 学生答:先要转化为乘法再进行运算.出示课件10,学生自主练习后口答,教师订正.考点2:利用二次根式的除法法则计算根号外因数不是1的二次根式计算: (出示课件11)(1)√425√6;(2)2√112÷12√16;学生独立思考后,师生共同解答. 解:(1)√425√6 =35√426=35√7;(2)2√112÷12√16=(2÷12)√32÷16=(2×2)√32×6=4√9=12;教师问:类似(2)中被开方数中含有带分数的怎样计算呢? 学生答:应先将带分数化成假分数,再运用二次根式除法法则进行运算.出示课件12,学生自主练习后口答,教师订正.2.探究商的算术平方根的性质从前面知识点1的题目我们可以得到下面三个等式:(1)√49=√4√9;(2)√1625=√16√25;(3)√3649=√36√49.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√ab的结果吗?学生回答:√ab =√a√b.教师问:在前面发现的规律√ab =√a√b中,a,b的取值范围有没有限制呢?学生回答:a≥0,b>0师生一起归纳总结:(出示课件13)二次根式的商的算术平方根的性质:√a b =√a√b(a≥0,b>0)教师问:你能利用语言描述商的算术平方根的性质吗?学生答:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.考点1:商的算术平方根的性质的应用 化简:(出示课件14-15) (1)√3100 ;(2)√7527; (3)√279;(4)√8125x2(x>0); (5)√0.09×1690.64×196.学生独立思考后,师生共同解答. 展示学生答案如下: 学生1解:(1)√3100=√3√100 =√310; 学生2解:(2)√7527=√52×3√32×3=√52√32=53;学生3补充解法:√7527=√75√27 =√33√3=53.学生4解:(3)√279=√259=√25√9=53; 学生5解:(4)√8125x2==√92√(5x )=95x;学生6解:(5)√0.09×1690.64×196=√0.32× 132√0.82×142=0.3×130.8×14=39112.教师问:像(5)可以如何计算的呢?学生答:可以先用商的算术平方根的性质,再运用积的算术平方根性质.出示课件16,学生自主练习,教师给出答案。
二次根式的运算第1课时1.二次根式的乘法法则(1)二次根式的乘法法则(性质3):a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立.②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根. ③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4× 3.6;(2)545×3223. 分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法. 解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230. 2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a ≥0,b ≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a ,b 是限制公式右边的,对公式的左边,只要ab ≥0即可.②公式中的a ,b 可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab =a ·b (a ≥0,b ≥0)可以推广为abc =a ·b ·c (a ≥0,b ≥0,c ≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简: (1)300;(2)21×63;(3)(-50)×(-8);(4)96a 3b 6(a >0,b >0).分析:根据积的算术平方根的性质:ab =a ·b (a ≥0,b ≥0)进行化简. 解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a 3b 6=42·6·a 2·a ·(b 3)2=4ab 36a .3.二次根式的除法法则 对于两个二次根式a ,b ,如果a ≥0,b >0,那么a b =a b.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a ≥0,b >0,则有a b =a b .②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a ≥0,b >0与二次根式乘法的条件a ≥0,b ≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =m na b (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =a b,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用:(1)数学表达式:如果a ≥0,b >0,则有a b =a b ; (2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握)【例4】把下列各式中根号外的因数(式)移到根号内.(1)535; (2)-2a 12a; (3)-a -1a ; (4)x y x(x <0,y <0). 分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15. (2)∵12a>0,∴a >0. ∴-2a 12a =-(2a )2·12a=-(2a )2·12a=-2a . (3)∵-1a>0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a)=-a . (4)∵x <0,y <0,∴x y x =-(-x )2y x=-(-x )2·y x=-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式.①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式;②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +b b 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎪⎨⎪⎧ a +b =2,3a +b =b ,解得⎩⎪⎨⎪⎧a =0,b =2. 所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算(1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用.(3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件;②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上;④误认为形如a 2+b 2的式子是能开得尽方的二次根式.【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a). 分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除. 解:(1)9145÷(3235)×12223 =(9÷32×12)145÷35×83=(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12ab a 2b ·a b·a =-12ab a 4 =-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式. a 与a ;a +b 与a -b ;a +b 与a -b ;a b +c d 与a b -c d .③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab <0时,化简ab 2,得__________.(2)把代数式x -1x根号外的因式移到根号内,化简的结果为__________. (3)把-x 3(x -1)2化成最简二次根式是__________. (4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是( ). A .甲正确,乙不正确B .甲不正确,乙正确C .甲、乙的解法都正确D .甲、乙的解法都不正确解析:(1)在ab 2中,因为ab 2≥0,所以ab ·b ≥0.因为ab <0,b ≠0,所以b <0,a >0.原式=b 2·a =-b a .(2)因为-1x ≥0,又由分式的定义x ≠0,得x <0.所以原式=-(-x )-1x=-(-x )2(-1x)=--x . (3)化简时,需知道x ,x -1的符号,而它们的符号可由题目的隐含条件推出. ∵(x -1)2>0(这里不能等于0),∴-x 3≥0,即x ≤0,1-x >0. 故原式=(-x )2·(-x )(1-x )2=-x 1-x-x . (4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a (2)--x(3)-x 1-x-x (4)C 8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用.如:借助于计算器可以求得42+32=__________,442+332=__________,4442+3332=__________,4 4442+3 3332=__________,……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55,4442+3332=308 025=555,4 4442+3 3332=30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-x x -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值. 分析:式子a b =a b,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6. ∴6<x ≤9.∵x 为偶数,∴x =8.∴原式=(1+x )(x -4)(x -1)(x +1)(x -1) =(1+x )x -4x +1 =(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6.【例8-2】观察下列各式: 223=2+23,338=3+38. 验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23; 338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38. (1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用. 解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415. (2)猜想:n n n 2-1=n +n n 2-1(n ≥2,n 为正整数). 证明:因为n n n 2-1=n 3n 2-1=n 3-n +n n 2-1=n (n 2-1)+n n 2-1=n +n n 2-1,所以nn n 2-1=n +n n 2-1.。
二次根式的知识点汇总第十六章 二次根式第一节 二次根式的概念和性质 16.1 二次根式1. 二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或O . 2. 二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ;②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ;④)0,0(>≥=b a ba b a 16.2 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式 16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根, 即 ).0,0(≥≥=⋅b a ab b a3.二次根式的和相乘,可参照多项式的乘法进行. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:≥0)).0,0(≥≥=⋅b a ab b a=a ≥0,b>0)n ≥0)知识点一:二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。
16.2.3二次根式的运算
1.经历探索二次根式的加减运算法则的过程,让学生理解二次根式的加减法则;
2.掌握二次根式的加减运算.(重点、难点)
一、情境导入
计算:
(1)2x -5x ; (2)3a 2-a 2+2a 2.
上述运算实际上就是合并同类项,如果把题中的x 换成3,a 2换成5,这时上述两小题就成为如下题目: 计算: (1)23-53; (2)35-5+2 5.
这时怎样计算呢?
二、合作探究
探究点一:同类二次根式
下列二次根式中与2是同类二次根式的是( )
A.12
B.
32 C.23
D.18 解析:选项A 中,12=23与2被开方数不同,故与2不是同类二次根式;选项B 中,
32=62与2被开方数不同,故与2不是同类二次根式;选项C 中,23=63与2被开方数不同,故与2不是同类二次根式;选项D 中,18=32与2被开方数相同,故与2是同类二次根式.故选D.
方法总结:要判断两个二次根式是否是同类二次根式,根据二次根式的性质,把每个二次根式化为最简二次根式,如果被开方数相同,这样的二次根式就是同类二次根式. 变式训练:见《学练优》本课时练习“课堂达标训练”第1题
探究点二:二次根式的加减
【类型一】 二次根式的加法或减法
(1)8+32; (2)12
23+1332; (3)448-375; (4)1816-32
96. 解析:先把每个二次根式化为最简二次根式,再把同类二次根式合并.
解:(1)原式=22+42=(2+4)2=62;
(2)原式=166+166=(16+16)6=63
; (3)原式=163-153=(16-15)3=3;
(4)原式=36-66=(3-6)6=-3 6. 方法总结:二次根式加减的实质就是合并同类二次根式,合并同类二次根式可以类比合并同类项进行,不是同类二次根式的不能合并. 变式训练:见《学练优》本课时练习“课堂达标训练”第6题 【类型二】 二次根式的加减混合运算 计算: (1)12-33-273; (2)32
4x -3x 9+3x 1x ; (3)3123-45+220-12
60; (4)0.5-2
13-(18-75). 解析:先把每个二次根式化为最简二次根式,再把同类二次根式合并.
解:(1)原式=23-3-3=0;
(2)原式=3x -x +3x =5x ;
(3)原式=15-35+45-15=5;
(4)原式=22-233-24+53=24+133
3. 方法总结:二次根式的加减混合运算步骤:①把每个二次根式化为最简二次根式;②运用加法交换律和结合律把同类二次根式移到一起;③把同类二次根式的系数相加减,被开方数不变.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题
【类型三】 二次根式加减法的应用
一个三角形的周长是(23+3 2 )m ,其中两边长分别是(3+ 2 )m ,(33-
22)m ,求第三边长.
解析:第三边长等于(23+32)-(3+2)-(33-22),再去括号,合并同类二次根式.
解:第三边长是(23+3 2 )-(3+ 2 )-(33-2 2 )=23+32-3-2-33+22=42-23(m ).
方法总结:由三角形周长的意义可知,三角形的周长减去已知两边的长,可得第三边的长.解决问题的关键在于把实际问题转化为二次根式的加减混合运算.
变式训练:见《学练优》本课时练习“课后巩固提升”第4题
三、板书设计
通过合并同类项引入二次根式的加减法,让学生类比学习.引导学生归纳总结出二次根式加减运算的两个关键步骤:①把每个二次根式化为最简二次根式;②合并同类二次根式.并让学生按步骤解题,养成规范解题的良好习惯.教学过程中,注重数学思想方法的渗透(类比),培养学生良好的思维品质
感谢您的阅读,祝您生活愉快。