第5章(1)时间序列模型
- 格式:pdf
- 大小:369.11 KB
- 文档页数:45
第五章时间序列练习题1、时间序列中,数值大小与时间长短没有关系的是(C)。
A.平均数时间序列B.时期序列C.时点序列D.相对数时间序列2、采用几何平均法计算平均发展速度的依据是( A )。
A.各年环比发展速度之积等于总速度B.各年环比发展速度之和等于总速度C.各年环比增长速度之积等于总速度D.各年环比增长速度这和等于总速度3、下列数列中哪一个属于动态数列(D)。
A.学生按学习成绩分组形成的数列B.职工按工资水平分组形成的数列C. 企业按产量多少形成的分组数列D. 企业生产成本按时间顺序形成的数列4.由两个等时期数列相应项对比所形成的相对数动态数列算序时平均数的基本公式是(D)。
A.n aa∑=B.ncc∑=C.∑--++++++=ffaafaafaaannn11232121222D.∑∑=bac5.间隔不等的间断时点数列的序时平均数的计算公式是( C )。
A.n aa∑=B.12121121-++++=-naaaaannC.∑--++++++=ffaafaafaaannn11232121222D.∑∑=fafa6.累计增长量与逐期增长量的关系是( A )A.逐期增长量之和等于累计增长量B.逐期增长量之积等于累计增长量C.累计增加量之和等于逐期增长量D.两者没有直接关系7.环比发展速度与定基发展速度之间的关系是( C )。
A.定基发展速度等于环比发展速度之和B.环比发展速度等于定基发展速度的平方根C.环比发展速度的连乘积等于定基发展速度D.环比发展速度等于定基发展速度减18.某现象前期水平为1500万吨,本期水平为2100万吨,则增长1%的绝对值为( C )。
A.1500万吨B.600万吨C.15万吨D.2100万吨9.已知各期的环比增长速度为9%、8%、10%,则定基增长速度为( C )。
A.9%×8%×10% B.9%×8%×10%-100%C.109%×108%×110%-100%D.109%×108%×110%10.某车间6月、7月、8月、9月末职工人数分别为250人、265人、280人和290人,该公司三季度月职工平均人数为( D )。
第05章多元时间序列分析⽅法142第五章多元时间序列分析⽅法[学习⽬标]了解协整理论及协整检验⽅法;掌握协整的两种检验⽅法:E-G 两步法与Johansen ⽅法; ? 熟悉向量⾃回归模型VAR 的应⽤; ? 掌握误差修正模型ECM 的含义及检验⽅法; ? 掌握Granger 因果关系检验⽅法。
第⼀节协整检验前⾯介绍的ARMA 模型要求时间序列是平稳的,然⽽实际经济运⾏中的⼤多数时间序列都是⾮平稳的,通常采取差分⽅法消除时间序列中的⾮平稳趋势,使得序列平稳后建⽴模型,这就是第四章所介绍的ARIMA 模型。
但是,变换后的时间序列限制了所要讨论问题的范围,并且有时变换后的序列由于不具有直接的经济意义,从⽽使得转换为平稳后的序列所建⽴的时间序列模型的解释能⼒⼤⼤降低。
1987年,Engle 和Granger 提出的协整理论及其⽅法,为⾮平稳时间序列的建模提供了另⼀种重要途径。
①⽬前,协整问题研究已经成为20世纪80年代末到90年代以来经济计量学建模理论的⼀个重⼤突破,在分析变量之间的长期均衡关系中得到⼴泛应⽤。
⼀、协整概念与定义在经济运⾏中,虽然⼀组(两个或两个以上)时间序列变量(例如⼈民币汇率与外汇储备、货币供应量和股票指数)都是随机游⾛,但它们的某个线性组合却可能是平稳的,在这种情况下,我们称这两个变量是平稳的,既存在协整关系。
其基本思想是,如果两个(或两个以上)的时间序列变量是⾮平稳的,但它们的某种线性组合却表现出乎稳性,则这些变量之间存在长期稳定关系,即协整关系。
根据以上叙述,我们将给出协整这⼀重要概念。
⼀般⽽⾔,协整(cointegration)是指两个或两个以上同阶单整的⾮平稳时间序列的组合是平稳时间序列,则这些变量之间的关系的就是协整的。
为何会有协整问题存在呢?这是因为许多⾦融、经济时间序列数据都是不平稳的,但它们可能受到某些共同因素的影响,从⽽在时间上表现出共同趋势,即变量之间存在⼀定稳定关系,他们的变化受到这种关系的制约,因此它们的某种线性组合可能是平稳的,即存在协整关系。
时间序列数据模型方程
时间序列数据模型是用来描述和预测随时间变化的数据的数学
模型。
常见的时间序列数据模型包括自回归模型(AR)、滑动平均
模型(MA)、自回归滑动平均模型(ARMA)、自回归积分滑动平均
模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。
这
些模型可以用数学方程来表示。
以ARIMA模型为例,其数学方程可以表示为:
Y_t = c + ϕ_1Y_(t-1) + ϕ_2Y_(t-2) + ... + ϕ_pY_(t-p) + ε_t θ_1ε_(t-1) θ_2ε_(t-2) ... θ_qε_(t-q)。
其中,Y_t 是时间序列数据在时间点 t 的观测值,c 是常数项,ϕ_1, ϕ_2, ..., ϕ_p 是自回归项系数,ε_t 是时间点 t 的误差,θ_1, θ_2, ..., θ_q 是滑动平均项系数,p 和 q 分别表示
自回归和滑动平均的阶数。
这个方程描述了时间序列数据在不同时间点的值如何受到过去
观测值和误差的影响,从而可以用来进行数据的预测和分析。
除了ARIMA模型,其他时间序列模型也有类似的数学方程来描述其特征
和性质。
需要注意的是,选择合适的时间序列模型和建立准确的数学方程是非常重要的,这需要对数据进行充分的分析和理解,以及对不同模型的特点和适用范围有深入的了解。
同时,还需要对模型的参数进行估计和检验,确保模型的有效性和可靠性。
第五章时间序列的模型识别前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型,引入了自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。
从本章开始,我们将运用数据开始进行时间序列的建模工作,其工作流程如下:图5.1 建立时间序列模型流程图在ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较困难的。
需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。
在这里我们使用估计过程去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考虑。
对于线性平稳时间序列模型来说,模型的识别问题就是确定ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。
所采用的基本方法主要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。
我们分别给出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依据。
如果样本的自相关系数(ACF)在滞后q+1阶时突然截断,即在q处截尾,那么我们可以判定该序列为MA(q)序列。
同样的道理,如果样本的偏自相关系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。
如果ACF和PACF 都不截尾,只是按指数衰减为零,则应判定该序列为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来确定模型阶次,检验模型残差的相关特性等;(3)利用信息准则,确定一个与模型阶数有关的准则函数,既考虑模型对原始观测值的接近程度,又考虑模型中所含待定参数的个数,最终选取使该函数达到最小值的阶数,常用的该类准则有AIC 、BIC 、FPE 等。