钢支架结构的ANSYS分析
- 格式:doc
- 大小:247.50 KB
- 文档页数:4
基于ansys的钢桁架桥的分析和计算姓名: 马彦学院:建筑与环境专业:工程力学学号:1043055033指导老师:朱哲明2013/6/151.问题简述钢桁架桥简图如下,尺寸如图,单元长12m,高16m。
设桥面板为0.3m厚的混凝土板。
杆件截面号形状规格端斜杆 1 工字梁400*400*16*16上下弦 2 工字梁400*400*12*12横向连接梁 2 工字梁400*400*12*12其他腹杆 3 工字梁400*300*12*12参数钢材混凝土EX 2.1x1011 3.5x1010PRXY 0.3 0.1667DENS 7850 25002.材料实常数3.半横架桥模型镜面对称,生成整体模型3.施加约束及受力4.计算及分析结果◆整体位移云图◆结点总位移矢量图◆单元第一主应力云图◆单元第二主应力云图◆单元第三主应力云图◆节点位移结果PRINT U NODAL SOLUTION PER NODE***** POST1 NODAL DEGREE OF FREEDOM LISTING *****LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATESYSTEMNODE UX UY UZ USUM1 0.18808E-02-0.20919E-01 0.70316E-03 0.21015E-012 0.11411E-02-0.21354E-01 0.59772E-03 0.21393E-013 0.14813E-02-0.20809E-01 0.11202E-02 0.20892E-014 0.15919E-02-0.20373E-01 0.11392E-02 0.20467E-015 0.22549E-02-0.18918E-01 0.10528E-02 0.19081E-016 0.23458E-02-0.18310E-01 0.10055E-02 0.18487E-017 -0.10050E-02-0.18459E-01-0.38731E-02 0.18887E-018 -0.11376E-02-0.19066E-01-0.38598E-02 0.19486E-019 0.24977E-02-0.12074E-01 0.72603E-03 0.12351E-0110 0.29237E-02-0.11079E-01 0.68719E-03 0.11479E-0111 -0.35033E-02-0.10438E-01-0.84626E-02 0.13887E-0112 -0.38537E-02-0.10965E-01-0.84226E-02 0.14353E-0113 0.27521E-02 0.0000 0.0000 0.27521E-0214 0.34768E-02 0.0000 0.0000 0.34768E-0215 0.82671E-03-0.17947E-01 0.14911E-03 0.17967E-0116 0.67748E-03-0.19250E-01 0.10648E-03 0.19262E-0117 0.42077E-02-0.19398E-01 0.59595E-02 0.20725E-0118 0.40812E-02-0.18095E-01 0.59727E-02 0.19488E-0119 0.40101E-03-0.10784E-01 0.34385E-04 0.10791E-0120 0.34470E-03-0.12307E-01 0.25523E-06 0.12312E-0121 0.69212E-02-0.11199E-01 0.10204E-01 0.16656E-0122 0.65820E-02-0.10142E-01 0.10244E-01 0.15847E-0123 0.0000 0.0000 0.0000 0.000024 0.0000 0.0000 0.0000 0.0000MAXIMUM ABSOLUTE VALUESNODE 21 2 22 2VALUE 0.69212E-02-0.21354E-01 0.10244E-01 0.21393E-01◆单元受力结果PRINT ELEMENT TABLE ITEMS PER ELEMENT***** POST1 ELEMENT TABLE LISTING *****STAT CURRENT CURRENTELEM ZHOU_I ZHOU_J1 -49659. 7936.32 -42695. -3502.73 -9873.9 -28642.4 9567.9 -51440.5 -15016. 23374.6 -22120. -5510.47 -26981. -11385.8 -33355. 18549.9 -17656. -15556.10 -16095. -16301.11 -16203. -16943.12 -12683. -20132.13 4836.6 5157.114 -17901. -18351.15 -2331.6 23001.16 -18331. -20015.17 -6067.9 50464.18 -19568. -26493.19 -5052.8 51411.20 -26836. -34142.21 -23626. -29919.22 -32522. -21349.23 -35649. -25215.24 -699.47 1061.525 690.13 -1048.326 5802.4 -1462.327 -9677.8 5182.928 16212. -4765.129 -4310.8 3979.130 -25.038 0.000031 -9.3064 0.000032 23.898 0.000033 -3569.2 -42609.34 8110.9 -49823.35 -5544.6 -22051.36 -11343. -27005.37 18453. -33238.38 -28592. -9977.139 -51593. 9648.540 23614. -15193.41 -16998. -16116.***** POST1 ELEMENT TABLE LISTING *****STAT CURRENT CURRENTELEM ZHOU_I ZHOU_J42 -20120. -12682.43 -15489. -17761.44 -16350. -16082.45 5157.1 4836.646 -18351. -17901.47 -2225.2 22850.48 -18463. -19869.49 -6087.5 50530.50 -19228. -26843.51 -5332.4 51796.52 -21374. -32473.53 -25205. -35655.54 -34114. -26894.55 -29953. -23607.56 -1061.5 699.4757 1048.3 -690.1358 5171.8 -9672.159 -1448.6 5796.560 3928.8 -4269.361 -4732.8 16215.62 -20.844 0.000063 -5.2944 0.000064 36.585 0.0000MINIMUM VALUESELEM 39 4VALUE -51593. -51440.MAXIMUM VALUESELEM 40 51VALUE 23614. 51796.5.命令流文件/FILNAM,Structural/TITLE,Truss Bridge Static Analysis/COM,Structural/prep7et,1,beam4et,2,shell63sectype,1,beam,i,,0 !定义工字型截面secoffset,cent !截面至心不偏移secdata,0.4,0.4,0.4,0.016,0.016,0.016,0,0,0,0 !定义工字型截面参数sectype,2,beam,i,,0secoffset,centsecdata,0.4,0.4,0.4,0.012,0.012,0.012,0,0,0,0sectype,3,beam,i,,0secoffset,centsecdata,0.3,0.3,0.4,0.012,0.012,0.012,0,0,0,0r,1,0.0187,0.00017,0.00054,0.4,0.4,0, !定义单元实常数r,2,0.0141,0.128e-3,0.415e-3,0.4,0.4,,r,3,0.0117,0.541e-4,0.324e-3,0.3,0.4,,r,4,0.3,,,,,,MP,EX,1,2.1E11MP,PRXY,1,0.3MP,DENS,1,7850MP,EX,2,3.5E10MP,PRXY,2,0.1667MP,DENS,2,2500N,,0,0,-5,,,, !创建节点,复制结点NGEN,4,4,ALL,,,12,,,1,NGEN,2,1,ALL,,,,,10,1,NGEN,2,1,2,10,4,,16,,1,NGEN,2,1,3,11,4,,,-10,1,TYPE,1MAT,1REAL,1ESYS,0 !单元坐标系SECNUM,1TSHAP,LINEE,11,14 !建立单元TYPE,1 MAT,1 REAL,1 ESYS,0 SECNUM,2 TSHAP,LINE E,2,6E,6,10E,10,14 E,1,5E,5,9E,9,13E,3,7E,7,11E,4,8E,8,12E,1,2E,3,4E,5,6E,7,8E,9,10E,13,14 TYPE,1 MAT,1 REAL,1 ESYS,0 SECNUM,3 TSHAP,LINE E,3,6E,6,11E,4,5E,5,12E,2,3E,1,4E,6,7E,5,8E,10,11 E,9,12 TYPE,2 MAT,2 REAL,1 ESYS,0TSHAP,QUADE,1,2,6,5E,5,6,10,9E,9,10,14,13NSYM,X,14,ALL ESYM,,14,ALLNUMMRG,ALL,,,,LOW NUMCMP,ALL FINISH/SOLNSEL,S,,,23,24D,ALL,,,,,,UX,UY,UZ,,, NSEL,S,,,13,14D,ALL,,,,,,UY,UZ,,, NSEL,S,,,1,2F,ALL,FY,-100000 ALLSEL,ALL ACEL,0,10,0, ANTYPE,0SOLVEFINISH/POST1PLDISP,2PLNSOL,U,SUM,0,1PLVECT,U,,,,VECT,NODE,ON,0ETABLE,zhou_i,SMISC,1ETABLE,zhou_j,SMISC,7ETABLE,zhou_i,SMISC,2ETABLE,zhou_j,SMISC,8ETABLE,zhou_i,SMISC,6ETABLE,zhou_j,SMISC,12PRETAB,ZHOU_I,ZHOU_J,JIAN_I,JIAN_J,WAN_I,WAN_J PLLS,ZHOU_I,ZHOU_J,1,0PRNSOL,U,COMPFINISH/EXIT。
钢结构框架模型静力分析1、参数选择钢结构框架模型共五层,底部以固定装置约束所有自由度。
(1)螺栓杆尺寸为ψ11,(2)钢板尺寸300mm*200mm*10mm,(3)层间距为400mm。
(4)钢材弹性模量为2.1*10^5N/mm^2(5)在最顶层短边中点处施加水平力F=10KN。
分析所受应力,及最危险处。
2、描述所选用的有限元模型及单元的特点采用ansys软件进行模拟计算,螺栓杆与钢板接触面视为刚性连接。
因材料相同,全部采用solid185单元进行模拟,solid185是常用的三维结构实体单元,具有八节点,每节点有UX, UY, UZ三个自由度。
solid185单元图示=============================================================================== !Copyright Hu Zhixiang, Li Jiajin, Huang jun!单位:mm,Nfinish$/clear/FILNAME,STEELFRAME,1 !新建文件并重新编写log文件/prep7et,1,solid185mp,ex,1,2.1e5mp,prxy,1,.3blc4,,,300,200,10cyl4,20,20,11,,,,410cyl4,280,20,11,,,,410cyl4,20,180,11,,,,410cyl4,280,180,11,,,,410VOVLAP,all!搭接命令VGLUE,ALL !粘结各个公共面vgen,5,all,,,,,400wpoff,,,2000blc4,,,300,200,10allselVOVLAP,ALL !搭接命令vglue,all !粘结各个公共面WPOFFS,,100wprota,,90vsbw,all !划分出短边方向中点wpcsys,-1WPOFFS,,,2005vsbw,all !划分出第一层中间施力点处wpcsys,-1VSEL,S,LOC,X,100,200 !选择各个钢板VATT,1,,1esize,5 !为板和柱设置不同的尺寸,便于划分网格mshape,1,3dmshkey,0vmesh,allVSEL,INVE !对刚才的选择集进行反选VATT,1,,1esize,10mshape,1,3dmshkey,0vmesh,allFINI/soluwpcsys,-1SELTOL,5E-4 !定义容差。
基于ANSYS的高层钢结构抗震及稳定性分析共3篇基于ANSYS的高层钢结构抗震及稳定性分析1基于ANSYS的高层钢结构抗震及稳定性分析随着城市化进程的不断加快,建筑高度和层数不断增加,高层建筑的结构安全问题越来越受到人们的关注。
而地震是高层建筑结构安全的关键因素之一,抗震设计成为高层建筑结构设计的重点之一。
而对于钢结构而言,钢材的高强度、可塑性好、适应性强等特点,使得钢结构成为高层建筑结构的重要选择。
本文将以基于ANSYS的高层钢结构为对象,探讨其抗震及稳定性分析。
1. 建立高层钢结构有限元模型在进行高层钢结构的抗震及稳定性分析前,需要先通过ANSYS 等有限元软件建立高层钢结构的有限元模型。
建立模型需要考虑高层钢结构的结构特点和工程实际情况,确定结构参数、节点分布及约束情况。
2. 高层钢结构抗震分析地震对高层建筑结构的影响主要体现在地震作用下建筑结构内部产生的地震应力和滞回曲线等。
因此,在进行高层钢结构的抗震分析时,需要考虑其受到的地震作用,分析结构内力和变形等参数。
首先,需要进行地震作用下钢结构模型的动力特性分析。
在这一步中,可以使用ANSYS中的模态分析功能,以得到结构在不同模态下的自然频率和振型。
其次,根据钢结构在地震作用下的动力特性,进行地震反应谱法抗力设计。
地震反应谱是描述结构在不同频率下受到地震作用时的反应的一种方法,可以分析结构受到的地震作用下的最大位移、加速度和力等参数。
对于高层钢结构,可以通过ANSYS中的响应谱分析功能进行计算。
最后,通过引入钢结构弹塑性性能纳入分析中,能够更加精准地分析高层钢结构在地震作用下的受力性能。
3. 高层钢结构稳定性分析高层钢结构的稳定性是结构设计或构件设计中必须考虑的重要问题。
高层钢结构结构体系复杂,其极限状态的稳定性较低。
在进行高层钢结构的稳定性分析时,需对结构进行屈曲分析,以了解梁和柱在地震作用下的稳定性。
在进行屈曲分析时,需要先得到高层钢结构构件的稳定系数。
ANSYS分析报告引言:1.问题描述:在这个分析中,我们将研究一个承重结构的稳定性。
该结构由一根钢杆和两个支撑点组成,其中一端支撑固定,另一端加有外部力。
我们的目标是确定结构在受力情况下的位移和应力分布,并评估结构的稳定性。
2.建模与加载条件:我们使用ANSYS软件对该结构进行三维建模,并为其设置了适当的边界条件和加载条件。
钢杆的材料参数和几何尺寸通过实验测定获得。
加载条件设为一端受到垂直向下的力,同时另一端固定。
我们采用静态结构分析模块进行分析。
3.结果与分析:经过ANSYS分析,我们获得了结构的位移和应力分布情况。
在受力情况下,钢杆的位移主要集中在受力一侧,而另一侧的位移较小。
应力分布也呈现相似的趋势,受力一侧的应力较大,而另一侧的应力较小。
这是由于外部力对结构的影响导致结构发生变形。
4.结构稳定性评估:在评估结构的稳定性时,我们对结构进行了稳定性分析。
通过计算结构的临界载荷,我们可以确定结构在受力情况下的稳定性。
根据计算结果,结构的临界载荷大于所施加的外部力,说明结构是稳定的,不会发生失稳现象。
5.敏感性分析:为了进一步评估结构的性能,我们进行了敏感性分析。
通过改变结构的材料参数和几何尺寸,我们得到了不同条件下结构的位移和应力分布。
根据敏感性分析结果,我们发现结构的位移和应力对材料的弹性模量和截面尺寸非常敏感。
较高的弹性模量和更大的截面尺寸会使结构更加稳定。
结论:通过ANSYS软件进行的分析,我们得到了结构在受力情况下的位移和应力分布,并评估了结构的稳定性。
我们发现外部力对结构的位移和应力分布有明显的影响,但结构仍然保持稳定。
此外,结构的性能对材料参数和几何尺寸非常敏感。
综合分析结果,我们可以优化结构设计,以提高结构的稳定性和性能。
以上是对ANSYS分析报告的一个简单写作示例,可以根据实际情况进行适当调整和修改。
用ansys对房屋钢框架结构计算及模态分析
ANSYS结构分析
题目:房屋钢框架结构计算及模态分析
一.原始数据:
房屋钢框架总尺寸12m x10m x 8.75m
材料质量密度为7.85E-9
压杆面积641mm2,水平拉索面积314mm2
屋顶承受雪荷载为3000KN/M2
立面风荷载为3000KN/M2
材料:杆单元LINCK8,LINCK10,梁单元Beam188
计算模型如图所示
二.操作命令
1.选择单元类型,设置单元实常数,Type1 LINK8,Type2LINK10,实常数为2,3,输入各截面面积。
2.设置杆梁单元Beam188截面数据,圆管,工字形如图
3.设置材料性能数据EX=2E5 泊松比=0.3 密度=7.85E-9
4.通过创建关键点(0,2.2,0),(0,4.4,0),(0,6.6,0)
连线,复制点,线,建立几何模型如图
5.给几何模型附属性,进行网格划分。
6,加载雪荷载,风荷载,重力如图
7.求解及后处理:变形图
Y方向应力图
Z方向应力图
三.模态分析
观察四阶阵型如图第一阶
第二阶阵型
第三阶阵型
第四阶阵型
四.结论
通过观察,该框架在荷载和重力的作用下,X,Y方向的最大变形发生在鱼腹锁,Z方向最大变形在主立柱,其值为-7.73mm。
最大应力发生在主立柱,其值为141.684MPa。
从计算结果看,最大变形和最大应力都不高,均能满足设计要求。
模态分析前四阶阵型无明显变化,在震动作用下,该房屋钢框架较安全。
钢桁架桥梁结构的ANSYS分析摘要本文中采用有限元分析法,在大型有限元分析软件ANSYS平台上分析桥梁工程结构,很好地模拟桥梁的受力、应力情况等。
在静力分析中,通过加载各种载荷,得出结构变形图,找出桥梁的危险区域。
1、问题描述下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。
该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表1-1。
桥长L=32m,桥高H=5.5m。
桥身由8段桁架组成,每段长4m。
该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2和P3 ,其中P1= P3=5000 N, P2=10000N,见图1。
1图1桥梁的简化平面模型(取桥梁的一半)2、模型建立在桥梁结构模拟分析中,最常用的是梁单元和壳单元,鉴于桥梁的模型简化,采用普通梁单元beam3。
实体模型的建立过程为先生成关键点,再形成线,从而得到桁架桥梁的简化模型。
3、有限元模型3.1单元属性整个桥梁分成三部分,分别为顶梁及侧梁、弦杆梁、底梁,三者所使用的单元都为beam3单元,因其横截面积和惯性矩不同,所以设置3个实常数。
此外,他们材料都为型钢,材料属性视为相同,取为弹性模量EX为2.1e11 ,泊松比prxy为0.3,材料密度dens为7800。
3.2网格划分线单元尺寸大小为2,即每条线段的1/2。
4、计算4.1约束根据问题描述的要求,该桁架桥梁在x=0处的边界条件为全约束,x=32处的边界条件为y方向位移为0(即UY=0)。
如下图所示。
4.2载荷卡车对桥梁的压力视为3个集中载荷,因为模型只取桥梁的一般,所以3个集中载荷的力之和为20000N,分别为p1=5000N,p2=10000N,p3=5000N。
并将载荷施加在底梁的关键点4,5,6上。
如下图所示。
5、静力分析的计算结果5.1查看结构变形图显示y方向位移显示x方向位移5.2结论从加载后的结构变形图中可以看出,在载荷作用下,桁架桥的中间位置向下发生弯曲变形最为明显而两侧的侧梁变形最小,载荷引起的位移最大处在桥中间位置,随跨中间向两侧递减。
基于ANSYS软件的支架强度有限元分析报告一、概述本次大作业主要利用ANSYS软件对支架的应力和应变进行分析,计算出支架的最大应力和应变。
然后与实际情况进行比较,证明分析的正确性,从而为支架的优化分析提供了充分的理论依据,并且通过对ANSYS软件的实际操作深刻体会有限元分析方法的基本思想,对有限元分析方法的实际应用有一个大致的认识。
二、问题分析如图1所示的支架由3mm钢板折弯而成。
该支架的h2一侧为固定支撑,顶部平面承受书本重物载荷,重物重量为500N。
材料的杨氏模量为2E11Pa,泊松比为0.3,密度7850kg/m3。
图1 支架a b h1 h2 w数据80 40 15 40 15三、有限元建模支架由钢板折弯而成,厚度尺寸相对长度和宽度尺寸来说很小,所以在ansys中采用面体单元进行模拟,在Workbench中的单元设置为shell181,材料即为结构钢材料,其弹性模量为2.1e11Pa,泊松比为0.3,密度为7850kg/m^3图2 材料属性双击Geometry进入几何模型建立模块,首先设置单位为mm。
以XY平面为为基准建立如下草绘面。
图3 草绘面1再以此草绘面生成面体,通过概念建模的方式实现。
图4 生成面体对上面面体的长边进行拉伸,拉伸方向为垂直向外,拉伸15mm图5 拉伸成面体对相交区域进行倒角,倒角半径为3图6 最终几何模型双击model进行分析界面进行网格划分,首先定义面体厚度为1mm图7 面体厚度随后进行网格划分,设置网格尺寸为5mm,采用全四边形网格划分方法,同时在倒角位置采用Mapped Face sizing功能映射网格,保证网格过度平滑。
图8 有限元网格模型检查网格质量,Workbench中网格质量柱状分布图如下所示,最差的都大于0.6,网格质量平均值为0.84,可见网格质量很好,满足计算精度图9 网格质量检查添加载荷,如10所示支架h2一侧为固定支撑,采用Fix Support固定方式实现,顶部平面承受500N的均布力,采用Force实现,如下图所示图10 载荷加载四、有限元计算结果(1)位移变化,如图12所示,结果最大变形为0.17mm,发生在左侧边角区域,刚好为载荷加载边缘处,也为结构刚度最为薄弱区域图12 位移云图(2)等效应力计算结果,如图3所示,最大等效应力为213MPa,发生在右侧倒角区域,该处为约束边缘处,由于约束会引起较大的应力集中,所以在实际情况下应该加大此处的倒角过度,减缓应力集中现象。
ANSYS建模分析报告书课题名称ANSYS建模分析姓名学号院系专业指导老师问题描述在ANSYS中建立如图一所示得支承图,假定平面支架沿厚度方向受力均匀,支承架厚度为3mm。
支承架由钢制成,钢得弹性模量为200Gpa,泊松比为0。
3、支承架左侧边被固定,沿支承架顶面施加均匀载荷,载荷与支架共平面,载荷大小为2000N/m、要求:绘制变形图,节点位移,分析支架得主应力与等效应力。
图1GUI操作步骤1、定义工作文件名与工作标题(1)定义工作文件名:执行Utility Menu〉 Jobname命令,在弹出【Change Jobname】对话框中输入“xuhao144139240174"。
选择【New log and e rror files】复选框,单击OK按钮、(2)定义工作标题:执行Utility Menu〉 Title命令,在弹出【ChangeTitle】对话框中输入“This isanalysis made by “xh144139240174”,单击OK按钮。
(3)重新显示:执行Utility Menu>Plot>Replot命令。
(4)关闭三角坐标符号:执行Utility Menu>PlotCtrls>Window Options命令,弹出【Window Options】对话框。
在【Location of triad】下拉列表框中选择“Not Shown”选项,单击OK按钮、2、定义单元类型与材料属性(1)选择单元类型:执行MainMenu〉Preprocessor〉ElementType>Add/Edit/Delete命令,弹出【Element Type】对话框。
单击Add、、、按钮,弹出【Library of ElementTypes】对话框。
选择“Structural Solid”与“Quad 8node 82"选项,单击OK按钮,然后单击Close按钮。
Ansys静力分析实例: 1 问题描述: 如图所示支架简图,支架材料为结构钢,厚度10mm,支架左侧的两个通孔为固定孔,顶面的开槽处受均布载荷,载荷大小为500N/mm。
2 启动Ansys Workbench,在界面中选择Simulation启动DS模块。
3 导入三维模型,操作步骤按下图进行,单击“Geometry”,选择“From File”。
从弹出窗口中选择三维模型文件,如果文件格式不符,可以把三维图转换为“.stp”格式文件,即可导入,如下图所示。
4 选择零件材料:文件导入后界面如下图所示,这时,选择“Geometry”下的“Part”,在左下角的“Details of ‘Part’”中可以调整零件材料属性。
5 划分网格:如下图,选择“Project”树中的“Mesh”,右键选择“Generate Mesh”即可。
【此时也可以在左下角的“Details of‘Mesh’”对话框中调整划分网格的大小(“Element size”项)】。
生成网格后的图形如下图所示: 6 添加分析类型:选择上方工具条中的“New Analysis”,添加所需做的分析类型,此例中要做的是静力分析,因此选择“Static Structural”,如下图所示。
7 添加固定约束:如下图所示,选择“Project”树中的“Static Structural”,右键选择“Insert”中的“Fixed Support”。
这时左下角的“Details of ‘Fixed Support’”对话框中“Geometry”被选中,提示输入固定支撑面。
本例中固定支撑类型是面支撑,因此要确定图示6位置为“Face”,【此处也可选择“Edge”来选择“边”】然后按住“CTRL”键,连续选择两个孔面为支撑面,按“Apply”确认,如下图所示。
8 添加载荷:选择“Project”树中的“Static Structural”,右键选择“Insert”中的“Force”,如下图所示。
ANSYS工程软件课程报告题目:角支架结构的静态分析。
摘要:角支架在家庭,办公室,医院,工厂,商店,超市,网吧,家具厂等等场所的使用广泛。
现在,做角支架结构的静态分析。
角架材质为A36刚,其杨氏模量为30E6,泊松比为0.27,厚度为0.5mm,左端上侧有一孔整个圆周被约束(焊接或固定),右下方有一孔,底部受线性分布荷载(见右图)。
用ANSYS分析平面应力问题。
关键字:角支架、ANSYS、静态分析。
内容:1、建立几何模型在前处理中首先选择rectangle绘制矩形,然后再circle中绘制实体圆,再通过布尔运算把他们加到一起,再通过布尔运算生成两个圆孔,然后再生成圆角,最后用布尔运算把他们加成一个整体。
建立的几何图形如右图:2、定义单元及材料实常数选择单元大类为Solid,接着选择Quad 8node 82单元,并在Option选项中将K3项改为Plane strs w/thk(平板应力);在材料设置对话框中依次选择Structure、Linear、Elastic、Isotropic在弹出的对话框中分别输入弹性模量30e6,泊松比0.27。
在主菜单的前处理中选择Real Counstants、Add命令,在弹出的对话框中输入板厚0.5单击Ok完成。
3、划分网格运行前处理中的Mesh Tool命令,单击Global中的Set按钮,在弹出的单元尺寸对话框中输入0.4,单击Ok,单击Mesh划分网格,再出现的对话框中单击Pick All,结果如图:4、加载在左端的圆孔里施加位移约束,约束所有自由度,在右下方的圆孔里施加线性分布荷载如图所示:5、求解运行Solution下的Current LS命令,单击Ok按钮即可。
6、查看分析结果绘制变形图,等效应力图,X,Y方向应力图显示节点应力如下(1)变形图(2)等效应力(3)X方向应力图(4)Y方向应力图显示节点应力:在后处理中依次选择List Result》NodalSolution命令,在弹出的对话框中选择Nodal Solution》Stree》von Mises stree总合应力,单击Ok,节点应力数据如图:7、总结(1)采用ANSYS软件进行工程实际的应力分析是可行的,这样的方法不但可以节约成本减少浪费,而且操作灵活,节约时间,减少不必要的损失。
钢支架结构的ANSYS分析
1.问题描述
现要做两个简易的隔板置物架,主体尺寸如图1所示,宽为50mm。
材料为45钢,弹性模量去210GPa。
支架左边由膨胀丝固定在墙上,假设固定牢固。
隔板放在两个物架的顶面上,要求最大能承受125kg的重物。
图1 物架主视图
2. ansys模型的建立
三维模型在solidworks中间建立,然后导入ANSYS中。
设置单元类型为solid brick 8node 185。
使用钢材的弹性模量为210GPa,泊松比为0.3,设置材料的属性。
3.进行网格划分与静态分析
根据支架的尺寸,我们设置网格单元大小为0.005,然后进行网格划分。
我们假设膨胀丝足够牢固,能把支架牢牢地固定在墙面上,所以我们对支架靠近墙面的面加上各个方向的约束。
由于隔板由两个支架支撑,压力作用在两个50mmX175mm顶面内,一个顶面受到的压力为625N,以此施加载荷。
进行求解,然后我们查看结果。
首先,查看位移图2,我们可以看出最大的位移在支架的末端,为0.219e-0.4,可见位移很小,在生活中我们基本忽略不计。
图2 物架变形图
然后,查看V on mises stress图3,我们可以看出应力基本上集中在弯曲处,我们查看标准,GB/T699-1999标准规定,取抗拉强度为600MPa,屈服强度为
图3 物架应力图
355MPa,伸长率为16%,断面收缩率为40%,冲击功为39J。
我们从图中看出最大内应力为1.16GPa。
4.结构的优化
在静态分析中,我们看出支架的内应力大的地方一般集中转角处,我们可以添加两个支撑板进行改善。
本文尝试了在两种位置添加支撑板,对它们进行了同样的分析。
查看V on mises stress图,对于第一种方案,可以看出其位移最大为
0.992e-06mm,可以看出内应力最大值为161MP,最大内应力在顶面。
对于第二种方案,可以看出其位移最大为0.406e-06mm。
可以看出内应力最大值为166MP,最大内应力在弯曲处。
可以看到两种方案对于减少位移和内应力有很大的效果。
我们希望弯曲处应力较小,而且考虑到节省材料的角度,选择一方案。
图4 方案一应力图
图5 方案二应力图
5.总结
在本次大作业中我从寻找研究课题,到建立模型进行研究和得出结果,虽然化了我挺长的时间,但是我收获颇丰。
重新把在课上学到的东西又用了一遍,巩固深化理解这个软件。
虽然我以后不会从事有限元方面的研究,但是掌握好ansys 这个软件,对于我以后的学业工作研究是很有帮助的。
因为学习生活工作中我们无时不刻地接触到各种模型,有时候我们要对这些结构的受力进行简单地分析,了解了有限元,就不会感到无从入手。
另外,有限元分析的思想和方法,也对我有很大启发。