聚类分析(Q型,R型聚类)算法(DOC)
- 格式:doc
- 大小:105.50 KB
- 文档页数:10
聚类分析cluster analysis聚类分析方法是按样品(或变量)的数据特征,把相似的样品(或变量)倾向于分在同一类中,把不相似的样品(或变量)倾向于分在不同类中。
聚类分析根据分类对象不同分为Q型和R型聚类分析在聚类分析过程中类的个数如何来确定才合适呢?这是一个十分困难的问题,人们至今仍未找到令人满意的方法。
但是这个问题又是不可回避的。
下面我们介绍几种方法。
1、给定阈值——通过观测聚类图,给出一个合适的阈值T。
要求类与类之间的距离不要超过T值。
例如我们给定T=0.35,当聚类时,类间的距离已经超过了0.35,则聚类结束。
聚类分析的出发点是研究对象之间可能存在的相似性和亲疏关系。
样品间亲疏程度的测度研究样品或变量的亲疏程度的数量指标有两种,一种叫相似系数,性质越接近的变量或样品,它们的相似系数越接近于1或一l,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类;另一种叫距离,它是将每一个样品看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。
变量之间的聚类即R型聚类分析,常用相似系数来测度变量之间的亲疏程度。
而样品之间的聚类即Q型聚类分析,则常用距离来测度样品之间的亲疏程度。
定义:在聚类分析中反映样品或变量间关系亲疏程度的统计量称为聚类统计量,常用的聚类统计量分为距离和相似系数两种。
距离:用于对样品的聚类。
常用欧氏距离,在求距离前,需把指标进行标准化。
相似系数:常用于对变量的聚类。
一般采用相关系数。
相似性度量:距离和相似系数。
距离常用来度量样品之间的相似性,相似系数常用来度量变量之间的相似性。
样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。
距离和相似系数这两个概念反映了样品(或变量)之间的相似程度。
相似程度越高,一般两个样品(或变量)间的距离就越小或相似系数的绝对值就越大;反之,相似程度越低,一般两个样品(或变量)间的距离就越大或相似系数的绝对值就越小。
1聚类分析内涵1.1聚类分析定义聚类分析(Cluster Analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术. 也叫分类分析(classification analysis)或数值分类(numerical taxonomy),它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。
聚类分析有关变量类型:定类变量,定量(离散和连续)变量聚类分析的原则是同一类中的个体有较大的相似性,不同类中的个体差异很大。
1.2聚类分析分类聚类分析的功能是建立一种分类方法,它将一批样品或变量,按照它们在性质上的亲疏、相似程度进行分类.聚类分析的内容十分丰富,按其聚类的方法可分为以下几种:(1)系统聚类法:开始每个对象自成一类,然后每次将最相似的两类合并,合并后重新计算新类与其他类的距离或相近性测度.这一过程一直继续直到所有对象归为一类为止.并类的过程可用一张谱系聚类图描述.(2)调优法(动态聚类法):首先对n个对象初步分类,然后根据分类的损失函数尽可能小的原则对其进行调整,直到分类合理为止.(3)最优分割法(有序样品聚类法):开始将所有样品看成一类,然后根据某种最优准则将它们分割为二类、三类,一直分割到所需的K类为止.这种方法适用于有序样品的分类问题,也称为有序样品的聚类法.(4)模糊聚类法:利用模糊集理论来处理分类问题,它对经济领域中具有模糊特征的两态数据或多态数据具有明显的分类效果.(5)图论聚类法:利用图论中最小支撑树的概念来处理分类问题,创造了独具风格的方法.(6)聚类预报法:利用聚类方法处理预报问题,在多元统计分析中,可用来作预报的方法很多,如回归分析和判别分析.但对一些异常数据,如气象中的灾害性天气的预报,使用回归分析或判别分析处理的效果都不好,而聚类预报弥补了这一不足,这是一个值得重视的方法。
聚类分析根据分类对象的不同又分为R型和Q型两大类,R型是对变量(指标)进行分类,Q 型是对样品进行分类。
聚类算法聚类分析根据分类对象不同分为Q型聚类分析和R型聚类分析。
Q型聚类是指对样品进行聚类;R型聚类是指对变量进行聚类。
根据处理方法的不同又分为:系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法等。
算法原理:对于样品(变量)进行分类,就需要研究样品之间的关系。
性质越接近的样品(变量),它们的相似系数绝对值越接近1,而彼此无关的样品(变量),它们相似系数的绝对值接近于0.比较相似的样品(变量)归为一类,不怎么相似的样品归为不同的类。
一、数据类型在实际问题中,遇到的变量有的是定量的(如长度、重量等),有的是定性的(如性别、职业等),因此将变量的类型分为以下三种尺度:间隔尺度:变量是用实数来表示的,如长度、重量、压力和速度等等。
有序尺度:变量度量时没有明确的数量表示,而是划分一些等级,等级之间有次序关系,如产品分为上、中、下三等,此三等有次序关系,但没有数量关系。
名义尺度:变量度量时既没有数量表示,也没有次序关系,而用不同状态来表示,如性别变量有男、女两种状态;某物体有红、黄、白三种颜色等。
二、对于数据具有不同的量纲以及不同的数量级单位,为了使不同量纲及不同数量级的数据能放在一起比较,一般在具体运用多元统计各种方法之前,先对数据进行变换处理。
(一)间隔尺度变量变换方法1、中心化处理变换:变换后数值=变换前数值-该变量的均值称为中心化变换,即平移变换,该变换可以使新坐标的原点与样品点集合的重心重合,而不会改变样本间的相互位置,也不会改变变量的相关性。
2、标准化变换变换:变换后数值=(变换前数值-该变量的均值)/该变量标准差称为标准化变换,变换后的数据,每个变量的样本均值为0,标准差为1,而且标准化变换后的数据与量纲无关。
3、极差正规化变换(规格化变换)变换:变换后数值=(变换前数值-该变量最小值)/极差称为极差正规化变换,变换后的数据在0到1之间;也是与量纲无关。
4、对数变换变换:变换后数值=log(变换前数值)称为对数变换,要求该变量所有值均大于0,它可以将具有指数特征的数据结构变换为线性数据结构。
聚类分析cluster analysis聚类分析方法是按样品(或变量)的数据特征,把相似的样品(或变量)倾向于分在同一类中,把不相似的样品(或变量)倾向于分在不同类中。
聚类分析根据分类对象不同分为Q型和R型聚类分析在聚类分析过程中类的个数如何来确定才合适呢?这是一个十分困难的问题,人们至今仍未找到令人满意的方法。
但是这个问题又是不可回避的。
下面我们介绍几种方法。
1、给定阈值——通过观测聚类图,给出一个合适的阈值T。
要求类与类之间的距离不要超过T值。
例如我们给定T=0.35,当聚类时,类间的距离已经超过了0.35,则聚类结束。
聚类分析的出发点是研究对象之间可能存在的相似性和亲疏关系。
样品间亲疏程度的测度研究样品或变量的亲疏程度的数量指标有两种,一种叫相似系数,性质越接近的变量或样品,它们的相似系数越接近于1或一l,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类;另一种叫距离,它是将每一个样品看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。
变量之间的聚类即R型聚类分析,常用相似系数来测度变量之间的亲疏程度。
而样品之间的聚类即Q型聚类分析,则常用距离来测度样品之间的亲疏程度。
定义:在聚类分析中反映样品或变量间关系亲疏程度的统计量称为聚类统计量,常用的聚类统计量分为距离和相似系数两种。
距离:用于对样品的聚类。
常用欧氏距离,在求距离前,需把指标进行标准化。
相似系数:常用于对变量的聚类。
一般采用相关系数。
相似性度量:距离和相似系数。
距离常用来度量样品之间的相似性,相似系数常用来度量变量之间的相似性。
样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。
距离和相似系数这两个概念反映了样品(或变量)之间的相似程度。
相似程度越高,一般两个样品(或变量)间的距离就越小或相似系数的绝对值就越大;反之,相似程度越低,一般两个样品(或变量)间的距离就越大或相似系数的绝对值就越小。
聚类分析(Cluster Analysis)1、概念聚类分析是研究分类的一种多元统计方法,聚类分析也称群分析或点群分析。
主要是指将数据分类到不同的组或者簇这样的一个过程,同一个组(簇)中的对象有很大的相似性,而不同组(簇)间的对象有很大的相异性,如图1所示。
图1 聚类分析特点:聚类分析前所有个体或样本所属的类别是未知的,类别个数一般也是未知的,分析的依据就是原始数据,没有任何事先的有关类别的信息可参考。
所以,严格说来聚类分析并不是纯粹的统计技术,它不像其它多元分析法那样,需要从样本去推断总体。
聚类分析一般都涉及不到有关统计量的分布,也不需要进行显著性检验。
聚类分析更像是一种建立假设的方法,而对假设的检验还需要借助其它统计方法。
2、聚类的分类根据对样品聚类还是对变量聚类,聚类主要分为Q型和R型两种。
Q型是对样本(即观测值)进行聚类处理,其作用在于:(1)能利用多个变量对样本进行分类(2)分类结果直观,聚类谱系图能明确、清楚地表达其数值分类结果(3)所得结果比传统的定性分类方法更细致、全面、合理。
R型是对变量进行聚类处理,其作用在于:(1)可以了解变量间及变量组合间的亲疏关系(2)可以根据变量的聚类结果及它们之间的关系,选择主要变量进行回归分析或Q型聚类析。
通俗讲,R型聚类是对数据中的列分类,Q型聚类是对数据中的行分类。
3、聚类分析的过程(1)数据预处理(标准化)(2)构造关系矩阵(亲疏关系的描述)(3)聚类(根据不同方法进行分类)(4)确定最佳分类(类别数)3.1标准化指标变量的量纲不同或数量级相差很大时,为了使这些数据能放到一起加以比较,常需做标准化变换。
下面介绍几种常用的数据标准化方法,见表1。
首先给出相关说明:假设有N 个样本1,2,…n ,每个样本有m 项指标x1,x2,…,xm,用xij 表示第i 个样品第j 个指标的值,则可得到样品数据矩阵1111.....m n nm x x X x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 均值表示为: 11nj ij i x x n ==∑(1) 标准差表示为: 11nj ij i x x n ==∑(2) 极差表示为:max()min()j ij ij R x x =-(3)公式公式度量)两步聚类法是一种探索性的聚类方法,主要用于解决海量数据或者具有复杂类别结构的聚类分析问题。