22.3抛物线与几何图形的综合(专题)
- 格式:docx
- 大小:212.07 KB
- 文档页数:10
全国各地中考试题压轴题精选讲座抛物线与几何问题【知识纵横】抛物线的解析式有下列三种形式:1、一般式:2y ax bx c =++(a ≠0);2、顶点式:y=a(x —h) 2-+k ;3、交点式:y=a(x —x 1)(x —x 2 ) ,这里x 1、x 2 是方程ax 2 +bx+c=0的两个实根。
解函数与几何的综合题,善于求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互动,把证明与计算相结合是解题的关键。
【典型例题】【例1】 (浙江杭州) 在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b )。
平移二 次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B ,C 两点(∣OB ∣<∣OC ∣),连结A ,B 。
(1)是否存在这样的抛物线F ,OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO=23,求抛物线F 对应的二次函数的解析式。
【思路点拨】(1)由关系式OC OB OA ⋅=2来构建关于t 、b 的方程;(2)讨论t 的取值范围,来求抛物线F 对应的二次函数的解析式。
【例2】(江苏常州)如图,抛物线24y x x =+与x 轴分别相交于点B 、O,它的顶点为A,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l,设P 是直线l 上一动点.(1)求点A 的坐标;(2)以点A 、B 、O 、P 为顶点的四边形中,有菱形、等 腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3)设以点A 、B 、O 、P 为顶点的四边形的面积为S, 点P 的横坐标为x,当46S +≤≤+,求x 的取值范围.【思路点拨】(3)可求得直线l 的函数关系式是y=-2x ,所以应讨论①当点P 在第二象限时,x<0、 ②当点P 在第四象限是,x>0这二种情况。
2024年中考数学一轮复习考点精析及真题精讲—抛物线与几何综合二次函数是非常重要的函数,年年都会考查,总分值为18~20分,预计2024年各地中考还会考,它经常以一个压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与几何图形结合来考查.→➊考点精析←1、函数存在性问题解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;然后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.2、函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.(3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.→➋真题精讲←考向一抛物线与三角形有关问题1.(2023·浙江金华·统考中考真题)如图,直线y x =x 轴,y 轴分别交于点,A B ,抛物线的顶点P 在直线AB 上,与x 轴的交点为,C D ,其中点C 的坐标为()2,0.直线BC 与直线PD 相交于点E .(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;②求BE EC的值.(2)连接,PC CPE ∠与BAO ∠能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.【答案】(1)①2y x =+;②13;(2)能,6或23或67-或143-.【分析】(1)①先求顶点的坐标,然后待定系数法求解析式即可求解;②过点E 作EH OC ⊥于点H .设直线BC 为y kx =+()2,0C 代入,得02k =+解得2k =-,直线BC 为y x =+OP 为2y x =.联立两直线解析式得出12E ⎛ ⎝⎭,根据EH BO ∥,由平行线分线段成比例即可求解;(2)设点P 的坐标为2t t ⎛ ⎝,则点D 的坐标为()22,0t -.①如图2-1,当2t >时,存在CPE BAO ∠=∠.记,CPE BAO APC αβ∠=∠=∠=,则APD αβ∠=+.过点P 作PF x⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP ∠==,进而得出点P 的横坐标为6.②如图2-2,当02t <≤时,存在CPE BAO ∠=∠.记,CPE BAD APD αβ∠=∠=∠=.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP ∠==,得出点P 的横坐标为23.③如图23-,当20t -<≤时,存在CPE BAO ∠=∠.记BAO α∠=.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP =∠=,得出点P 的横坐标为67-.④如图2-4,当2t ≤-时,存在CPE BAO ∠=∠.记BAO α∠=.过点P 作PF x ⊥轴于点F ,则2AF t =--.在Rt APF 中,2cos 3AF PAF AP =∠=,得出点P 的横坐标为143-.【详解】(1)解:①∵2OC =,∴顶点P 的横坐标为1.∴当1x =时,y =+=∴点P 的坐标是1,2⎛ ⎝⎭.设抛物线的函数表达式为2(1)y a x =-+,把()0,0代入,得0a =解得2a =-.∴该抛物线的函数表达式为21)y x =-,即2y x =+.②如图1,过点E 作EH OC ⊥于点H .设直线BC 为y kx =,把()2,0C 代入,得02k =+,解得2k =-,∴直线BC为y =同理,直线OP为y x =.由2.y x y x ⎧=⎪⎪⎨⎪=⎪⎩解得1,2x y ⎧=⎪⎪⎨⎪=⎪⎩∴12E ⎛ ⎝⎭.∴113,2222OH HC ==-=.∵EH BO ∥,∴13BE OH EC HC ==.(2)设点P的坐标为2t t ⎛ ⎝,则点D 的坐标为()22,0t -.①如图21-,当2t >时,存在CPE BAO ∠=∠.记,CPE BAO APC αβ∠=∠=∠=,则APD αβ∠=+.∵PCD ∠为PAC △的外角,∴PCD αβ∠=+.∵PC PD =.∴PDC PCD αβ∠=∠=+.∴APD ADP ∠=∠.∴2AP AD t ==.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP ∠==,∴2223t t +=,解得6t =.∴点P 的横坐标为6.②如图2-2,当02t <≤时,存在CPE BAO ∠=∠.记,CPE BAD APD αβ∠=∠=∠=.∵PDC ∠为PAD 的外角,∴PDC αβ∠=+.∴PCD PDC αβ∠=∠=+∴APC ACP ∠=∠.∴4AP AC ==.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP ∠==,∴2243t +=,解得23t =.∴点P 的横坐标为23.③如图2-3,当20t -<≤时,存在CPE BAO ∠=∠.记BAO α∠=.∵PC PD =,∴1122PDC PCD CPE α∠=∠=∠=.∴1122APD BAO PDC αα∠=∠-∠=-=.∴APD PDA ∠=∠.∴2AD AP t ==-.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP =∠=,∴2223t t +=-,解得67t =-.∴点P 的横坐标为67-.④如图2-4,当2t ≤-时,存在CPE BAO ∠=∠.记BAO α∠=.∵PC PD =,∴1122PCD PDC CPE α∠=∠=∠=.∴1122APC BAO PCD ααα∠=∠-∠=-=.∴4PA CA ==.过点P 作PF x ⊥轴于点F ,则2AF t =--.在Rt APF 中,2cos 3AF PAF AP =∠=,∴2243t --=,解得143t =-.∴点P 的横坐标为143-.综上,点P 的横坐标为26146,,,373--.【点睛】本题考查了二次函数综合运用,解直角三角形,平行线分线段成比例,熟练掌握以上知识,分类讨论是解题的关键.2.(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,已知抛物线()2803y ax x c a =++≠与x 轴交于点()1,0A 和点B ,与y 轴交于点()0,4C -.(1)求这条抛物线的函数解析式;(2)P 是抛物线上一动点(不与点A ,B ,C 重合),作PD x ⊥轴,垂足为D ,连接PC .①如图,若点P 在第三象限,且tan 2CPD ∠=,求点P 的坐标;②直线PD 交直线BC 于点E ,当点E 关于直线PC 的对称点E '落在y 轴上时,请直接写出四边形PECE '的周长.【答案】(1)248433y x x =+-;(2)①1377,816P ⎛⎫-- ⎪⎝⎭②354或854【分析】(1)将A ,C 两点坐标代入抛物线的解析式,从而求得a ,c ,进而求得结果;(2)①设248,433P x x x ⎛⎫+- ⎪⎝⎭,过点C 作CE PD ⊥于点E ,求出,PE CE ,根据tan 2CE CPD PE∠==列出方程求出x 的值即可;②可推出四边形'PECE 是菱形,从而得出PE CE =,分别表示出PE 和CE ,从而列出方程,进一步求得结果.【详解】(1)∵抛物线()2803y ax x c a =++≠与x 轴交于点()1,0A ,与y 轴交于点()0,4C -,∴把()1,0A ,()0,4C -代入()2803y ax x c a =++≠得,8034a c c ⎧++=⎪⎨⎪=-⎩,解得,434a c ⎧=⎪⎨⎪=-⎩,∴抛物线的函数解析式为248433y x x =+-;(2)①设248,433P x x x ⎛⎫+- ⎪⎝⎭,过点C 作CE PD ⊥于点E,如图,∴90,PEC CED ∠=∠=︒∵()0,4,C -∴4,OC =∵PD x ⊥轴,∴90,PDO ∠=︒又90,DOC ∠=︒∴四边形DOCE 是矩形,∴4,DE OC DO CE x ====-,∴22484844,3333PE PD DE x x x x ⎛⎫=-=-+--=-- ⎪⎝⎭∵tan 2,CE CPD PE∠==∴22,4833x x x -=--∴1213,08x x =-=(不合题意,舍去)∴248774,3316x x +-=-∴1377,816P ⎛⎫-- ⎪⎝⎭;②设248,433P m m m ⎛⎫+- ⎪⎝⎭,对于248433y x x =+-,当0y =时,2484=033x x +-,解得,121,3,x x ==-∴()3,0,B -∵4,OC =由勾股定理得,5;BC =当点P 在第三象限时,如图,过点E 作EF y ⊥轴于点F ,则四边形DEFO 是矩形,EF DO m ∴==-,∵点E 与点E '关于PC 对称,∴,,ECP E CP CE CE ''∠=∠=∵PE y ∥轴,∴,EPC PCE '∠=∠∴,EPC ECP ∠=∠∴,PE CE =∴,PE CE '=∴四边形PECE '是平行四边形,∴四边形PECE '是菱形,∵,EF OA ∥∴,CEF CBO ∴,CE EF BC BO =∴,53CE m -=∴5,3CE m =-设直线BC 的解析式为y kx b =+,把()()3,0,0,4B C --代入得,304k b b -+=⎧⎨=-⎩,解得,434k b ⎧=-⎪⎨⎪=-⎩,∴直线BC 的解析式为443y x =--,∴4,43E m m ⎛⎫-- ⎪⎝⎭,∴224844124433333PE m m m m ⎛⎫⎛⎫=-+-+--=-- ⎪ ⎪⎝⎭⎝⎭,又5,3CE m =-且,PE CE =∴24125,333m m m --=-解得,127,04m m =-=(舍去)∴5735,4416CE ⎛⎫=-⨯-= ⎪⎝⎭∴四边形PECE '的周长353544164C CE ==⨯=;当点P 在第二象限时,如图,同理可得:24125+,333m m m =-解得,1217,04m m =-=(舍去)∴51785,4416CE ⎛⎫=-⨯-= ⎪⎝⎭∴四边形PECE '的周长858544164C CE ==⨯=;综上,四边形PECE '的周长为354或854.【点睛】本题考查了求一次函数和二次函数的解析式,等腰三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,轴对称性质等知识,解决问题的关键是正确分类,作辅助线,表示出线段的数量.3.(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C -.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)211344y x x =+-;(2)PD 取得最大值为45,52,2P ⎛⎫-- ⎪⎝⎭;(3)Q 点的坐标为9,12⎛⎫- ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =--,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+- ⎪⎝⎭,则3,34Q t t ⎛⎫-- ⎪⎝⎭,则45PD PQ =,进而根据二次函数的性质即可求解;(3)根据平移的性质得出219494216y x ⎛⎫=-- ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫-- ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫- ⎪⎝⎭,()0,2F ,勾股定理分别表示出222,,EF QE QF ,进而分类讨论即可求解.【详解】(1)解:将点()3,0B ,()0,3C -.代入214y x bx c =++得,2133043b c c ⎧⨯++=⎪⎨⎪=-⎩解得:143b c ⎧=⎪⎨⎪=-⎩,∴抛物线解析式为:211344y x x =+-,(2)∵211344y x x =+-与x 轴交于点A ,B ,当0y =时,2113044x x +-=解得:124,3x x =-=,∴()4,0A -,∵()0,3C -.设直线AC 的解析式为3y kx =-,∴430k --=解得:34k =-∴直线AC 的解析式为334y x =--,如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+- ⎪⎝⎭,则3,34Q t t ⎛⎫-- ⎪⎝⎭,∴223111334444PQ t t t t t ⎛⎫=---+-=-- ⎪⎝⎭,∵AQE PQD ∠=∠,90AEQ QDP ∠=∠=︒,∴OAC QPD ∠=∠,∵4,3OA OC ==,∴5AC =,∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=,∴()222441141425545555PD PQ t t t t t ⎛⎫==--=--=-++ ⎪⎝⎭,∴当2t =-时,PD 取得最大值为45,()()2211115322344442t t +-=⨯-+⨯--=-,∴52,2P ⎛⎫-- ⎪⎝⎭;(3)∵抛物线211344y x x =+-211494216x ⎛⎫=+- ⎪⎝⎭将该抛物线向右平移5个单位,得到219494216y x ⎛⎫=-- ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫-- ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫- ⎪⎝⎭∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y ⎛⎫=⨯-= ⎪⎝⎭,∴()0,2F ,∴22251173224EF ⎛⎫=++= ⎪⎝⎭∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设9,2Q m ⎛⎫ ⎪⎝⎭,∴22295322QE m ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,()222922QF m ⎛⎫=+- ⎪⎝⎭,当QF EF =时,()22922m ⎛⎫+- ⎪⎝⎭=1174,解得:1m =-或5m =,当QE QF =时,2295322m ⎛⎫⎛⎫-++ ⎪ ⎝⎭⎝⎭=()22922m ⎛⎫+- ⎪⎝⎭,解得:74m =综上所述,Q 点的坐标为9,12⎛⎫- ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.4.(2023·湖北随州·统考中考真题)如图1,平面直角坐标系xOy 中,抛物线2y ax bx c =++过点(1,0)A -,(2,0)B 和(0,2)C ,连接BC ,点(,)P m n (0)m >为抛物线上一动点,过点P 作PN x ⊥轴交直线BC 于点M ,交x 轴于点N .(1)直接写出....抛物线和直线BC 的解析式;(2)如图2,连接OM ,当OCM 为等腰三角形时,求m 的值;(3)当P 点在运动过程中,在y 轴上是否存在点Q ,使得以O ,P ,Q 为顶点的三角形与以B ,C ,N 为顶点的三角形相似(其中点P 与点C 相对应),若存在,直接写出....点P 和点Q 的坐标;若不存在,请说明理由.【答案】(1)抛物线:22y x x =-++;直线BC :2y x =-+;(2)1m =或m =2m =;(3)P ,1)Q -或(11P --,(0,1)Q 或(13P +--,(0,2)Q -【分析】(1)由题得抛物线的解析式为(1)(2)y a x x =+-,将点(0,2)C 代入求a ,进而得抛物线的解析式;设直线BC 的解析式为y kx t =+,将点B ,C 的坐标代入求k ,t ,进而得直线BC 的解析式.(2)由题得(,2)M m m -+,分别求出OC ,OM ,CM ,对等腰OCM 中相等的边进行分类讨论,进而列方程求解;(3)对点P 在点B 左侧或右侧进行分类讨论,设法表示出各线段的长度,利用相似三角形的相似比求解m ,进而可得P ,Q 的坐标.【详解】(1)解: 抛物线过点(1,0)A -,(2,0)B ,∴抛物线的表达式为(1)(2)y a x x =+-,将点(0,2)C 代入上式,得22a =-,∴1a =-.∴抛物线的表达式为(1)(2)y x x =-+-,即22y x x =-++.设直线BC 的表达式为y kx t =+,将点(2,0)B ,(0,2)C 代入上式,得022k t t =+⎧⎨=⎩,解得12k t =-⎧⎨=⎩.∴直线BC 的表达式为2y x =-+.(2)解: 点M 在直线BC 上,且(,)P m n ,∴点M 的坐标为(,2)m m -+.∴2OC =,2222(0)(22)2CM m m m =-+-+-=,()22222244OM m m m m =+-+=-+.当OCM 为等腰三角形时,①若CM OM =,则22CM OM =,即222244m m m =-+,解得1m =.②若CM OC =,则22CM OC =,即224m =,解得m =m =(舍去).③若OM OC =,则22OM OC =,即22444m m -+=,解得0m =(舍去)或2m =.综上,1m =或m 2m =.(3)解: 点P 与点C 相对应,∴POQ CBN ∽或POQ CNB ∽.①若点P 在点B 左侧,则45CBN ∠=︒,2BN m =-,CB =当POQ CBN ∽,即45POQ ∠=︒时,直线OP 的表达式为y x =,∴22m m m -++=,解得m m =.∴2224OP =+=,即2OP =.∴OP OQBC BN ==解得1OQ =-.∴P ,1)Q .当POQ CNB ∽,即45PQO ∠=︒时,PQ =,22222OQ m m m m m =-+++=-++,∴PQ OQCB NB =2222m m m -++=-,解得1m =1m =-.②若点P 在点B 右侧,则135CBN ∠=︒,2BN m =-.当POQ CBN ∽,即135POQ ∠=︒时,直线OP 的表达式为y x =-,∴22m m m -++=-,解得1m =1m =,∴OP∴OP OQBC BN ==,解得1OQ =.∴(11P --,(0,1)Q.当POQ CNB ∽,即135PQO ∠=︒时,PQ =,22222OQ m m m m m =-+++=--.∴PQ OQCB NB =2222m m m --=-,解得1m =1m =-.∴(13P --,(0,2)Q -.综上,P ,1)Q 或(11P +--,(0,1)Q 或(13P --,(0,2)Q -.【点睛】本题是二次函数的综合应用,考查了待定系数法求函数解析式,等腰三角形的性质与判定,平面直角坐标系中两点距离的算法,相似三角形的性质与判定等,熟练掌握相关知识是解题的关键.考向二抛物线与线段有关问题5.(2023·甘肃武威·统考中考真题)如图1,抛物线2y x bx =-+与x 轴交于点A ,与直线y x =-交于点()4,4B -,点()0,4C -在y 轴上.点P 从点B 出发,沿线段BO 方向匀速运动,运动到点O 时停止.(1)求抛物线2y x bx =-+的表达式;(2)当22BP =时,请在图1中过点P 作PD OA ⊥交抛物线于点D ,连接PC ,OD ,判断四边形OCPD 的形状,并说明理由.(3)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正方向匀速运动,点P 停止运动时点Q 也停止运动.连接BQ ,PC ,求CP BQ +的最小值.【答案】(1)23y x x =-+;(2)四边形OCPD 是平行四边形,理由见解析;(3)3【分析】(1)用待定系数法求二次函数解析式即可;(2)作PD OA ⊥交抛物线于点D ,垂足为H ,连接PC ,OD ,由点P 在y x =-上,可知OH PH =,45POH ∠=︒,连接BC ,得出42OB =则2222222OH PH ===⨯,当2D x =时,4322D DH y ==-+⨯=,进而得出PD OC =,然后证明PD OC ∥,即可得出结论;(3)由题意得,BP OQ =,连接BC .在OA 上方作OMQ ,使得45MOQ ∠=︒,OM BC =,证明()SAS CBP MOQ △≌△,根据CP BQ MQ BQ MB +=+≥得出CP BQ +的最小值为MB ,利用勾股定理求得MB ,即可得解.【详解】(1)解:∵抛物线2y x bx =-+过点()4,4B -,∴1644b -+=-,∴3b =,∴23y x x =-+;(2)四边形OCPD 是平行四边形.理由:如图1,作PD OA ⊥交抛物线于点D ,垂足为H ,连接PC ,OD .∵点P 在y x =-上,∴OH PH =,45POH ∠=︒,连接BC ,∵4OC BC ==,∴OB =∵BP =,∴OP OB BP =-=∴222OH PH ===⨯,当2D x =时,4322D DH y ==-+⨯=,∴224PD DH PH =+=+=,∵()0,4C -,∴4OC =,∴PD OC =,∵OC x ⊥轴,PD x ⊥轴,∴PD OC ∥,∴四边形OCPD 是平行四边形;(3)如图2,由题意得,BP OQ =,连接BC .在OA 上方作OMQ ,使得45MOQ ∠=︒,OM BC =,∵4OC BC ==,BC OC ⊥,∴45CBP ∠=︒,∴CBP MOQ ∠=∠,∵BP OQ =,CBP MOQ ∠=∠,BC OM =,∴()SAS CBP MOQ △≌△,∴CP MQ =,∴CP BQ MQ BQ MB +=+≥(当M ,Q ,B 三点共线时最短),∴CP BQ +的最小值为MB ,∵454590MOB MOQ BOQ ∠=∠+∠=︒+︒=︒,∴MB =即CP BQ +的最小值为【点睛】本题考查了二次函数的综合应用,待定系数法,平行四边形的性质与判定,勾股定理,全等三角形的判定和性质等知识,熟练掌握二次函数的图象和性质是解题的关键.6.(2023·四川乐山·统考中考真题)已知()()1122,,,x y x y 是抛物211:4C y x bx =-+(b 为常数)上的两点,当120x x +=时,总有12y y =(1)求b 的值;(2)将抛物线1C 平移后得到抛物线221:()1(0)4C y x m m =--+>.探究下列问题:①若抛物线1C 与抛物线2C 有一个交点,求m 的取值范围;②设抛物线2C 与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线2C 的顶点为点E ,ABC 外接圆的圆心为点F,如果对抛物线1C 上的任意一点P ,在抛物线2C 上总存在一点Q ,使得点P 、Q 的纵坐标相等.求EF 长的取值范围.【答案】(1)0;(2)①22m ≤≤+②7922EF ≤≤【分析】(1)根据2211122211,44y x bx y x bx =-+=-+,且120x x +=时,总有12y y =,变形后即可得到结论;(2)按照临界情形,画出图象分情况讨论求解即可.【详解】(1)解:由题可知:2211122211,44y x bx y bx =-+=-+120x x += 时,总有12y y =,2211221144x bx x bx ∴-+=-+.则()()()212121104x x x x b x x -+--=,∴()()2121104x x x x b ⎡⎤-+⎢-=⎥⎣⎦,∴()210b x x --=总成立,且210x x -≠,0b ∴=;(2)①注意到抛物线2C 最大值和开口大小不变,m 只影响图象左右平移下面考虑满足题意的两种临界情形:(i )当抛物线2C 过点(0,0)时,如图所示,此时,210,104x y m ==-+=,解得2m =或2-(舍).(ii )当抛物线2C 过点(2,1)-时,如图所示,此时,212,(2)114x y m ==--+=-,解得222m =+222-,综上,2222m ≤≤+②同①考虑满足题意的两种临界情形:(i )当抛物线2C 过点(0,1)-时,如图所示,此时,210,114x y m ==-+=-,解得2m =或22-(舍).(ii )当抛物线2C 过点(2,0)时,如图所示,此时,212,(2)104x y m ==--+=,解得4m =或0(舍).综上24m ≤≤,如图,由圆的性质可知,点E 、F 在线段AB 的垂直平分线上.令21()104y x m =--+=,解得2,2A B x m x m =-=+,22HB m m ∴=+-=,FB FC = ,2222FH HB FG GC ∴+=+,设FH t =,22222214m t t m ⎛⎫∴+=--+ ⎪⎝⎭,22221214044m m t m ⎛⎫⎛⎫∴---+-= ⎪ ⎪⎝⎭⎝⎭,22123044m m t ⎛⎫⎛⎫∴--+= ⎪⎪⎝⎭⎝⎭,22,m ≥ 2104m ∴-≠,22304m t ∴-+=,即2382m t =+,224m ≤≤ .5722t ∴≤≤,即5722FH ≤≤,1EF FH =+ ,7922EF ∴≤≤【点睛】此题考查了二次函数的图象和性质、垂径定理、解一元二次方程等知识,数形结合和分类讨论是解题的关键.考向三抛物线与角度有关问题7.(2023·湖南岳阳·统考中考真题)已知抛物线21:Q y x bx c =-++与x 轴交于()3,0,A B-两点,交y 轴于点()0,3C .(1)请求出抛物线1Q 的表达式.(2)如图1,在y 轴上有一点()0,1D -,点E 在抛物线1Q 上,点F 为坐标平面内一点,是否存在点,E F 使得四边形DAEF 为正方形?若存在,请求出点,E F 的坐标;若不存在,请说明理由.(3)如图2,将抛物线1Q 向右平移2个单位,得到抛物线2Q ,抛物线2Q 的顶点为K ,与x 轴正半轴交于点H ,抛物线1Q 上是否存在点P ,使得CPK CHK ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)223y x x =--+;(2)()2,3E -;()1,2F ;(3)点P 的坐标为(1,0)或(2,3)-【分析】(1)把()()300,3A C -,,代入21:Q y x bx c =-++,求出2,3b c =-=即可;(2)假设存在这样的正方形,过点E 作ER x ⊥于点R ,过点F 作FI y ⊥轴于点I ,证明,EAR AOD FID DOA ≅≅ ,可得3,1,1,2,ER AR FI IO ====故可得()2,3E -,()1,2F ;(3)先求得抛物线2Q 的解析式为22(12)4(1)4y x x =-+-+=--+,得出(1,4)K ,()3,0H ,运用待定系数法可得直线BC 的解析式为3y x =-+,过点K 作KT y ⊥轴于点T ,连接BC ,设KP 交直线BC 于M 或N ,如图2,过点C 作PS y ⊥轴交BK 于点S ,交抛物线1Q 于点P ,连接PK ,利用等腰直角三角形性质和三角函数定义可得1tan3CK CHK CH ∠==,进而可求得点P 的坐标.【详解】(1)∵抛物线21:Q y x bx c =-++与x 轴交于()3,0,A -两点,交y 轴于点()0,3C ,∴把()()300,3A C -,,代入21:Q y x bx c =-++,得,930,3b c c --+=⎧⎨=⎩解得,2,3b c =-⎧⎨=⎩∴解析式为:223y x x =--+;(2)假设存在这样的正方形DAEF ,如图,过点E 作ER x ⊥于点R ,过点F 作FI y ⊥轴于点I ,∴90,AER EAR ∠+∠=︒∵四边形DAEF 是正方形,∴,90,AE AD EAD =∠=︒∴90,EAR DAR ∠+∠=︒∴,AER DAO ∠=∠又90,ERA AOD ∠=∠=︒∴AER DAO ≅ ,∴,,AR DO ER AO ==∵()()3,0,0,1,A D --∴3,1,OA OD ==1,3,AR ER ∴==∴312,OR OA AR =-=-=∴()2,3E -;同理可证明:FID DOA ≅ ,∴1,3,FI DO DI AO ====∴312,IO DI DO =-=-=∴()1,2F ;(3)解:抛物线1Q 上存在点P ,使得CPK CHK ∠=∠.2223(1)4y x x x =--+=-++ ,∴抛物线1Q 的顶点坐标为(1,4)-, 将抛物线1Q 向右平移2个单位,得到抛物线2Q ,∴抛物线2Q 的解析式为22(12)4(1)4y x x =-+-+=--+, 抛物线2Q 的顶点为K ,与x 轴正半轴交于点H ,(1,4)K ∴,()3,0H ,设直线BC 的解析式为y kx n =+,把(0,3)C ,()3,0H 代入得330n k n =⎧⎨+=⎩,解得:13k n =-⎧⎨=⎩,∴直线BC 的解析式为3y x =-+,过点K 作KT y ⊥轴于点T ,连接BC ,设KP 交直线BC 于M 或N ,如图2,过点C 作PS y ⊥轴交BK 于点S ,交抛物线1Q 于点P ,连接PK ,则(0,4)T ,(,3)M m m -+,(,3)N t t -+,1KT TC ∴==,90KTC ∠=︒,CKT ∴△是等腰直角三角形,45KCT ∴∠=︒,CK ==3OH OC == ,90COH ∠=︒,COH ∴△是等腰直角三角形,45HCO ∴∠=︒,CH ==,18090KCH KCT HCO ∴∠=︒-∠-∠=︒,1tan 3CK CHK CH ∴∠==,CPK CHK ∠=∠ ,1tan tan 3CPK CHK ∴∠=∠=,1tan 3OB BCO OC ∠== ,BCO CHK ∴∠=∠,∵BK OC ∥,CBK BCO ∴∠=∠,CBK CHK ∴∠=∠,即点P 与点B 重合时,CPK CHK ∠=∠,1)0(1,P ∴;1SK = ,3PS =,1tan 3SK CPK PS ∴∠==,CPK CHK ∴∠=∠,点P 与点C 关于直线=1x -对称,(2,3)P ∴-;综上所述,抛物线1Q 上存在点P ,使得CPK CHK ∠=∠,点P 的坐标为(1,0)或(2,3)-.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,正方形的性质等知识,运用数形结合思想解决问题是解题的关键.考向四抛物线与四边形有关问题8.(2023·四川达州·统考中考真题)如图,抛物线2y ax bx c =++过点()()()1,0,3,,00,3A B C -.(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出PBC 的最大面积及此时点P 的坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以BC 为边,点B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)223y x x =-++;(2)PBC 的最大面积为278,315,24P ⎛⎫ ⎪⎝⎭;(3)存在,(17或(4,17或()143-,()2,143--,见解析【分析】(1)利用待定系数法代入求解即可;(2)利用待定系数法先确定直线BC 的解析式为3y x =-+,设点()2,23(03)P x x x x -++<<,过点P 作PD x ⊥轴于点D ,交BC 于点E ,得出23PE x x =-+,然后得出三角形面积的函数即可得出结果;(3)分两种情况进行分析:若BC 为菱形的边长,利用菱形的性质求解即可.【详解】(1)解:将点()()()1,0,3,,00,3A B C -代入解析式得:09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为223y x x =-++;(2)设直线BC 的解析式为y kx b =+,将点B 、C 代入得:303k b b +=⎧⎨=⎩,解得:13k b =-⎧⎨=⎩,∴直线BC 的解析式为3y x =-+,∵()3,0B ,∴3OB =,设点()2,23(03)P x x x x -++<<,过点P 作PD x ⊥轴于点D ,交BC 于点E ,如图所示:∴(),3E x x -+,∴()222333PE x x x x x =-++--+=-+,∴()22211393327332222228PBCS PE OB x x x x x ∆⎛⎫=⨯⨯=⨯-+⨯=-+=--+ ⎪⎝⎭,∴当32x =时,PBC 的最大面积为278,2915233344x x -++=-++=,∴315,24P ⎛⎫ ⎪⎝⎭(3)存在,()2,2N 或(或(4,或()3-,()2,3-,证明如下:∵()()3,0,0,3B C ,∵抛物线的解析式为223y x x =-++,∴对称轴为:1x =,设点()()1,,M t N x y ,,若BC 为菱形的边长,菱形BCMN ,则22BC CM =,即()221813t =+-,解得:13t =,23t =,∵31003x t y +=+⎧⎨+=+⎩,∴4,3x y t ==-,∴(1N ,(24,N ;若BC 为菱形的边长,菱形BCNM ,则22BC BM =,即()221831t =-+,解得:1t =2t =,∵30103x y t +=+⎧⎨+=+⎩,∴2,3x y t =-=+,∴()33N -+,()42,3N -;综上可得:(或(4,或()3-,()2,3-.【点睛】题目主要考查二次函数的综合应用,包括待定系数法确定函数解析式,三角形面积问题及特殊四边形问题,全等三角形的判定和性质等,理解题意,综合运用这些知识点是解题关键.9.(2023·山东·统考中考真题)如图,直线4y x =-+交x 轴于点B ,交y 轴于点C ,对称轴为32x =的抛物线经过B C ,两点,交x 轴负半轴于点A .P 为抛物线上一动点,点P 的横坐标为m ,过点P 作x 轴的平行线交抛物线于另一点M ,作x 轴的垂线PN ,垂足为N ,直线MN 交y 轴于点D.(1)求抛物线的解析式;(2)若302m <<,当m 为何值时,四边形CDNP 是平行四边形?(3)若32m <,设直线MN 交直线BC 于点E ,是否存在这样的m 值,使2MN ME =?若存在,求出此时m 的值;若不存在,请说明理由.【答案】(1)234y x x =-++;(2)63m =;(3)存在,12m =【分析】(1)利用待定系数法求函数解析式;(2)结合平行四边形的性质,通过求直线MN 的函数解析式,列方程求解;(3)根据2MN ME =,确定E 点坐标,从而利用一次函数图象上点的特征计算求解.【详解】(1)解:在直线4y x =-+中,当0x =时,4y =,当0y =时,4x =,∴点()4,0B ,点()0,4C ,设抛物线的解析式为232y a x k ⎛⎫=-+ ⎪⎝⎭,把点()4,0B ,点()0,4C 代入可得2234023042a k a k ⎧⎛⎫-+=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得1254a k =-⎧⎪⎨=⎪⎩,∴抛物线的解析式为223253424y x x x ⎛⎫=--+=-++ ⎪⎝⎭;(2)解:由题意,()2,34P m m m -++,∴234PN m m =-++,当四边形CDNP 是平行四边形时,PN CD =,∴223443OD m m m m =-++-=-+,∴()20,3D m m -,(),0N m ,设直线MN 的解析式为213y k x m m =+-,把(),0N m 代入可得2130k m m m +-=,解得13k m =-,∴直线MN 的解析式为()233y m x m m =-+-,又∵过点P 作x 轴的平行线交抛物线于另一点M ,且抛物线对称轴为32x =,∴()23,34M m m m --++∴()2223334m m m m m -+-=-++,解得1m =,2m =(3)解:存在,理由如下:∵2MN ME =,∴点E 为线段MN 的中点,∴点E 的横坐标为3322m m -+=,∵点E 在直线4y x =-+上,∴35,22E ⎛⎫ ⎪⎝⎭,把35,22E ⎛⎫ ⎪⎝⎭代入()233y m x m m =-+-中,可得()2353322m m m -+-=,解得14m =(不合题意,舍去),212m =.【点睛】本题考查一次函数和二次函数的综合应用,掌握待定系数法求函数解析式,利用数形结合思想和方程思想解题是关键.10.(2023·四川南充·统考中考真题)如图1,抛物线23y ax bx =++(0a ≠)与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,点Q 在x 轴上,以B ,C ,P ,Q 为顶点的四边形为平行四边形,求点P 的坐标;(3)如图2,抛物线顶点为D ,对称轴与x 轴交于点E ,过点()1,3K 的直线(直线KD 除外)与抛物线交于G,H 两点,直线DG ,DH 分别交x 轴于点M ,N .试探究EM EN ⋅是否为定值,若是,求出该定值;若不是,说明理由.【答案】(1)223y x x =-++;(2)()2,3或()13-或()13-;(3)定值,理由见详解【分析】(1)将()()1,03,0A B -,两点代入抛物线的解析式即可求解;(2)根据P ,Q 的不确定性,进行分类讨论:①过C 作CP x ∥轴,交抛物线于1P ,过1P 作11PQ BC ∥,交x 轴于1Q ,可得13Py =,由2233x x -++=,可求解;②在x 轴的负半轴上取点2Q ,过2Q 作22Q P BC ∥,交抛物线于2P ,同时使22Q P BC =,连接2CQ 、2BP ,过2P 作2P D x⊥轴,交x 轴于D ,23P y =-,即可求解;③当BC 为平行四边形的对角线时,在①中,只要点Q 在点B 的左边,且满足1BQ BQ =,也满足条件,只是点P 的坐标仍是①中的坐标;(3)可设直线GH 的解析式为()13y k x =-+,()2,23G m m m -++,()2,23H n n n -++,可求2m n k mn k +=-⎧⎨=-⎩,再求直线DG 的解析式为()13y m x m =--++,从而可求311m EM m +=--,同理可求EN ,即可求解.【详解】(1)解: 抛物线2()30y ax bx a =++≠与x 轴交于()()1,03,0A B -,两点,309330a b a b -+=⎧∴⎨++=⎩,解得12a b =-⎧⎨=⎩,故抛物线的解析式为223y x x =-++.(2)解:①如图,过C 作CP x ∥轴,交抛物线于1P ,过1P 作11PQ BC ∥,交x 轴于1Q ,∴四边形11BCPQ 是平行四边形,13P y ∴=,2233x x ∴-++=,解得:12x =,20x =,()12,3P ;②如图,在x 轴的负半轴上取点2Q ,过2Q 作22Q P BC ∥,交抛物线于2P ,同时使22Q P BC =,连接2CQ 、2BP ,过2P 作2P D x ⊥轴,交x 轴于D,∴四边形22BCQ P 是平行四边形,222CBQ P Q B ∴∠=∠,在2CBQ 和22P Q B 中,2222222BQ Q B CBQ P Q B CB P Q =⎧⎪∠=∠⎨⎪=⎩,∴222CBQ P Q B ≌(SAS ),23P D CO ∴==,23P y ∴=-,2233x x ∴-++=-,解得:11x =-21x =+()213P ∴-;如上图,根据对称性:()317,3P -,③当BC 为平行四边形的对角线时,由①知,点Q 在点B 的左边,且12BQ BQ ==时,也满足条件,此时点P 的坐标仍为()2,3;综上所述:P 的坐标为()2,3或()17,3-或()17,3-.(3)解:是定值,理由:如图, 直线GH 经过()1,3K ,∴可设直线GH 的解析式为()13y k x =-+,G 、H 在抛物线上,∴可设()2,23G m m m -++,()2,23H n n n -++,()21323k x x x ∴-+=-++,整理得:()220x k x k +--=,∴1x m =,2x n =,2m n k mn k+=-⎧∴⎨=-⎩,当1x =时,212134y =-+⨯+=,()14D ∴,,设直线DG 的解析式为11y k x b =+,则有21111234mk b m m k b ⎧+=-++⎨+=⎩,解得()1113k m b m ⎧=--⎨=+⎩,∴直线DG 的解析式为()13y m x m =--++,当0y =时,()130m x m --++=,解得:31m x m +=-,3,01m M m +⎛⎫∴ ⎪-⎝⎭,311m EM m +∴=--41m =--,同理可求:41EN n =-,4411EM EN m n ∴⋅=-⋅--()161mn m n =--++()1621k k =----+()1621k k =----+16=;当G 与H 对调位置后,同理可求16EM EN ⋅=;故EM EN ⋅的定值为16.【点睛】本题考查了二次函数与一次函数的综合问题,待定系数法求函数解析式,求函数图象与坐标轴交点坐标,动点产生的平行四边形判定,一元二次方程根与系数的关系,理解一次函数与二次函数图象的交点,与对应一元二次方程根的关系,掌握具体的解法,并会根据题意设合适的辅助未知数是解题的关键.考向五抛物线与圆有关问题11.(2023·江苏苏州·统考中考真题)如图,二次函数268y x x =-+的图像与x 轴分别交于点,A B (点A 在点B 的左侧),直线l 是对称轴.点P 在函数图像上,其横坐标大于4,连接,PA PB ,过点P 作PM l ⊥,垂足为M ,以点M 为圆心,作半径为r 的圆,PT 与M 相切,切点为T .(1)求点,A B 的坐标;(2)若以M 的切线长PT 为边长的正方形的面积与PAB 的面积相等,且M 不经过点()3,2,求PM 长的取值范围.【答案】(1)()()2,0,4,0A B ;(2)1PM <<2PM <<或2PM >【分析】(1)令0y =求得点,A B 的横坐标即可解答;(2)由题意可得抛物线的对称轴为3x =,设()2,68P m m m -+,则()23,68M m m -+;如图连接MT ,则MT PT ⊥,进而可得切线长PT 为边长的正方形的面积为()223m r --;过点P 作PH x ⊥轴,垂足为H ,可得21682PAB S AB PH m m =⋅=-+ ;由题意可得()222368m r m m --=-+,解得1r =;然后再分当点M 在点N 的上方和下方两种情况解答即可.【详解】(1)解:令0y =,则有:2680x x -+=,解得:2x =或4x =,∴()()2,0,4,0A B .(2)解:∵抛物线过()()2,0,4,0A B ∴抛物线的对称轴为3x =,设()2,68P m m m -+,∵PM l ⊥,∴()23,68M m m -+,如图:连接MT ,则MT PT ⊥,∴()222223PT PM MT m r =-=--,∴切线PT 为边长的正方形的面积为()223m r --,过点P 作PH x ⊥轴,垂足为H ,则:21682PAB S AB PH m m =⋅=-+ ,∴()222368m r m m --=-+∵0r >,∴1r =,假设M 过点()3,2N ,则有以下两种情况:①如图1:当点M 在点N 的上方,即()3,3M ∴2683m m -+=,解得:5m =或1m =,∵4m >∴5m =;②如图2:当点M 在点N 的上方,即()3,1M ∴2681m m -+=,解得:32m =∵4m >∴32m =综上,32PM m =-=2∴当M 不经过点()3,2时,1PM <<2PM <<或2PM >.【点睛】本题主要考查了二次函数的性质、切线的性质、勾股定理等知识点,掌握分类讨论思想是解答本题的关键.12.(2023·山东烟台·统考中考真题)如图,抛物线25y ax bx =++与x 轴交于,A B 两点,与y 轴交于点,4C AB =.抛物线的对称轴3x =与经过点A 的直线1y kx =-交于点D ,与x 轴交于点E .(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得ADM △是以AD 为直角边的直角三角形?若存在,求出所有点M 的坐标;若不存在,请说明理由;(3)以点B 为圆心,画半径为2的圆,点P 为B 上一个动点,请求出12+PC PA 的最小值.【答案】(1)直线AD 的解析式为1y x =-;抛物线解析式为265y x x =-+;(2)存在,点M的坐标为()4,3-或()0,5或()5,0【分析】(1)根据对称轴3x =,4AB =,得到点A 及B 的坐标,再利用待定系数法求解析式即可;(2)先求出点D 的坐标,再分两种情况:①当90DAM ∠=︒时,求出直线AM 的解析式为1y x =-+,解方程组2165y x y x x =-+⎧⎨=-+⎩,即可得到点M 的坐标;②当90ADM ∠=︒时,求出直线DM 的解析式为5y x =-+,解方程组2565y x y x x =-+⎧⎨=-+⎩,即可得到点M 的坐标;(3)在AB 上取点F ,使1BF =,连接CF ,证得BF PB PB AB=,又PBF ABP ∠=∠,得到PBF ABP ∽,推出12PF PA =,进而得到当点C 、P 、F 三点共线时,12+PC PA 的值最小,即为线段CF 的长,利用勾股定理求出CF 即可.【详解】(1)解:∵抛物线的对称轴3x =,4AB =,∴()()1,0,5,0A B ,将()1,0A 代入直线1y kx =-,得10k -=,解得1k =,∴直线AD 的解析式为1y x =-;将()()1,0,5,0A B 代入25y ax bx =++,得5025550a b a b ++=⎧⎨++=⎩,解得16a b =⎧⎨=-⎩,∴抛物线的解析式为265y x x =-+;(2)存在点M ,∵直线AD 的解析式为1y x =-,抛物线对称轴3x =与x 轴交于点E .∴当3x =时,12y x =-=,∴()3,2D ,①当90DAM ∠=︒时,设直线AM 的解析式为y x c =-+,将点A 坐标代入,得10c -+=,解得1c =,∴直线AM 的解析式为1y x =-+,解方程组2165y x y x x =-+⎧⎨=-+⎩,得10x y =⎧⎨=⎩或43x y =⎧⎨=-⎩,∴点M 的坐标为()4,3-;②当90ADM ∠=︒时,设直线DM 的解析式为y x d =-+,将()3,2D 代入,得32d -+=,解得5d =,∴直线DM 的解析式为5y x =-+,解方程组2565y x y x x =-+⎧⎨=-+⎩,解得05x y =⎧⎨=⎩或50x y =⎧⎨=⎩,∴点M 的坐标为()0,5或()5,0综上,点M 的坐标为()4,3-或()0,5或()5,0;(3)如图,在AB 上取点F ,使1BF =,连接CF ,∵2PB =,∴12BF PB =,∵2142PB AB ==,、∴BF PB PB AB=,又∵PBF ABP ∠=∠,∴PBF ABP ∽,∴12PF BF PA PB ==,即12PF PA =,∴12PC PA PC PF CF +=+≥,∴当点C 、P 、F 三点共线时,12+PC PA 的值最小,即为线段CF 的长,∵5,1514OC OF OB ==-=-=,∴CF =∴12+PC PA【点睛】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.考向六抛物线与面积有关问题13.(2023·湖南常德·统考中考真题)如图,二次函数的图象与x 轴交于()1,0A -,()5,0B 两点,与y 轴交于点C ,顶点为D .O 为坐标原点,1tan 5ACO ∠=.(1)求二次函数的表达式;(2)求四边形ACDB 的面积;(3)P 是抛物线上的一点,且在第一象限内,若ACO PBC ∠=∠,求P 点的坐标.【答案】(1)()()15y x x =-+-;(2)30;(3)127,24P ⎛⎫ ⎪⎝⎭【分析】(1)用两点式设出二次函数的解析式,然后求得C 点的坐标,并将其代入二次函数的解析式,求得a 的值,再将a 代入解析式中即可.(2)先将二次函数变形为顶点式,求得顶点坐标,然后利用矩形、三角形的面积公式即可求得答案.(3)根据各点的坐标的关系及同角三角函数相等的结论可以求得相关联的函数解析式,最后联立一次函数与二次函数的解析式,求得点P 的坐标.【详解】(1)∵二次函数的图象与x 轴交于()()1,0,5,0A B -两点.∴设二次函数的表达式为()()15y a x x =+-∵11,tan 5AO ACO =∠=,∴5OC =,即C 的坐标为()0,5则()()50105a =+-,得1a =-∴二次函数的表达式为()()15y x x =-+-;(2)()()215(2)9y x x x =-+-=--+∴顶点的坐标为()2,9过D 作DN AB ⊥于N ,作DM OC ⊥于M ,四边形ACDB 的面积AOC CDM DNBOMDN S S S S =+-+△△△矩形()()111152929552930222=⨯⨯+⨯-⨯-+⨯-⨯=;。
抛物线专题考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换1.已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为【[解析]过点P 作准线的垂线l 交准线于点R ,由抛物线的定义知,PR PQ PF PQ +=+,当P 点为抛物线与垂线l 的交点时,PR PQ +取得最小值,最小值为点Q 到准线的距离 ,因准线方程为x=-1,故最小值为32. 已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时, M 点坐标是 ( )A. )0,0(B. )62,3(C. )4,2(D. )62,3(-[解析] 设M 到准线的距离为MK ,则MK MA MF MA +=+|||,当MK MA +最小时,M 点坐标是)4,2(,选C考点2 抛物线的标准方程题型:求抛物线的标准方程3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点(-3,2) (2)焦点在直线上【解题思路】以方程的观点看待问题,并注意开口方向的讨论.[解析] (1)设所求的抛物线的方程为22y px =-或22(0)x py p =>, ∵过点(-3,2) ∴229)3(24⋅=--=p p 或 ∴2934p p ==或 ∴抛物线方程为243y x =-或292x y =,前者的准线方程是1,3x =后者的准线方程为98y =- (2)令0x =得2y =-,令0y =得4x =,∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,42p =, ∴8p =,此时抛物线方程216y x =;焦点为(0,-2)时22p = ∴4p =,此时抛物线方程28x y =-.∴所求抛物线方程为216y x =或28x y =-,对应的准线方程分别是4,2x y =-=.4.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号)[解析] 用排除法,由抛物线方程y 2=10x 可排除①③④,从而②⑤满足条件.5. 若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与Y 轴的交点,A 为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程[解析] 设点'A 是点A 在准线上的射影,则3|'|=AA ,由勾股定理知22|'|=MA ,点A 的横坐标为)23,22(p -,代入方程py x 22=得2=p 或4,抛物线的方程y x 42=或y x 82= 考点3 抛物线的几何性质题型:有关焦半径和焦点弦的计算与论证6.设A 、B 为抛物线px y22=上的点,且 90=∠AOB (O 为原点),则直线AB 必过的定点坐标为__________.【解题思路】由特殊入手,先探求定点位置 [解析]设直线OA 方程为kx y =,由⎩⎨⎧==px y kx y 22解出A 点坐标为)2,2(2k p k p ⎪⎩⎪⎨⎧=-=px y x k y 212解出B 点坐标为)2,2(2pk pk -,直线AB 方程为221)2(2k pk x k pk y ---=+,令0=y 得p x 2=,直线AB 必过的定点)0,2(p【指引】(1)由于是填空题,可取两特殊直线AB, 求交点即可;(2)B 点坐标可由A 点坐标用k1-换k 而得。
抛物线与几何图形的综合题型专题复习讲义(含答案)本文是一份关于抛物线与几何图形综合题型的复讲义,旨在帮助读者突破面积及点的存在性问题。
以下将对三种类型的题目进行讲解。
类型一:二次函数与三角形的综合题目1:已知抛物线$y=x^2+bx+c$经过点$(1,-4)$和$(-2,5)$,求解析式并判断是否存在点$D$,使得$\triangleABC$与$\triangle ABD$全等。
解析:根据已知条件,可列出方程组:begin{cases}b+c=-3\\4+b+c=1+4b+c\\4+4b+c=5\end{cases}$$解得$b=-2,c=-1$,因此抛物线的解析式为$y=x^2-2x-1$。
又因为抛物线的对称轴为$x=-\frac{b}{2}=1$,所以$x$轴交点为$(-1,0)$和$(3,0)$,$y$轴交点为$(0,-1)$。
由于$\triangleABC$与$\triangle ABD$全等,所以$BD=AC$,即$x$轴上的交点到对称轴的距离相等,因此存在点$D$,坐标为$(4,-7)$。
类型二:二次函数与平行四边形的综合题目3:已知抛物线$y=ax^2+2ax+c(a>0)$与$y$轴交于点$C$,与$x$轴交于$A,B$两点,$A$点在$B$点左侧。
若点$E$在$x$轴上,点$P$在抛物线上,且以$A,C,E,P$为顶点的四边形是平行四边形,则符合条件的点$P$有()。
解析:根据已知条件,可列出方程组:begin{cases}c=a\\a+2a+c=0\\ae=2a+2ae+c\\ap=ae+2a+2c\end {cases}$$解得$a=-1,c=-1$,因此抛物线的解析式为$y=-x^2-2x-1$。
又因为$A,B$的坐标分别为$(-1,0)$和$(0,-1)$,所以$E$的坐标为$(1,0)$,$C$的坐标为$(0,-1)$。
将$P$的坐标设为$(x,-x^2-2x-1)$,代入四边形是平行四边形的条件可得:x^2+2x+1=0$$解得$x=-1$,因此符合条件的点$P$只有一个,坐标为$(-1,1)$。
抛物线与几何图形的综合题型专题复习讲义(含答案)——代数、几何结合,突破面积及点的存在性问题类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y =12x 2+x -32与x 轴相交于A ,B 两点,顶点为P . (1)求点A ,B 的坐标;(2)在抛物线上是否存在点E ,使△ABP 的面积等于△ABE 的面积?若存在,求出符合条件的点E 的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F ,使得以A ,B ,P ,F 为顶点的四边形为平行四边形?直接写出所有符合条件的点F 的坐标.类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. 如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4).(1)求抛物线的解析式及顶点坐标;(2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF 是否为菱形.8.正方形OABC的边长为4,对角线相交于点P,抛物线l经过O,P,A 三点,点E是正方形内的抛物线l上的动点.(1)建立适当的平面直角坐标系,①直接写出O,P,A三点的坐标;②求抛物线l的解析式;(2)求△OAE与△OCE面积之和的最大值.参考答案:。
难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一抛物线与三角形的综合一、求最值1.(龙东中考)如图,抛物线y=x2-bx+c交x轴于点A(1,0),交y轴于点B,对称轴是直线x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△P AB 的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.二、求直角(或等腰或相似)三角形的存在性问题2.(凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.【易错6】3.★(南宁中考)如图,已知抛物线经过原点O,顶点为A(1,1),与直线y=x-2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.三、与面积相关的问题4.(2016·台湾中考)如图,坐标平面上,二次函数y=-x2+4x-k的图象与x轴交于A,B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1∶4,则k的值为()A.1 B.12C.43 D.455.(日照中考)如图,抛物线y=-35[(x-2)2+n]与x轴交于点A(m -2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连接BC.(1)求m,n的值;(2)点N为抛物线上的一动点,且位于直线BC上方,连接CN,BN.求△NBC面积的最大值.◆类型二抛物线与特殊四边形的综合6.(盐田区二模)抛物线y=-x2+6x-9的顶点为A,与y轴的交点为B,如果在抛物线上取点C,在x轴上取点D,使得四边形ABCD 为平行四边形,那么点D的坐标是()A.(-6,0) B.(6,0)C.(-9,0) D.(9,0)7.如图,在平面直角坐标系中,沿着两条坐标轴摆着三个相同的矩形,其长、宽分别为4,2,则过A,B,C三点的拋物线的函数关系式是________________.第7题图第8题图8.(余干县三模)如图,四边形OABC是边长为1的正方形,OC 与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为________.9.(2016·百色中考)正方形OABC的边长为4,对角线相交于点P,抛物线l经过O,P,A三点,点E是正方形内的抛物线l上的动点.(1)建立适当的平面直角坐标系,①直接写出O,P,A三点坐标;②求抛物线l的解析式;(2)求△OAE与△OCE面积之和的最大值.参考答案:1.解:(1)由题意得⎩⎨⎧1-b +c =0,b 2=2,解得⎩⎪⎨⎪⎧b =4,c =3.∴抛物线的解析式为y =x 2-4x +3;(2)存在.∵点A 与点C 关于直线x =2对称,∴连接BC 与直线x =2交于点P ,则点P 即为所求.根据抛物线的对称性可知点C 的坐标为(3,0).∵y =x 2-4x +3,∴点B 的坐标为(0,3).设直线BC的解析式为y =mx +n ,则⎩⎪⎨⎪⎧3m +n =0,n =3,解得⎩⎪⎨⎪⎧m =-1,n =3.∴直线BC 的解析式为y =-x +3,∴直线BC 与直线x =2的交点坐标为(2,1),即点P 的坐标为(2,1).2.解:(1)将A (-1,0),B (3,0),C (0,-3)代入抛物线y =ax 2+bx+c中,得⎩⎪⎨⎪⎧a-b+c=0,9a+3b+c=0,c=-3,解得⎩⎪⎨⎪⎧a=1,b=-2,c=-3.∴抛物线的函数关系式为y=x2-2x-3;(2)当点P在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x=-b2a=1,故点P的坐标为(1,0);(3)点M的坐标为(1,-1),(1,6),(1,-6),(1,0).解析:抛物线的对称轴为直线x=-b2a=1.设点M的坐标为(1,m).已知A(-1,0),C(0,-3),则MA2=m2+4,MC2=(m+3)2+1=m2+6m+10,AC2=12+32=10.①若MA=MC,则MA2=MC2,得m2+4=m2+6m+10,解得m =-1;②若MA=AC,则MA2=AC2,得m2+4=10,解得m=±6;③若MC=AC,则MC2=AC2,得m2+6m+10=10,解得m1=0,m2=-6,当m=-6时,M,A,C三点共线,构不成三角形,不合题意,故舍去.综上所述,符合条件的点M的坐标为(1,-1), (1,6),(1,-6),(1,0).3.(1)解:∵顶点坐标为(1,1),∴设抛物线的解析式为y=a(x -1)2+1.又∵抛物线过原点,∴0=a(0-1)2+1,解得a=-1,∴抛物线的解析式为y=-(x-1)2+1,即y=-x2+2x.联立抛物线和直线解析式可得⎩⎪⎨⎪⎧y =-x 2+2x ,y =x -2,解得⎩⎪⎨⎪⎧x =2,y =0或⎩⎪⎨⎪⎧x =-1,y =-3,∴点B 的坐标为(2,0),点C 的坐标为(-1,-3);(2)证明:分别过A ,C 两点作x 轴的垂线,交x 轴于点D ,E 两点,则AD =OD =BD =1,BE =OB +OE =2+1=3,CE =3,∴BE =CE ,∴∠ABO =∠CBO =45°,∴∠ABC =∠ABO +∠CBO =90°,∴△ABC 是直角三角形;(3)解:假设存在满足条件的点N ,设点N 的坐标为(x ,0),则点M 的坐标为(x ,-x 2+2x ),∴ON =|x |,MN =|-x 2+2x |.由(2)在Rt △ABD 和Rt △CEB 中,可分别求得AB =2,BC =3 2.∵MN ⊥x 轴,∴∠MNO =∠ABC =90°,∴当△ABC 和△MNO 相似时,有MN AB =ON BC 或MNBC =ON AB .①当MN AB =ON BC 时,则有|-x 2+2x |2=|x |32,即|x ||-x +2|=13|x |.∵当x =0时,M ,O ,N 不能构成三角形,∴x ≠0,∴|-x +2|=13,即-x+2=±13,解得x =53或x =73,此时点N 的坐标为⎝ ⎛⎭⎪⎫53,0或(73,0);②当MN BC =ONAB 时,则有|-x 2+2x |32=|x |2,即|x ||-x +2|=3|x |,∴|-x +2|=3,即-x +2=±3,解得x =5或x =-1,此时点N 的坐标为(-1,0)或(5,0).综上所述,存在满足条件的N 点,其坐标为⎝ ⎛⎭⎪⎫53,0或⎝ ⎛⎭⎪⎫73,0或(-1,0)或(5,0).4.D 解析:∵y =-x 2+4x -k =-(x -2)2+4-k ,∴顶点D 的坐标为(2,4-k ),点C 的坐标为(0,-k ),∴OC =k .∵△ABC 的面积为12AB ·OC =12AB ·k ,△ABD 的面积为12AB ·(4-k ),△ABC 与△ABD 的面积比为1∶4,∴k =14(4-k ),解得k =45.故选D.5.解:(1)∵抛物线的解析式为y =-35[(x -2)2+n ]=-35(x -2)2-35n ,∴抛物线的对称轴为直线x =2.∵点A 和点B 关于直线x =2对称,∴(m -2)+(2m +3)2=2,解得m =1,∴点A 的坐标为(-1,0),点B 的坐标为(5,0).把A (-1,0)代入y =-35[(x -2)2+n ]得9+n =0,解得n =-9;(2)过点N 作ND ∥y 轴交BC 于D .由(1)可得抛物线的解析式为y =-35[(x -2)2-9]=-35x 2+125x +3,当x =0时,y =3,则点C 的坐标为(0,3).设直线BC 的解析式为y =kx +b ,把B (5,0),C (0,3)代入得⎩⎪⎨⎪⎧5k +b =0,b =3,解得⎩⎨⎧k =-35,b =3,∴直线BC 的解析式为y =-35x +3.设点N 的坐标为⎝ ⎛⎭⎪⎫x ,-35x 2+125x +3,则点D 的坐标为⎝ ⎛⎭⎪⎫x ,-35x +3,∴ND =-35x 2+125x +3-⎝ ⎛⎭⎪⎫-35x +3=-35x 2+3x ,∴S △NBC =S △NDC +S △NDB =12·5·ND =52⎝ ⎛⎭⎪⎫-35x 2+3x =-32x 2+152x =-32⎝ ⎛⎭⎪⎫x -522+758,当x =52时,△NBC 面积最大,最大值为758.6.D 解析:令x =0,得y =-9,∴点B 的坐标为(0,-9).∵y =-x 2+6x -9=-(x -3)2,∴点A 的坐标为(3,0),对称轴为直线x =3.∵点C 在抛物线上,且四边形ABCD 是平行四边形,∴点C 的坐标为(6,-9),∴BC =6,∴AD =6,∴点D 的坐标为(9,0).故选D.7.y =-512x 2-12x +203 解析:依题意得A 点的坐标为(-4,2),B 点的坐标为(-2,6),C 点的坐标为(2,4).设抛物线的函数关系式为y =ax 2+bx +c ,则⎩⎪⎨⎪⎧16a -4b +c =2,4a -2b +c =6,4a +2b +c =4,解得⎩⎪⎨⎪⎧a =-512,b =-12,c =203.∴抛物线的函数关系式为y =-512x 2-12x +203.8.-23 解析:连接OB .∵四边形OABC 是边长为1的正方形,∴∠BOC =45°,OB =1×2= 2.过点B 作BD ⊥x 轴于点D .∵OC 与x 轴正半轴的夹角为15°,∴∠BOD =45°-15°=30°,∴BD =12OB =22,∴OD =OB 2-BD 2=(2)2-⎝ ⎛⎭⎪⎫222=62,∴点B 的坐标为⎝ ⎛⎭⎪⎫62,-22.∵点B 在抛物线y =ax 2(a <0)的图象上,∴a ⎝ ⎛⎭⎪⎫622=-22,解得a=-23.9.解:(1)以O点为原点,线段OA所在的直线为x轴,线段OC 所在的直线为y轴建立直角坐标系,如图所示.①∵正方形OABC的边长为4,对角线相交于点P,∴点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2);②设抛物线l的解析式为y=ax2+bx+c.由抛物线l经过O,P,A三点,得⎩⎪⎨⎪⎧0=c,0=16a+4b+c,2=4a+2b+c,解得⎩⎨⎧a=-12,b=2,c=0.∴抛物线l的解析式为y=-12x2+2x;(2)∵点E是正方形内的抛物线l上的动点,∴设点E的坐标为⎝⎛⎭⎪⎫m,-12m2+2m(0<m<4),∴S△OAE+S△OCE=12OA·y E+12OC·x E=12×4×⎝⎛⎭⎪⎫-12m2+2m+12×4m=-m2+4m+2m=-(m-3)2+9,∴当m =3时,△OAE与△OCE面积之和最大,最大值为9.。
专题提优3 抛物线与几何变换———专题讲解———一、抛物线的平移 (1)具体步骤:先利用配方法将二次函数化成y =a (x -h )2+k 的形式,确定其顶点(h ,k ),然后作出二次函数y =ax 2的图象,将抛物线y =ax 2平移,使其顶点平移到(h ,k ).具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减”. 二、抛物线的对称二次函数图象的对称一般有五种情况: ①关于x 轴对称:y =ax 2+bx +c 关于x 轴对称后,得到的解析式是y =-ax 2-bx -c ;y =a (x -h )2+k 关于x 轴对称后,得到的解析式是y =-a (x -h )2-k . ②关于y 轴对称:y =ax 2+bx +c 关于y 轴对称后,得到的解析式是y =ax 2-bx +c ;y =a (x -h )2+k 关于y 轴对称后,得到的解析式是y =a (x +h )2+k . ③关于原点对称:y =ax 2+bx +c 关于原点对称后,得到的解析式是y =-ax 2+bx -c ;y =a (x -h )2+k 关于原点对称后,得到的解析式是y =-a (x +h )2-k . ④关于顶点对称:y =ax 2+bx +c 关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;y =a (x -h )2+k 关于顶点对称后,得到的解析式是()2y a x h k =--+. ⑤关于点(m ,n )对称:()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.———典型例题———【例1】(2014•陕西)已知抛物线C :cbx x y ++-=2经过A (-3,0)和B (0,3)两点.将这条抛物线的顶点记为M ,它的对称轴于x 轴的交点记为N . (1)求抛物线C 的表达式; (2)求点M 的坐标;(3将抛物线C 平移到C′,抛物线C′的顶点记为M′,它的对称轴于x 轴的交点记为N′.如果以点M 、N 、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C 怎样平移为什么【提示】根据平行四边形的定义,可知有四种情形符合条件,需要分类讨论.【感悟】1、二次项系数的不变性.抛物线平移中,二次函数中二次项系数是不变的;2、以点带线.顶点的平移方向和平移距离就是抛物线平移的方向和距离,反之,亦然;3、顶点式的应用,是解答抛物线平移的常用公式.既做到由顶点坐标求解析式,又做到能由解析式求出顶点坐标.【例2】(2013•河北省)如图,一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m = .【提示】根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m 的值.【方法总结】旋转前后的图形大小与形状都没发生变化.———小试身手———1.(☆☆ 2014•浙江宁波)已知点A (a -2b ,2-4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点坐标为( )A .(-3,7)B .(-1,7)C .(-4,10)D .(0,10)2.(☆☆ 2012•陕西省)在平面直角坐标系中,将抛物线y =x 2-x -6向上(下)或向左(右)平移m 个单位,使平移后的抛物线恰好经过原点,则|m |的最小值为( ) A .1 B .2 C .3 D .63.(☆☆☆2014•山东临沂)在平面直角坐标系中,函数22(y x x x =-≥0)的图象为1C ,1C 关于原点对称的图象为2C ,则直线y a =(a 为常数)与1C ,2C 的交点共有( )A .1个B .1个或2个C .1个或2个或3个D .1个或2个或3个或4个 4.(☆☆☆)如图,抛物线m :y =ax 2+b (a <0,b >0)与x 轴于点A 、B (点A 在点B 的左侧),与y 轴交于点C .将抛物线m 绕点B 旋转180°,得到新的抛物线n ,它的顶点为C 1,与x 轴的另一个交点为A 1.若四边形AC 1A 1C 为矩形,则a ,b 应满足的关系式为( )A .ab =-2B .ab =-3C .ab =-4D .ab =-5(第4题图) (第5题图)5.(☆☆☆☆2014•西湖区一模)如图,将二次函数y =x 2-m (其中m >0)的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,形成新的图象记为y 1,另有一次函数y =x +b 的图象记为y 2,则以下说法:(1)当m =1,且y 1与y 2恰好有三个交点时,b 有唯一值为1;(2)当b =2,且y 1与y 2恰有两个交点时,m >4或0<m <47;(3)当m =b 时,y 1与y 2至少有2个交点,且其中一个为(0,m );(4)当m =-b 时,y 1与y 2一定有交点.其中正确说法的序号为 .6.(☆☆ 2013•河南省)如图,抛物线的顶点为P (-2,2),与y 轴交于点A (0,3).若平移该抛物线使其顶点P 沿直线移动到点P′(2,-2),点A 的对应点为A′,则抛物线上PA 段扫过的区域(阴影部分)的面积为 .7.(☆☆2010•关系桂林)将抛物线y =2x 2-12x +16绕它的顶点旋转180°,所得抛物线的解析式是 .8.(☆☆☆☆2014•湖南衡阳模拟)已知二次函数y =2x 2+bx +1(b 为常数),当b 取不同的值时,对应得到一系列二次函数的图象,它们的顶点都在一条抛物线上,则这条抛物线的解析式是 ;若二次函数y =2x 2+bx +1的顶点只在x 轴上方移动,那么b 的取值范围是 .9.(☆☆☆2014•贵州贵阳)如图,经过点A (0,-6)的抛物线y =12x 2+bx +c 与x 轴相交于B (-2,0),C 两点. (1)求此抛物线的函数关系式和顶点D 的坐标; (2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m (m >0)个单位长度得到新抛物线y 1,若新抛物线y 1的顶点P 在△ABC 内,求m 的取值范围;(3)在(2)的结论下,新抛物线y 1上是否存在点Q ,使得△QAB 是以AB 为底边的等腰三角形请分析所有可能出现的情况,并直接写出相对应的m 的取值范围.10.(☆☆☆2014•江西抚州)如图,抛物线y =ax 2+2ax (a<0)位于x轴上方的图象记为F1,它与x轴交于P1、O两点,图象F2与F1关于原点O对称,F2与x轴的另一个交点为P2,将F1与F2同时沿x轴向右平移P1P2的长度即可得到F3与F4;再将F3与F4同时沿x轴向右平移P1P2的长度即可得到F5与F6;…;按这样的方式一直平移下去即可得到一系列图象F1,F2,…,F n.我们把这组图象称为“波浪抛物线”.(1)当a=-1时,①求图象F1的顶点坐标;②点H(2014,-3)(填“在”或“不在”)该“波浪抛物线”上;若图象F n的顶点T n的横坐标为201,则图象F n对应的解析式为,其自变量x的取值范围为.(2)设图象F n、F n+1的顶点分别为T n、T n+1(m为正整数),x轴上一点Q的坐标为(12,0).试探究:当a为何值时,以O、T n、T n+1、Q四点为顶点的四边形为矩形并直接写出此时m的值.11.(☆☆☆2014•江苏镇江)如图,在平面直角坐标系xOy中,点M为抛物线y=-x2+2nx-n2+2n的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4.(1)求抛物线的函数关系式,并写出点P的坐标;(2)小丽发现:将抛物线y=-x2+2nx-n2+2n绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O,你认为正确吗请说明理由;12.(☆☆☆☆2014•湖南怀化)如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y.(1)求y与x之间的函数关系式;(2)当x=3秒时,射线OC平行移动到O′C′,与OA相交于G,如图2,求经过G,O,B三点的抛物线的解析式;(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况若存在,求出点P的坐标,若不存在,请说明理由.13.(☆☆☆☆☆2014•辽宁盘锦)如图,抛物线y=ax2+bx+c经过原点,与x轴相交于点E(8,0 ),抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m,0)是线段OE上一动点,连结PA,将线段PA绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD.(1)求抛物线的解析式;(2)求点C的坐标(用含m的代数式表示);(3)当以点A、B、C、D为顶点的四边形是平行四边形时,求点P的坐标.———参考答案———例1.【解析】(1)∵抛物线y=-x2+bx+c经过A(-3,0)和B(0,3)两点,∴930,3,b cc--+=⎧⎨=⎩解得2,3.bc=-⎧⎨=⎩故此抛物线的解析式为y=-x2-2x+3;(2)∵由(1)知抛物线的解析式为y=-x2-2x+3,∴当x=-22(1)-⨯-=-1时,y=4,∴M(-1,4).(3)由题意,以点M、N、M′、N′为顶点的平行四边形的边MN的对边只能是M′N′,∴MN∥M′N′且MN=M′N′,∴MN•NN′=16,∴NN′=4.i)当M、N、M′、N′为顶点的平行四边形是▱MNN′M′时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C′;ii)当M、N、M′、N′为顶点的平行四边形是▱MNM′N′时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C′.∴上述的四种平移,均可得到符合条件的抛物线C′.例2.【答案】2【解析】∵一段抛物线:y=-x(x-3)(0≤x≤3),∴图象与x轴交点坐标为:(0,0),(3,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.∴C13的解析式与x轴的交点坐标为(36,0),(39,0),且图象在x轴上方,∴C13的解析式为y13=-(x-36)(x-39),当x=37时,y=-(37-36)×(37-39)=2.1.【答案】D【解析】∵点A(a-2b,2-4ab)在抛物线y=x2+4x+10上,∴(a-2b)2+4×(a-2b)+10=2-4ab,a2-4ab+4b2+4a-8b+10=2-4ab,(a+2)2+4(b-1)2=0,∴a+2=0,b-1=0,解得a=-2,b=1,∴a-2b=-2-2×1=-4,2-4ab=2-4×(-2)×1=10,∴点A的坐标为(-4,10).∵对称轴为直线x=-421⨯=-2,∴点A关于对称轴的对称点的坐标为(0,10).2.【答案】B【解析】当x=0时,y=-6,故函数图象与y轴交于点C(0,-6),当y=0时,x2-x-6=0,即(x+2)(x-3)=0,解得x=-2或x=3,即A(-2,0),B(3,0);由图可知,函数图象至少向右平移2个单位恰好过原点,故|m|的最小值为2.3.【答案】【解析】C 函数y =x 2-2x (x ≥0)的图象为C 1关于原点对称的图象为C 2的解析式是y =-x 2-2x (x ≤0),观察图象:当a >1或a <-1时,直线y =a 与图象C 1、C 2只有1个交点;当a =1或a =-1时,直线y =a 与图象C 1、C 2有2个交点;当-1<a <1时,直线y =a 与图象C 1、C 2有3个交点. 4.【答案】B【解析】令x =0,得y =b .∴C (0,b ).令y =0,得ax 2+b =0,∴x =±ab-,∴A (-ab -,0),B (ab -,0),∴AB =2ab -,BC =22OB OC +=ab b -2.要使平行四边形AC 1A 1C 是矩形,必须满足AB =BC ,∴2ab -=a b b -2.∴4×(a b -)=b 2-ab,∴ab =-3.∴a ,b 应满足关系式ab =-3. 5.【答案】②③【解析】①当m =1,且y 1与y 2恰好有三个交点时,b 有唯一值为1,b =45,故①错误;②当b =2,且y 1与y 2恰有两个交点时,m >4或0<m <47,故②正确;③当m =b 时,y 1与y 2至少有2个交点,且其中一个为(0,m )故③正确;④当m =-b 时,y 1与y 2没有交点,故④错误. 6.【答案】12【解析】连接AP ,A′P′,过点A 作AD ⊥PP′于点D ,由题意可得出:AP ∥A′P′,AP =A′P′,∴四边形APP′A′是平行四边形.∵抛物线的顶点为P (-2,2),与y 轴交于点A (0,3),平移该抛物线使其顶点P 沿直线移动到点P′(2,-2), ∴PO =2222+=22,∠AOP =45°,又∵AD ⊥OP ,∴△ADO 是等腰直角三角形,∴PP′=22×2=42,AD =DO =223,∴抛物线上PA 段扫过的区域(阴影部分)的面积为42×223=12.7.【答案】y =-2x 2+12x -20【解析】y =2x 2-12x +16=2(x 2-6x +8)=2(x -3)2-2,将原抛物线绕顶点旋转180°后,得y =-2(x -3)2-2=-2x 2+12x -20.8.【答案】y =-2x 2+1,-22<b <2【解析】∵y =2x 2+bx +1的顶点坐标是(-4b,288b -),设x =-4b,y =288b -,∴b =-4x ,∴y =288b -=28(4)8x -=-2x 2+1,若二次函数y =2x 2+bx +1的顶点只在x 轴上方移动,∵a =2>0,∴抛物线与x 轴没有交点,∴△<0,即△=b 2-8<0,9.【解析】(1)将A (0,-6),B (-2,0)代入y =12x 2+bx +c ,得6,022,c b c -=⎧⎨=-+⎩解得2,6.b c =-⎧⎨=-⎩∴y =12x 2-2x -6,∴顶点坐标为(2,-8); (2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m (m >0)个单位长度得到新抛物线y 1=12(x -2+1)2-8+m ,∴P (1,-8+m ).在抛物线y =12x 2-2x -6中易得C (6,0),∴直线AC 的解析式为y 2=x -6, 当x =1时,y 2=-5,∴-5<-8+m <0, 解得3<m <8;(3)∵A (0,-6),B (-2,0),∴线段AB 的中点坐标为(-1,-3),直线AB 的解析式为y =-3x -6, ∴过AB 的中点且与AB 垂直的直线的解析式为y =13x -83, ∴直线y =13x -83与x =1的交点坐标为(1,-73), ∴此时的点P 的坐标为(1,-73),∴此时向上平移了8-73=173个单位, ∴①当3<m <173时,存在两个Q 点,可作出两个等腰三角形; ②当m =173时,存在一个点Q ,可作出一个等腰三角形; ③当173<m <8时,Q 点不存在,不能作出等腰三角形. 10.【解析】(1)当a =-1时,①y =ax 2+2ax =-x 2-2x =-(x +1)2+1,∴图象F 1的顶点坐标为(-1,1); ②∵该“波浪抛物线”顶点坐标纵坐标分别为1和-1,∴点H (2014,-3),不在该“波浪抛物线”上. ∵图象F n 的顶点T n 的横坐标为201,201÷4=50…1,故其图象与F 2,F 4,…形状相同, 则图象F n 对应的解析式为y =(x -201)2-1,其自变量x 的取值范围为200≤x ≤202. 故答案为:不在,y =(x -201)2-1,200≤x ≤202.(2)设OQ 中点为O′,则线段T n T n +1经过O′,由题意可知OO′=O′Q ,O′T n =O′T n +1, ∴当T n T n +1=OQ =12时,四边形OT n T n +1Q 为矩形,∴O′T n +1=6.∵F 1对应的解析式为y =a (x +1)2-a ,∴F 1的顶点坐标为(-1,-a ), ∴由平移的性质可知,点T n +1的纵坐标为-a ,∴由勾股定理得(-a)2+12=62,∴a∵a<0,∴a=m的值为4.11.【解析】(1)∵抛物线y=-x2+2nx-n2+2n过点P,P点的纵坐标为4,∴4=-x2+2n x-n2+2n,解得x1=n,x2=n.∵PQ=x1-x2=4,∴=4,解得n=4,∴抛物线的函数关系式为y=-x2+8x-8,∴4=-x2+8x-8,解得x=2或x=6,∴P(2,4).(2)正确;∵P(2,4),PQ=4,∴Q绕着点P旋转180°后的对称点为Q′(-2,4),∴P与Q′正好关于y轴对称,∴所得新抛物线的对称轴是y轴.∵抛物线y=-x2+8x-8=-(x-4)2+8,∴抛物线的顶点M(4,8),∴顶点M到直线PQ的距离为4,∴所得新抛物线顶点到直线PQ的距离为4,∴所得新抛物线顶点应为坐标原点.12.【解析】(1)∵AB=OB,∠ABO=90°,∴△ABO是等腰直角三角形,∴∠AOB=45°,∵∠yOC=45°,∴∠AOC=(90°-45°)+45°=90°,∴AO⊥CO.∵C′O′是CO平移得到,∴AO⊥C′O′,∴△OO′G是等腰直角三角形.∵射线OC的速度是每秒2个单位长度,∴OO′=2x,∴其以OO′为底边的高为x,∴y=12×(2x)•x=x2;(2)当x=3秒时,OO′=2×3=6,∵12×6=3,∴点G的坐标为(3,3).设抛物线解析式为y=ax2+bx,则933,6480,a ba b+=⎧⎨+=⎩解得1,58.5ab⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为y=-15x2+85x;(3)设点P到x轴的距离为h,则S△POB=12×8h=8,解得h=2.当点P在x轴上方时,-15x2+85x=2,整理得x2-8x+10=0,解得x1=4,x2=4,此时,点P的坐标为(4,2)或(4,2);当点P在x轴下方时,-15x2+85x=-2,整理得x2-8x-10=0,解得x1=4-26,x2=4+26,此时,点P的坐标为(4-26,-2)或(4+26,-2).综上所述,点P的坐标为(4-6,2)或(4+6,2)或(4-26,-2)或(4+26,-2)时,△POB的面积S=8.13.【解析】(1)由题意可知A(4,-4),∵抛物线y=ax2+bx+c经过原点、点E(8,0 )和A(4,-4),则0,6480,1644,ca b ca b c=⎧⎪++=⎨⎪++=-⎩解得1,42,0.abc⎧=⎪⎪=-⎨⎪=⎪⎩∴抛物线的解析式为y=14x2-2x.(2)∵∠APC=90°,∴∠APB+∠CPG=90°.∵AB⊥PE,∴∠APB+∠PAB=90°,∴∠CPG=∠PAB.∵∠ABP=∠PGC=90°,PC=PA,∴△ABP≌△PGC,PB=CG,AB=PG=4.∵P(m,0),OP=m,且点P是线段OE上的动点,∴PB=CG=|4-m|,OG=|m+4|.①如图1,当点P在点B左边时,点C在x轴上方,m<4,4-m>0,PB=CG=4-m,∴C(m+4,4-m);②如图2,当点P在点B右边时,点C在x轴下方,m>4,4-m<0,∴PB=|4-m|=-(4-m)=m-4,∴CG=m-4,∴C(m+4,4-m).综上所述,点C坐标是C(m+4,4-m).(3)如图1,当点P在OB上时,∵CD∥y轴,则CD⊥OE.∵点D 在抛物线上,横坐标是m +4,将x =m +4代入y =41x 2-2x 得y =41(m +4)2−2(m +4) , 化简得y =41m 2−4,∴D (m +4,41m 2−4),CD =4-m -(41m 2−4)=−41m 2−m +8. ∵四边形ABCD 是平行四边形,∴AB =CD =4, ∴−41m 2−m +8=4,解得m 1=−2+25,m 2=−2−25. ∵点P 在线段OE 上,∴m 2=−2−25不符合题意,舍去,∴P (−2+25,0);如图2,当点P 在线段BE 上时,∵C (m +4,4-m ), ∵点D 在抛物线上,横坐标是m +4,将x =m +4代入y =41x 2-2x 得y =41(m +4)2−2(m +4), 化简得y =41m 2−4,∴D (m +4,41m 2−4), ∴CD =41m 2−4−(4−m )=41m 2+m +8. ∵四边形ABDC 是平行四边形,∴AB =CD =4, ∴41m 2+m −8=4,解得m 1=−2+213,m 2=−2−213, ∵点P 在线段OE 上,∴m 2=−2−213不符合题意,舍去,∴P (−2+213,0).综上所述,当以点A 、B 、C 、D 为顶点的四边形是平行四边形时,点P 的坐标为P (−2+25,0)或P (−2+213,0).[。
抛物线与几何图形的综合◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B 两点,A点在B点左侧.若点E在x轴上,点P在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A在抛物线y=x2-2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为________.第5题图第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7.如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4).(1)求抛物线的解析式及顶点坐标;(2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标;②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:。
人教版九年级数学上册中考专题复习题1.类比归纳专题:配方法的应用2.类比归纳专题:一元二次方程的解法3.易错易混专题:一元二次方程中的易错问题4.考点综合专题:一元二次方程与其他知识的综合5.解题技巧专题:抛物线中与系数a,b,c有关的问题6.易错易混专题:二次函数的最值或函数值的范围7.难点探究专题:抛物线与几何图形的综合(选做)8.抛物线中的压轴题9.易错专题:抛物线的变换10.解题技巧专题:巧用旋转进行计算11.旋转变化中的压轴题12.类比归纳专题:圆中利用转化思想求角度13.类比归纳专题:切线证明的常用方法14.解题技巧专题:圆中辅助线的作法15.解题技巧专题:圆中求阴影部分的面积16.考点综合专题:圆与其他知识的综合17.圆中的最值问题18.抛物线与圆的综合19.易错专题:概率与放回、不放回问题类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=1093.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明 4.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值1 6.(2016-2017·夏津县月考)求证:代数式3x 2-6x +9的值恒为正数.7.若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .◆类型三 完全平方式中的配方 8.如果多项式x 2-2mx +1是完全平方式,则m 的值为( )A .-1B .1C .±1D .±29.若方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,则k 的值为( )A .-9或11B .-7或8C .-8或9D .-6或7◆类型四 利用配方构成非负数求值 10.已知m 2+n 2+2m -6n +10=0,则m +n 的值为( )A .3B .-1C .2D .-211.已知x 2+y 2-4x +6y +13=0,求(x +y )2016的值.答案:类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误), 所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1. 2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(2016-2017·江都区期中)若关于x的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或0 3.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值; (2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(2016-2017·抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三 利用根与系数关系求值时,忽略“Δ≥0”7.(2016·朝阳中考)关于x 的一元二次方程x 2+kx +k +1=0的两根分别为x 1,x 2,且x 21+x 22=1,则k 的值为_______.【易错2】 8.已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.【易错2】◆类型四 与三角形结合时忘记取舍 9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x +48=0的根,则这个三角形的周长为( )A .11B .17C .17或19D .1910.在等腰△ABC 中,三边分别为a ,b ,c ,其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与一次函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x -m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是______.◆类型三一元二次方程与二次根式的综合12.(达州中考)方程(m-2)x2-3-mx +14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠213.(包头中考)已知关于x的一元二次方程x2+k-1x-1=0有两个不相等的实数根,则k的取值范围是______.答案:12.B 13.解题技巧专题:抛物线中与系数a,b,c有关的问题◆类型一由某一函数的图象确定其他函数图象的位置1.二次函数y=-x2+ax-b的图象如图所示,则一次函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限第1题图第2题图2.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是()3.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()第3题图第4题图4.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是()◆类型二由抛物线的位置确定代数式的符号或未知数的值5.(2016·新疆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是【方法10】()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小第5题图第7题图6.(2016·黄石中考)以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是【方法10】()A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤27.(2016·孝感中考)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB =-ca .其中正确结论的序号是____________.答案:易错易混专题:二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的范围求最值 1.函数y =-(x +1)2+5的最大值为_______. 2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法11】( )A .3B .2C .1D .-13.已知函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.◆类型二 限定自变量的取值范围求最值4.(2016-2017·双台子区校级月考)函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别是( )A .4和-3B .-3和-4C .5和-4D .-1和-45.二次函数y =-12x 2+32x +2的图象如图所示,当-1≤x ≤0时,该函数的最大值是【方法11】( )A .3.125B .4C .2D .06.已知0≤x ≤32,则函数y =x 2+x +1( ) A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值◆类型三 限定自变量的取值范围求函数值的范围7.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤18.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <39.二次函数y =x 2-x +m(m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m◆类型四 已知函数的最值,求自变量的取值范围或待定系数的值10.当二次函数y =x 2+4x +9取最小值时,x 的值为( )A .-2B .1C .2D .911.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A.3 B.-1C.4 D.4或-112.已知y=-x(x+3-a)+1是关于x 的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9 B.a=5 C.a≤9 D.a≤513.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x-(a-b)的最小值为-a2,则∠A=_______度.14.★已知函数y=-4x2+4ax-4a-a2,若函数在0≤x≤1上的最大值是-5,求a的值.答案:难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P 的坐标;(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P 在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP 的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.第5题图 第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. (2016·新疆中考)如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:拔高专题抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。
第二十二章二次函数22.3.1 实际问题与二次函数(几何图形最值)精选练习答案一、单选题(共10小题)1.已知一个直角三角形两直角边的和为10,设其中一条直角边为x,则直角三角形的面积y与x之间的函数关系式是( )A.y=-0.5x2+5x B.y=-x2+10x C.y=0.5x2+5x D.y=x2+10x【答案】A【分析】一条直角边为x,则另一条直角边为10-x,再利用三角形面积公式即可列式.【详解】解:由题意得,y=12x(10−x)=−0.5x2+5x,故选择A.【点睛】本题考查了运用三角形面积公式列二次函数表达式.2.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为()A.193 B.194 C.195 D.196【答案】C【分析】根据长方形的面积公式可得S关于m的函数解析式,由树与墙CD,AD的距离分别是15m和6m 求出m的取值范围,再结合二次函数的性质可得答案.【详解】∵AB=m米,∴BC=(28-m)米.则S=AB•BC=m(28-m)=-m2+28m.基础篇即S=-m2+28m(0<m<28).由题意可知,{m≥628−x≥15,解得6≤m≤13.∵在6≤m≤13内,S随m的增大而增大,∴当m=13时,S最大值=195,即花园面积的最大值为195m2.故选C.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出S与m的函数关系式是解题关键.3.(2017·甘肃中考真题)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【答案】A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程:(32−2x)(20−x)=570,故选:A.4.有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2,则s与x的关系式是()A.s=﹣3x2+24x B.s=﹣2x2﹣24xC.s=﹣3x2﹣24x D.s=﹣2x2+24x【答案】A【分析】AB为x m,则BC为(24﹣3x)m,利用长方体的面积公式,可求出关系式.【详解】解:如图所示:AB为x m,则BC为(24﹣3x)m,所以S=(24﹣3x)x=﹣3x2+24x.故选:A.【点睛】考查了根据实际问题列二次函数关系式的知识,解题的关键是能够用自变量x表示出矩形的长与宽.5.(2018·全国初三课时练习)如图,一边靠校园围墙,其他三边用总长为40米的铁栏杆围成一个矩形花圃,设矩形ABCD的边AB为x米,面积为S平方米,要使矩形ABCD面积最大,则x的长为()A.10米B.15米C.20米D.25米【答案】A【解析】设矩形ABCD的边AB为x米,则宽为40-2x,S=(40-2x)x= -2x2+40x.要使矩形ABCD面积最大,则即x的长为10m.故选A.6.周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m2A .45B .83C .4D .56【答案】B【解析】设窗户的宽是x ,根据题意得S =()832x x- =2348(04)233x x ⎛⎫--+<< ⎪⎝⎭ ∴当窗户宽是43m 时,面积最大是83m²,故选B. 点睛:根据窗户框的形状可设宽为x ,其高就是8-3x 2,所以窗户面积S =()832x x -,再求出二次函数解析式—顶点式即可求出最大面积。
抛物线与图形结合专题(参数)1.如图18,点C 、B 分别为抛物线C 1:121+=x y ,抛物线C 2:22222c x b x a y ++=的顶点.分别过点B 、C 作x 轴的平行线,交抛物线C 1、C2于点A 、D ,且AB = BD . ⑴求点A 的坐标;⑵如图19,若将抛物线C 1:“121+=x y ”改为抛物线 “11212c x b x y ++=”.其他条件不变,求CD 的长和2a附加题:如图19,若将抛物线C 1:“121+=x y “11211c x b x a y++=”,其他条件不变,求21b b +解(1)如图9,连结AC BC ,,直线AB 交y 轴于点E AB x ∥轴,CD x ∥轴,C B ,为抛物线12C C ,AC CB ∴=,BC BD =.AB BD = .AC BC AB ∴==. 30ACE ∴∠= .设AE m =,CE ∴=.211y x =+ ,∴点C 的坐标为(01),. ∴点A 的坐标为(1)m -,. 2分 点A 在抛物线1C 上, 211m ∴=+,10m ∴=(舍),2m = ∴点A 的坐标为(. ·························3分 图 18(2)如图10,过点C 作CE AB ⊥于E . 设抛物线221111122()y x b x c x h k =++=-+,∴点C 的坐标为11()h k ,.设AE m =,CE ∴=.∴点A 的坐标为11()h m k -,.···················· 4分 点A 在抛物线21112()y x h k =-+上,211112()k h m h k ∴=--+.解得10m =(舍),22m =. ························ 5分 由(1)同理可得,CD BD BC AB ===. ·················· 6分2AB AE ==CD ∴CD ······················· 7分由题意得,点B 的坐标为11322h k ⎛⎫++ ⎪⎪⎝⎭.又 点B 是抛物线2C 的顶点,2221132y a x h k ⎛∴=--++ ⎝⎭. ······················ 8分 抛物线2C 经过点11()C h k ,,21211132k a h h k ⎛∴=--++ ⎝⎭. ······················ 9分 22a ∴=-,即2a 的值为2-. ······················· 10分附加解:如图10,设221111111()y a x b x c a x h k =++=-+,∴点C 的坐标为11()h k ,.过点C 作CE AB ⊥于E ,设AE m =,则CE =.∴点B的坐标为11()h m k +,.点B 在抛物线1C上,211111()k a h m h k ∴=+-+.0m ≠,1m ∴=∴点B的坐标为11113h k a ⎛⎫+ ⎪ ⎪⎝⎭. ···················· 1分 点B 为抛物线2C的顶点,22211113y a x h k a ⎛∴=-++ ⎝⎭. 抛物线2C 经过点11()C h k ,,212111113k a h h k a ⎛∴=-++ ⎝⎭. 21a a ∴=-.································ 2分22111113y a x h k a ⎛∴=--++ ⎝⎭22111111132a x h x h k a a a ⎡⎤⎛⎫⎛⎢⎥=--+++++ ⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦.··············· 3分21112b a h ⎛∴= ⎝⎭. ···························4分1211122b b a a a ⎛∴=-+ ⎝⎭.21b b ∴=-+.12b b ∴+=12b b +的值为 ··················· 5分2.如图,抛物线F :y =ax2+bx +c 的顶点为P ,抛物线F 与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:y =a ′x2+b ′x +c ′,抛物线F ′与x 轴的另一个交点为C .图10(1)当a =1,b =-2,c =3时,求点C 的坐标(直接写出答案);(2)若a 、b 、c 满足b2=2ac ,①求b :'b 的值;②探究四边形OABC 的形状,并说明理由.解:(1) C (3,0);…………………………………………………3分 (2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴242424442ca ac a ac ac ab ac ==-=-, ∴点P 的坐标为(2,2ca b -). ……………………………………………………4分 ∵PD ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分 根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分 ∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分②由①得,抛物线F ′为c bx ax y ++=232.令y=0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分 设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x by 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x by 2-=,得c a ac a b a b b y ===--=222)(22. ∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形.又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分3.如图17,抛物线F :2(0)y ax bx c a =++>与y 轴相交于点C ,直线1L 经过点C 且平行于x 轴,将1L 向上平移t 个单位得到直线2L ,设1L 与抛物线F 的交点为C 、D ,2L 与抛物线F 的交点为A 、B ,连接AC 、BC (1)当12a =,32b =-,1c =,2t =时,探究△ABC 的形状,并说明理由; (2)若△ABC 为直角三角形,求t 的值(用含a 的式子表示);(3)在(2)的条件下,若点A 关于y 轴的对称点A ’恰好在抛物线F 的对称轴上,连接A ’C ,BD ,求四边形A ’CDB 的面积(用含a 的式子表示)(1)213122y x x =-+ ,∴C 的坐标为(0,1),当t=2时,y=3,所以有2133122x x =-+,解得121; 4.x x =-= (1,3),(4,3)A B ∴-,5,CA CB AB ∴===222AB CB AC ∴=+,则△ABC 是直角三角形。
辅导材料:抛物线与几何图形说明:抛物线与几何图形相结合的题目是考试的常考题型,同时也是考试的重点和难点.常见的题型有抛物线与平行四边形的结合、抛物线与等腰三角形的结合、抛物线与直角三角形的结合、抛物线与相似三角形的结合等等,其涉及到的知识点较多,知识点之间的综合性较强,故考生在平时应多给与关注,进行适量的练习以期掌握这类题型的一般解决方法.抛物线与直角三角形的结合首先补充两个重要的知识点:(1)直角三角形的性质:直角三角形斜边上的中线等于斜边的一半. (2)对于两条直线:l:y■kx■b111l:y■kx■b222若l■l则kk■■1212注意此结论通常用来求一次函数的解析式.例如直线l的解析式为y・2,直线l与l垂直,且直线l经过点(1,。
),求1212直线l的解析式.2解:由题意可设直线l为:2y■x■b•・•其图象经过点(1,。
),1■b■■b BIB・•・直线l的解析式为y■x■3.2▲例1.(2015.省实验中学)如图所示,抛物线j■x2■bx■c与直线j■x■1交于A、B两点,点A的纵坐标为■4,点B在j轴上,直线AB与x轴交于点F,点P是线段AB下方的抛物线上一动点,横坐标为m,过点P作PC■x轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m取何值时,线段PD的长度取得最大值,其最大值是多少?(3)是否存在点P,使4PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.提示:要求会在平面直角坐标系中求一条线段的长度1▲例2.(2015.连云港)如图,已知一条直线过点(0,4),且与抛物线j■—x2交于4 A、B两点,其中点A的横坐标是・2.(1)求这条直线的函数关系式及点B的坐标;(2)在x轴上是否存在点C,使得4ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由;(3)过线段AB上一点P作PM〃x轴,交抛物线于点乂,点M在第一象限,点N为(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?提示:要求会熟练使用勾股定理和两点间的距离公式▲例3.如图,直线j■x■2与抛物线j■ax2■bx■6(a■0)相交于点A£弓|和点B(4,次),点P是线段AB上异于A、B的动点,过点P作PC■x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)求A PAC为直角三角形时点P的坐标.要点提示:解决运动变化中的等腰三角形和直角三角形的存在性问题,首先要明确已知条件对图形的限定,然后进行分类讨论,分别画出符合要求的图形,再进行求解.▲例4.如图,在平面直角坐标系中,矩形OABC的三个顶点为0(0,0)、A(0,8)、4C(6,0)抛物线j ■■9x 2■bx■c 经过点A 、C,与边AB 交于点D.动点P 从点C1出发沿C B 方向以每秒2个单位的速度向点B 运动,同时,点Q 从点A 出发沿AC 方向以每秒1个单位的速度向点C 运动,设运动时间为t 秒(0・t ■10),连结PQ.(1)求抛物线的解析式;(2)设4CPQ 的面积为S ,求S 关于t 的函数关系式,并求t 为何值时,S 取得最大值;4(3)当4CPQ 的面积S 取最大值时,在抛物线j ■■9x 2■bx■c 的对称轴l 上,是否存在点M,使4DMQ 为直角三角形,若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.要点提示:在讨论直角三角形的存在性问题时,应分为三种情况:每个内角为直角备用图▲例5.如图,抛物线j■ax2■bx■c经过点A(邨,0)、C(0,4),点B在抛物线上,CB/X轴,且AB平分/CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P过P作j轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使4ABM是以AB为直角边的直角三角形?如果存在,直接写出点M的坐标;如果不存在,说明理由.抛物线与等腰三角形的结合当讨论一个等腰三角形的存在性问题时,也应分三种情况进行讨论:每条边作一次底边在解决问题时,往往会用到等腰三角形“三线合一”的性质以及勾股定理•例6.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线j■ax2■bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒.过点P作PE X AB 交AC于点E.①过点E作EF X AD于点F交抛物线于点G.当t为何值时,线段EG最长?②连结EQ.在点P、Q运动的过程中,判断有几个时刻使得4CEQ是等腰三角形?直接写出相应的t值.1•例7.如图,抛物线J■■—x2■mx■n与x轴交于A、B两点,与y轴交于点C,2 抛物线的对称轴交x轴于点D.已知A(・,0),C(0,2).(—)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点月使^PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.•例8.如图,在平面直角坐标系中,抛物线j■ax2■bx■3与x轴交于点A(・,0),B(3,0)两点,直线j■x■2与x轴交于点4与j轴交于点C.点P是x 轴下方的抛物线上一动点,过点P作PF■x轴于点F,交直线CD于点E.设点P 的横坐标为m.(1)求抛物线的解析式;(2)若PE=3EF求m的值;(3)连结PC,是否存在点月使^PCE为等腰直角三角形若存在,请直接写出相应的点P的横坐标m的值;若不存在,请说明理由.・例9.如图,抛物线jx2■bx■c交x轴于点A、B,交j轴于点C,直线j■2x■6过点A和点C.(1)求抛物线的解析式;(2)点P是该二次函数在第一象限的图象上一动点,连结AP、CP求△PAC面积的最大值;(3)设抛物线的对称轴与x轴交于点M,在对称轴上是否存在点R,使4CMR为等腰三角形?若存在,请直接写出所有符合条件的点R的坐标;若不存在,请说明理由.备用图•例10.如图,已知抛物线j■ax2■bx过点(2,0)且顶点A的纵坐标为L过抛物线上一点P向直线j■5作垂线,垂足为点Q.点B在抛物线的对称轴上,点B的纵435坐标为三.直线j■5与抛物线的对称轴交于点C.44(1)求抛物线的解析式;(2)若BQ=PQ,求点P的坐标,并判断此时4PBQ是不是等边三角形,请说明理由;(3)在抛物线上是否存在点P,使PQ=PB成立?若存在,请直接写出点P的坐标或点P的运动范围;若不存在,请说明理由.抛物线与特殊四边形的结合。
22.3抛物线与几何图形的综合(专题)
姓名学号评价
一.解答题(共4小题)
1.(2016•枣庄)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
2.(2016•临沂模拟)已知:如图,抛物线y=ax2+3ax+c(a>0)与y 轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P 为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
3.(2016•广州一模)如图,在平面直角坐标系xOy中,抛物线
y=x2+bx+c与y轴交于点C,与x轴交于A,B两点,点B的坐标为(3,0),直线y=﹣x+3恰好经过B,C两点
(1)写出点C的坐标;
(2)求出抛物线y=x2+bx+c的解析式,并写出抛物线的对称轴和点A的坐标;
(3)点P在抛物线的对称轴上,抛物线顶点为D且∠APD=∠ACB,求点P的坐标.
4.(2016•沈丘县二模)如图,抛物线y=﹣x2+mx+n与x轴交于A、
B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
一.解答题(共4小题)
1.(2016•枣庄)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C 的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
【解答】解:(1)依题意得:,
解之得:,
∴抛物线解析式为y=﹣x2﹣2x+3
∵对称轴为x=﹣1,且抛物线经过A(1,0),
∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,
得,
解之得:,
∴直线y=mx+n的解析式为y=x+3;
(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.
把x=﹣1代入直线y=x+3得,y=2,
∴M(﹣1,2),
即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);
(3)设P(﹣1,t),
又∵B(﹣3,0),C(0,3),
∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;
②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,
③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=
,t2=;
综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).
2.(2016•临沂模拟)已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
【解答】解:(1)∵B(1,0),
∴OB=1;
∵OC=3BO,
∴C(0,﹣3);(1分)
∵y=ax2+3ax+c过B(1,0)、C(0,﹣3),
∴;
解这个方程组,得
∴抛物线的解析式为:(2分)
(2)过点D作DM∥y轴分别交线段AC和x轴于点M、N
在中,令y=0,
得方程
解这个方程,得x1=﹣4,x2=1
∴A(﹣4,0)
设直线AC的解析式为y=kx+b
∴
解这个方程组,得
∴AC的解析式为:(3分)
∵S四边形AB C D=S△AB C+S△ADC
=
=
设,
(4分)
当x=﹣2时,DM有最大值3
此时四边形ABCD面积有最大值(5分)
(3)如图所示,
①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形,
∵C(0,﹣3)
∴设P1(x,﹣3)
∴
解得x1=0,x2=﹣3
∴P1(﹣3,﹣3);
②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形,
∵C(0,﹣3)
∴设P(x,3),
∴,
x2+3x﹣8=0
解得或,
此时存在点和
综上所述存在3个点符合题意,坐标分别是P1(﹣3,﹣3),,.
3.(2016•广州一模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c 与y轴交于点C,与x轴交于A,B两点,点B的坐标为(3,0),直线y=﹣x+3恰好经过B,C两点
(1)写出点C的坐标;
(2)求出抛物线y=x2+bx+c的解析式,并写出抛物线的对称轴和点A的坐标;(3)点P在抛物线的对称轴上,抛物线顶点为D且∠APD=∠ACB,求点P 的坐标.
【解答】解:(1)y=﹣x+3与y轴交于点C,故C(0,3).
(2)∵抛物线y=x2+bx+c过点B,C,
∴,
解得,
∴抛物线的解析式为y=x2﹣4x+3=(x﹣1)×(x﹣3),
∴对称轴为x=2,
点A(1,0).
(3)由y=x2﹣4x+3,
可得D(2,﹣1),A(1,0),
∴OB=3,OC=3,OA=1,AB=2,
可得△OBC是等腰直角三角形,
∴∠OBC=45°,.
如图,设抛物线对称轴与x轴交于点F,
∴AF=AB=1.
过点A作AE⊥BC于点E.
∴∠AEB=90度.
可得,.
在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,∴△AEC∽△AFP.
∴,
解得PF=2.
或者直接证明△ABC∽△ADP得出PD=3,
再得PF=2.
∵点P在抛物线的对称轴上,
∴点P的坐标为(2,2)或(2,﹣2).
4.(2016•沈丘县二模)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,
与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF 的最大面积及此时E点的坐标.
【解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+mx+n得,
解得,
∴抛物线解析式为y=﹣x2+x+2;
(2)存在.
抛物线的对称轴为直线x=﹣=,
则D(,0),
∴CD===,
如图1,当CP=CD时,则P1(,4);
当DP=DC时,则P2(,),P3(,﹣),
综上所述,满足条件的P点坐标为(,4)或(,)或(,﹣);(3)当y=0时,=﹣x2+x+2=0,解得x1=﹣1,x2=4,则B(4,0),
设直线BC的解析式为y=kx+b,
把B(4,0),C(0,2)代入得,解得,
∴直线BC的解析式为y=﹣x+2,
设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),
∴FE=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,
∵S△BC F=S△B EF+S△C EF=•4•EF=2(﹣x2+2x)=﹣x2+4x,
而S△B C D=×2×(4﹣)=,
∴S四边形C DB F=S△B C F+S△B C D
=﹣x2+4x+(0≤x≤4),
=﹣(x﹣2)2+
当x=2时,S四边形C DB F有最大值,最大值为,此时E点坐标为(2,1).。