第五章时间序列的模型识别汇总
- 格式:doc
- 大小:1.19 MB
- 文档页数:17
第二篇 预测方法与模型预测是研究客观事物未来发展方向与趋势的一门科学。
统计预测是以统计调查资料为依据,以经济、社会、科学技术理论为基础,以数学模型为主要手段,对客观事物未来发展所作的定量推断和估计。
根据社会、经济、科技的预测结论,人们可以调整发展战略,制定管理措施,平衡市场供求,进行各种各样的决策。
预测也是制定政策,编制规划、计划,具体组织生产经营活动的科学基础。
20世纪三四十年代以来,随着人类社会生产力水平的不断提高和科学技术的迅猛发展,特别是近年来以计算机为主的信息技术的飞速发展,更进一步推动了预测技术在国民经济、社会发展和科学技术各个领域的应用。
预测包含定性预测法、因果关系预测法和时间序列预测法三类。
本篇对定性预测法不加以介绍,对后两类方法选择以下几种介绍方法的原理、模型的建立和实际应用,分别为:时间序列分析、微分方程模型、灰色预测模型、人工神经网络。
第五章 时间序列分析在预测实践中,预测者们发现和总结了许多行之有效的预测理论和方法,但以概率统计理论为基础的预测方法目前仍然是最基本和最常用的方法。
本章介绍其中的时间序列分析预测法。
此方法是根据预测对象过去的统计数据找到其随时间变化的规律,建立时间序列模型,以推断未来数值的预测方法。
时间序列分析在微观经济计量模型、宏观经济计量模型以及经济控制论中有广泛的应用。
第一节 时间序列简介所谓时间序列是指将同一现象在不同时间的观测值,按时间先后顺序排列所形成的数列。
时间序列一般用 ,,,,21n y y y 来表示,可以简记为}{t y 。
它的时间单位可以是分钟、时、日、周、旬、月、季、年等。
一、时间序列预测法时间序列预测法就是通过编制和分析时间序列,根据时间序列所反应出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年可能达到的水平。
其容包括:收集与整理某种社会现象的历史资料;将这些资料进行检查鉴别,排成数列;分析时间序列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模型,以此模型去预测该社会现象将来的情况。
模型的识别与预测一、实验内容依照某AR 模型生成一段数据(1000),同时用另一MA 模型生成一段数据(200),合成一段1200长度的数据1)依赖于这1200个数据的前800个数据,识别这段数据背后的AR 模型。
2)在1)的基础上对新数据进行预测,并通过后续的400个数据进行判别(数据模型是否匹配)或者模型的修正(修正只需要提供思路和方法)。
二、理论基础 1.时间序列模型介绍时间序列是随时间改变而随机地变化的序列。
时间序列分析的目的是找出它的变化规律,即线性模型,主要有三种:AR 模型(自回归模型)、MA 模型(滑动平均模型)和ARMA 模型(自回归滑动平均模型或混合模型)。
设{X t }为零均值的实平稳时间序列,阶数为p 的AR 模型定义为t p t p t t t a X X X X ++++=---ϕϕϕ (2211)其 ,0][ =t a E ⎩⎨⎧≠==,,0,,][2s t s t a a E a t s δt s X a E t s >=,0][其中{p k k ,...,2,1,=ϕ}成为自回归系数,白噪声序列{t a }成为新信息序列;阶数为q 的MA 模型定义为211...-----=t q t t t a a a X θθ其中{q k k ,...,2,1,=θ}称为滑动平均系数;P 阶自回归q 阶ARMA 模型定义为q t q t t p t p t t a a a X X X -------=---θθϕϕ (1111)记为ARMA (p ,q )。
2. 模型的识别根据教材对平稳时间序列的特性分析,对初步识别平稳时间序列的类型提供了依据,如表1所示:表1 各时间序列模型的特性3. 模型阶数的确定1)样本自相关函数和样本偏相关函数设有零均值平稳时间序列{t X }的一段样本观测值N x x x ,...,,21,样本协方差函数估计式为1,...,1,011^-==+-=∑N k xx Nki k N i i k γ同理样本自相关函数定义为1,...,1,0^^^-==N k k k γγρ2)MA 模型阶数的确定设{t X }是正态的零均值平稳MA (q )序列,而对于充分大的N ,可以认为^kρ的分布近似于正态分布))/1(,0(2N N ,从而,^k ρ的截尾性判断如下:首先计算^^2^1,...,,M ρρρ(取10/N M ≈),因为q 值未知,故令q 值从小到大,分别检验M q q q +++^2^1^,...,,ρρρ满足N k 1^≤ρ 或N k 2^≤ρ 的比例是否占总个数M 的68.3%或95.5%。
时间序列分析模型汇总时间序列分析是一种广泛应用于各个领域的统计分析方法,它用来研究一组随时间而变化的数据。
时间序列数据通常具有趋势、季节性和随机性等特征,时间序列分析的目的是通过建立适当的模型来描述和预测这些特征。
本文将汇总一些常用的时间序列分析模型,包括AR、MA、ARIMA、GARCH和VAR等。
1.AR模型(自回归模型):AR模型是根据过去的观测值来预测未来的观测值。
它假设未来的观测值与过去的一系列观测值有关,且与其他因素无关。
AR模型的一般形式为:Y_t=c+Σ(φ_i*Y_t-i)+ε_t,其中Y_t表示时间t的观测值,c 为常数,φ_i为系数,ε_t为误差项。
2.MA模型(移动平均模型):MA模型是根据过去的误差项来预测未来的观测值。
它假设未来的观测值与过去的一系列误差项有关,且与其他因素无关。
MA模型的一般形式为:Y_t=μ+ε_t+Σ(θ_i*ε_t-i),其中Y_t表示时间t的观测值,μ为平均值,θ_i为系数,ε_t为误差项。
3.ARIMA模型(自回归积分移动平均模型):ARIMA模型是AR和MA模型的组合,它结合了时间序列数据的趋势和随机性特征。
ARIMA模型的一般形式为:Y_t=c+Σ(φ_i*Y_t-i)+Σ(θ_i*ε_t-i)+ε_t,其中Y_t表示时间t的观测值,c为常数,φ_i和θ_i为系数,ε_t为误差项。
4.GARCH模型(广义自回归条件异方差模型):GARCH模型用于建模并预测时间序列数据的波动性。
它假设波动性是由过去观测值的平方误差和波动性的自相关引起的。
GARCH模型的一般形式为:σ_t^2=ω+Σ(α_i*ε^2_t-i)+Σ(β_i*σ^2_t-i),其中σ_t^2为时间t的波动性,ω为常数,α_i和β_i为系数,ε_t为误差项。
5.VAR模型(向量自回归模型):VAR模型用于建模并预测多个时间序列变量之间的相互关系。
它假设多个变量之间存在相互依赖的关系,即一个变量的变动会对其他变量产生影响。
时间序列模型归纳总结复习时间序列模型可以分为线性模型和非线性模型两类。
线性模型假设时间序列数据之间的关系是线性的,并且基于这种线性关系进行预测。
常见的线性时间序列模型有AR模型(自回归模型)、MA模型(滑动平均模型)和ARMA模型(自回归滑动平均模型)。
AR模型是通过对时间序列数据的当前值和过去的值进行线性组合来预测未来值。
MA模型是通过对时间序列数据的误差项进行线性组合来预测未来值。
ARMA模型是AR模型和MA模型的结合。
这些模型通常需要对时间序列数据进行平稳性和白噪声检验。
非线性时间序列模型则放松了线性假设,认为时间序列数据之间的关系是非线性的。
常见的非线性时间序列模型有ARCH模型(自回归条件异方差模型)和GARCH模型(广义条件异方差模型)。
ARCH模型和GARCH模型可以描述时间序列数据中的异方差性,即波动性不稳定。
这些模型通常采用极大似然估计方法进行参数估计。
除了上述模型之外,还有一些高级的时间序列模型,如VAR模型(向量自回归模型),VAR模型可以同时预测多个时间序列变量之间的关系;VARMA模型(向量自回归滑动平均模型),VARMA模型是VAR模型和MA模型的结合;VARIMA模型(向量自回归移动平均模型),VARIMA模型是VAR模型和ARIMA模型的结合。
建立时间序列模型的一般步骤如下:首先,对时间序列数据进行可视化和描述性统计分析,了解数据的基本特征。
然后,判断时间序列数据是否满足平稳性和白噪声检验的要求,如果不满足需要进行差分或转换。
接下来,根据数据的特征选择合适的时间序列模型,并进行参数估计。
最后,使用模型进行预测和评估,并进行模型选择和调整。
时间序列模型的评估一般采用残差分析和预测误差分析。
残差分析用于检验模型的拟合效果,常见的检验方法有自相关函数(ACF)和偏自相关函数(PACF)。
预测误差分析用于评估模型的预测能力,常见的评估指标有均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)。
第五章-时间序列的模型识别汇总第五章时间序列的模型识别前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型,引入了自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。
从本章开始,我们将运用数据开始进行时间序列的建模工作,其工作流程如下:图5.1 建立时间序列模型流程图在ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较困难的。
需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。
在这里我们使用估计过程去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考虑。
对于线性平稳时间序列模型来说,模型的识别问题就是确定ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。
所采用的基本方法主要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。
我们分别给出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依据。
如果样本的自相关系数(ACF)在滞后q+1阶时突然截断,即在q处截尾,那么我们可以判定该序列为MA(q)序列。
同样的道理,如果样本的偏自相关系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。
如果ACF和PACF都不截尾,只是按指数衰减为零,则应判定该序列为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来确定模型阶次,检验模型残差的相关特性等;(3)利用信息准则,确定一个与模型阶数有关的准则函数,既考虑模型对原始观测值的接近程度,又考虑模型中所含待定参数的个数,最终选取使该函数达到最小值的阶数,常用的该类准则有AI C、BIC 、FP E等。