abaqus屈曲分析结果汇报实例
- 格式:doc
- 大小:2.55 MB
- 文档页数:12
实用标准文档整个计算过程包括 2 个分析步,第 1 步做屈曲分析,第 1 步:屈曲分析载荷步定义如下:Step 1-InitialStep 2- Buckle2 步做极限强度分析0奪莖UWICWHIK . 叽I J I*' *iirl |U*ii:* ri«-2- c.仲[U**t Wfl| «R =・|0T* |«|M4 11 屮W Ml 町扌垮・3 4M4; *E>|轴亠白*wr»44* «*M *A*S MMM-in 4414-* Ita1! I >H*d *■.■ Lrfi|i-t*b*i UWi^ *4」>jU***^ ::切2冲<a:K-.L口sMwSniLpc^l Efl «o 誓光n-3 wa HF HB・・n c:^ > q士* f *B£ -A <MI '■■*W■uTp*』«MLrii4 *M;■pofit ■直j.i t…叫町■ ' H.,机...i . r |fl»-L , | |-£I -t fr E叶*盅1并在Model-Edit Keywords 的图中位置加入下面的文字,输出屈曲模态*nodefile, global=yesU,Create job 名称为“ Buckling点击continue ,完成第 1 步的计算第 2 步:极限强度分析将“ buckle ”分析步替换为“ riks ”分析步在Basic 选项卡中,Nlgeom:选择打开在Instrumentation 选项卡中,定义如下参数,然后点击OK Array定义一个新计算工作,输入名称,点击continue在Parallelization 选项卡,选择 2 个CPU,如下所示,点击OK。
在此编辑Model-edit keywords ,删除“第 1 步”加入的文字“ *nodefile, global=yesU,”,并在下图位置加入下段文字:*imperfection, file=buckling, step=1 1, 2.5点击OK,再保存文件最后提交计算。
整个计算过程包括2个分析步,第1步做屈曲分析,第2步做极限强度分析。
第1步:屈曲分析载荷步定义如下:Step 1-InitialStep 2- Buckle并在Model-Edit Keywords的图中位置加入下面的文字,输出屈曲模态*nodefile, global=yesU,Create job 名称为“Buckling”点击continue,完成第1步的计算。
第2步:极限强度分析将“buckle”分析步替换为“riks”分析步在Basic选项卡中,Nlgeom:选择打开在Instrumentation选项卡中,定义如下参数,然后点击OK定义一个新计算工作,输入名称,点击continue在Parallelization选项卡,选择2个CPU,如下所示,点击OK。
在此编辑Model-edit keywords,删除“第1步”加入的文字“*nodefile, global=yesU,”,并在下图位置加入下段文字:*imperfection, file=buckling, step=11, 2.5点击OK,再保存文件。
最后提交计算。
提取计算结果进入visualization Module点击 Create XY data选择 ODB filed output,点击continuePosition选择 Unique Nodal, CF:point loads选择 CF2,再点击elements/nodes选项卡,选择跨中载荷加载点,最后点击save。
重复上一步操作,Position选择 Unique Nodal, U:spatial displacement 选择 U3,再点击elements/nodes选项卡,选择板格中心点,最后点击save。
点击Create XY data, 选择operate on XY data,点击continue选择Combine(X,X)命令,横坐标选择保存的displacement曲线,纵坐标选择保存的Point load曲线,点击最后一行Create XY Data与Save as。
【技贴】考虑预载时的压杆屈曲分析及结果对比!在《基于abaqus的压杆屈曲分析一般流程及对比》一文中,讨论了采用线性屈曲模态法进行压杆屈曲分析,得到压标的屈曲载荷。
同时在《基于optistruct的压杆屈曲分析一般流程及对比》一文中采用optistruct进行屈曲分析,两者结果与理论均较接近。
一、通过静载荷进行屈曲分析,首先考虑预载为1000N时,屈曲载荷计算结果如下。
1、静载荷屈曲分析步设定如下,即首先进行预载的施加,再进行屈曲分析。
2、分析边界以及预载设定如下。
3、屈曲结果读取,提取第一阶特征值,如下为22319。
可得到该压杆在1000N预载下的的屈曲载荷为F * (1st mode)=1000+1*22319=23319N。
二、通过静载荷进行屈曲分析,首先考虑预载为10KN时,屈曲载荷计算结果如下。
1、预载为10KN时屈曲分析2、屈曲结果读取,提取第一阶特征值,如下为13319。
可得到该压杆在10KN预载下的的屈曲载荷为F * (1st mode)=10000+1*13319=23319N。
(1)通过optistruct计算得到无预载时屈曲载荷为23867N;(2)通过abaqus计算得到无预载时屈曲载荷为23319N;(2)通过理论公式计算值为25435N。
—荐读—【收藏】公众号部分文章阶段性汇总1【收藏】公众号部分文章阶段性汇总2Catia CAE分析的一般流程及对比基于abaqus的压杆屈曲分析一般流程及对比基于optistruct的压杆屈曲分析一般流程及对比车身典型结构模态识别方法研究车身弯曲及扭转刚度目标值确定方法【免责声明】本公众号所刊登的内容、资料等来自于个人总结、技术论坛、文献、软件帮助文档及网络等,对文中观点判断均保持中立,若您认为文中来源标注与事实不符,若有涉及版权等请告知,将及时修订删除,谢谢大家的关注!。
压杆屈曲分析1.问题描述在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。
压杆整体失稳形式可以是弯曲、扭转和弯扭。
钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。
影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。
实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。
本文利用abaqus 对一定截面不同长细比下的H 型钢构件进行屈曲分析,通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载。
通过比较不同长细比下的弯曲失稳的临界荷载得出构件荷载位移曲线,并与《规范》中的构件曲线相比较。
钢构件的截面尺寸如图1-1所示。
构件的材料特性: E =2.0×1011 N m 2⁄ ,μ=0.3 , f y =3.45×108N m 2⁄图1-12.长细比计算 通过计算截面几何特性,截面绕y 轴的回转半径为i y =0.0384m ,长细比取压杆截面尺寸(单位:m)值及杆件长度见表1:表13.模型分析ABAQUS非线性屈曲分析的方法有riks法,general statics法(加阻尼),或者动力法。
非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。
其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。
利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。
其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。
此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。
基于ABAQUS复合材料薄壁圆筒的屈曲分析由于玻璃钢复合材料的薄壁圆筒结构具有强度高、重量轻、刚度大、耐腐蚀,电绝缘及透微波等优点,目前已广泛应用于航空航天和民用领域中。
工程中广泛使用的这些薄壁圆筒,当它们受压缩、剪切、弯曲和扭转等荷载作用时,最常见的失效模式为屈曲。
因此,为了保证结构的安全,需要进行屈曲分析。
对结构进行屈曲分析,涉及到较复杂的弹(塑)性理论和数学计算,要通过求解高阶偏微分方程组,才能求解失稳临界荷载,而且只有少数简单结构才能求得精确的解析解。
因此,只能采用能量法、数值方法和有限元方法等近似的分析方法进行分析。
近20年来,随着计算机和有限元方法的迅猛发展,形成了许多的实用分析程序,提高了对复杂结构进行屈曲分析的能力和设计水平。
ABAQUS 就是其中的杰出代表。
1.屈曲有限元理论有限元方法中,对结构的屈曲失稳问题的分析方法主要有两类:一类是通过特征值分析计算屈曲载荷,另一类是利用结合Newton—Raphson迭代的弧长法来确定加载方向,追踪失稳路径的几何非线性分析方法,能有效分析高度非线性屈曲和后屈曲问题。
1.1线性屈曲假设结构受到的外载荷模式为P0。
,幅值大小为λ,结构内力为Q,则静力平衡方程应为λP0=λQ进一步考察结构在(λ+△λ)P0载荷作用下的平衡方程,得到K E+K S S+λ△S+K G u+λu△u=△λP0由于结构达到保持稳定的临界载荷时有△λ,代入上式得K E+λK S△σ+K G△u△u=0该方程对应的特征值问题为det K E+λK S△σ+K G△u=0如果忽略几何刚度增量的影响,屈曲分析的方程又可进一步简化为det K E+λK S△σ=0该方程即为求解线性屈曲的特征值方程。
λ为屈曲失稳载荷因子,△u为结构失稳形态的特征向量。
1.2非线性屈曲非线性屈曲分析方法多采用弧长法进行分步迭代计算,在增量非线性有限元分析中,沿着平衡路径迭代位移增量的大小(也叫弧长)和方向,确定载荷增量的自动加载方案,可用于高度非线性的屈曲失稳问题。
基于ABAQUS的悬臂梁的弹塑性弯曲分析学院:航空宇航学院专业:工程力学指导教师:姓名:学号:1. 问题描述考虑端点受集中力F 作用的矩形截面的悬臂梁,如图1所示,长度l=10m ,高度h=1m ,宽度b=1m 。
材料为理想弹塑性钢材(如图2),并遵守Mises 屈服准则,屈服强度为MPa Y 380=σ,弹性模量GPa E 200=,泊松比3.0=υ。
图1 受集中力作用的悬臂梁 图2 钢材的应力-应变行为首先通过理论分析理想弹塑性材料悬臂梁的弹塑性弯曲,得到悬臂梁的弹塑性弯曲变形的规律和塑性区形状,确定弹性极限载荷e F 和塑性极限载荷Y F ;其次利用ABAQUS 模拟了该悬臂梁受集中载荷作用的变形过程,得出弹性极限载荷e F 、塑性极限载荷Y F 、塑性区形状和载荷-位移曲线,与理论分析的结果进行对比,验证有限元分析的准确性。
2. 理论分析2.1梁的弹塑性纯弯曲对于矩形截面Euler-Bernoulli 梁,受弯矩M 作用,如图3所示,根据平截面假定,有图3 矩形截面梁受弯矩M 的作用y κε= (1)其中κ为弯曲后梁轴的曲率,规定梁的挠度w 以与y 同向为正,则在小变形情况有22-dx w d =κ (2)当弯矩M 由零逐渐增大时,起初整个截面都处于弹性状态,这是Hooke 定律给出()y E E y κεσ== (3) 再由平衡方程,可得到κEI M = (4) 其中,3121bh I =是截面的惯性矩。
将EI M /=κ带入(3)式,可知 I y /M =σ显然,最外层纤维的应力值最大。
当M 增大时,最外层纤维首先达到屈服,即Y h y bh M σσ==±=22/61/ (5)这时的弯矩是整个截面处于弹性状态所能承受的最大弯矩,即为弹性极限弯矩,它等于261bh M Y e σ= (6)对应的曲率可由式(4)求得Eh EI M Y e e /2/σκ== (7)当e M M >时,梁的外层纤维的应变继续增大,但应力值保持为Y σ不再增加,塑性区将逐渐向内扩大。
基于ABAQUS复合材料薄壁圆筒的屈曲分析由于玻璃钢复合材料的薄壁圆筒结构具有强度高、重量轻、刚度大、耐腐蚀,电绝缘及透微波等优点,目前已广泛应用于航空航天和民用领域中。
工程中广泛使用的这些薄壁圆筒,当它们受压缩、剪切、弯曲和扭转等荷载作用时,最常见的失效模式为屈曲。
因此,为了保证结构的安全,需要进行屈曲分析。
对结构进行屈曲分析,涉及到较复杂的弹(塑)性理论和数学计算,要通过求解高阶偏微分方程组,才能求解失稳临界荷载,而且只有少数简单结构才能求得精确的解析解。
因此,只能采用能量法、数值方法和有限元方法等近似的分析方法进行分析。
近20年来,随着计算机和有限元方法的迅猛发展,形成了许多的实用分析程序,提高了对复杂结构进行屈曲分析的能力和设计水平。
ABAQUS 就是其中的杰出代表。
1.屈曲有限元理论有限元方法中,对结构的屈曲失稳问题的分析方法主要有两类:一类是通过特征值分析计算屈曲载荷,另一类是利用结合Newton—Raphson迭代的弧长法来确定加载方向,追踪失稳路径的几何非线性分析方法,能有效分析高度非线性屈曲和后屈曲问题。
1.1线性屈曲假设结构受到的外载荷模式为。
,幅值大小为,结构内力为Q,则静力平衡方程应为进一步考察结构在载荷作用下的平衡方程,得到由于结构达到保持稳定的临界载荷时有,代入上式得该方程对应的特征值问题为如果忽略几何刚度增量的影响,屈曲分析的方程又可进一步简化为该方程即为求解线性屈曲的特征值方程。
为屈曲失稳载荷因子,为结构失稳形态的特征向量。
1.2非线性屈曲非线性屈曲分析方法多采用弧长法进行分步迭代计算,在增量非线性有限元分析中,沿着平衡路径迭代位移增量的大小(也叫弧长)和方向,确定载荷增量的自动加载方案,可用于高度非线性的屈曲失稳问题。
与提取特征值的线性屈曲分析相比,弧长法不仅考虑刚度奇异的失稳点附近的平衡,而且通过追踪整个失稳过程中实际的载荷、位移关系,获得结构失稳前后的全部信息,适合于高度非线性的屈曲失稳问题。
整个计算过程包括2个分析步,第1步做屈曲分析,第2步做极限强度分析。
第1步:屈曲分析
载荷步定义如下:
Step 1-Initial
Step 2- Buckle
并在Model-Edit Keywords的图中位置加入下面的文字,输出屈曲模态*nodefile, global=yes
U,
Create job 名称为“Buckling”
点击continue,完成第1步的计算。
第2步:极限强度分析
将“buckle”分析步替换为“riks”分析步
在Basic选项卡中,Nlgeom:选择打开
在Instrumentation选项卡中,定义如下参数,然后点击OK
定义一个新计算工作,输入名称,点击continue
在Parallelization选项卡,选择2个CPU,如下所示,点击OK。
在此编辑Model-edit keywords,删除“第1步”加入的文字“*nodefile, global=yes
U,”,并在下图位置加入下段文字:
*imperfection, file=buckling, step=1
1, 2.5
点击OK,再保存文件。
最后提交计算。
提取计算结果
进入visualization Module
点击Create XY data
选择ODB filed output,点击continue
Position选择Unique Nodal,CF:point loads选择CF2,再点击elements/nodes选项卡,选择跨中载荷加载点,最后点击save。
重复上一步操作,Position选择Unique Nodal,U:spatial displacement 选择U3,再点击elements/nodes选项卡,选择板格中心点,最后点击save。
点击Create XY data, 选择operate on XY data,点击continue
选择Combine(X,X)命令,横坐标选择保存的displacement曲线,纵坐标选择保存的Point load曲线,点击最后一行Create XY Data与Save as。