苏通大桥建设关键技术
- 格式:pdf
- 大小:7.86 MB
- 文档页数:32
苏通长江公路大桥苏通大桥位于江苏省东部的南通市和苏州(常熟)市之间,我国建桥史上工程规模最大、综合建设条件最复杂的特大型桥梁工程。
路线全长33.21公里,主要由北岸接线工程、跨江大桥工程和南岸接线工程三部分组成跨江大桥工程:总长8206米,100+100+300+1088+300+100+100(其中主桥长约1088米)=2088米的双塔双索面钢箱梁斜拉桥。
辅桥航道桥采用140+268+140=548米的T 型刚构梁桥,为同类桥梁工程世界第二;南北引桥采用30、50、75米预应力混凝土连续梁桥;主桥通航净空高62米,宽891米,可满足5万吨级集装箱货轮和4.8万吨船队通航需要。
苏通大桥.创造四项世界之最一、最大主跨(斜拉桥):苏通大桥主跨径1088米,是当今世界跨径最大斜拉桥。
桥面采用预制混凝土钢箱梁,采用节短线和预制悬拼装施工技术。
桥塔施工流程分为68个节段,每个节段为4.5m,施工顺序为下塔柱施工、下横梁施工、中塔柱施工、交汇段施工、钢锚箱安装和上塔柱施工。
施工采用液压爬模系统施工,上部混凝土内安装有钢锚箱,把承重的斜拉索牢靠的固定在桥塔上。
钢锚箱总共有30节。
桥塔的混凝土采用的是C50高强度混凝土。
三、最深基础:苏通大桥主墩基础由131根长约120米、直径2.5米至2.8米的群桩组成,承台长114米、宽48米,面积有一个足球场大,是在40米水深以下厚达300米的软土地基上建起来的,是世界上规模最大、入土最深的群桩基础。
钢护筒搭设施工平台,所用的护筒直径为2.5至2.85m,壁厚25mm的钻孔桩钢护筒,打入地下后搭建施工平台。
钻孔灌注桩施工:将护筒打入既定位置后,钻机下钻,于此同时不断灌注泥浆护壁并循环,将桩内的沉渣排除,到达设计标高后,提出钻孔并清孔,然后分节下放钢筋笼,在中间插入一根粗导管至底,最后浇筑混凝土。
四、最长拉索:苏通大桥最长拉索长达577米,比日本多多罗大桥斜拉索长100米,为世界上最长的斜拉索。
苏通长江公路大桥苏通大桥简介全称:苏通长江公路大桥地理位置和意义:苏通大桥位于江苏省东部的南通市和苏州(常熟)市之间,是交通部规划的黑龙江嘉荫至福建南平国家重点干线公路跨越长江的重要通道,也是江苏省公路主骨架网“纵一”——赣榆至吴江高速公路的重要组成部分,是我国建桥史上工程规模最大、综合建设条件最复杂的特大型桥梁工程。
建设苏通大桥对完善国家和江苏省干线公路网、促进区域均衡发展以及沿江整体开发,改善长江安全航运条件、缓解过江交通压力、保证航运安全等具有十分重要的意义。
大桥建设工程情况:苏通大桥工程起于通启高速公路的小海互通立交,终于苏嘉杭高速公路董浜互通立交。
路线全长32.4公里,主要由北岸接线工程、跨江大桥工程和南岸接线工程三部分组成。
l、跨江大桥工程:总长8206米,其中主桥采用 100+100+300+1088+300+100+100(其中主桥长约1088米)。
=2088米的双塔双索面钢箱梁斜拉桥。
斜拉桥主孔跨度1088米,列世界第一;主塔高度300. 4米,列世界第一;斜拉索的长度577米,列世界第一;群桩基础平面尺寸113.75米 X 48.1米,列世界第一。
专用航道桥采用140+268+140=548米的T型刚构梁桥,为同类桥梁工程世界第二;南北引桥采用30、50、75米预应力混凝土连续梁桥;2、北岸接线工程:路线总长15.1公里,设互通立交两处,主线收费站、服务区各一处;3、南岸接线工程:路线总长9.1公里,设互通立交一处。
苏通大桥全线采用双向六车道高速公路标准,计算行车速度南、北两岸接线为120公里/小时,跨江大桥为100公里/小时,全线桥涵设计荷载采用汽车一超20级,挂车一120。
主桥通航净空高62米,宽891米,可满足5万吨级集装箱货轮和4.8万吨船队通航需要。
全线共需钢材约25万吨,混凝土140万方,填方320万方,占用土地一万多亩,拆迁建筑物26万平米。
工程总投资约64.5亿元,计划建设工期为六年。
1 概述1.1 工程概况苏(州)-(南)通大桥是中外瞩目的国家重点工程,距长江入海口 108km。
由北接线、跨江大桥、南接线组成,双向高速 6 车道。
其 8146m 的跨江大桥为北引桥、主桥、南引桥组合。
主桥为 100+100+300+1088+300+100+100=2088m 的七跨一联双塔双索面钢箱梁斜拉桥, 该桥的设计和施工将创造 4 项世界纪录,是中国向世界建桥最高水平的一次搏击。
北主塔基础(主 4#墩)采用高桩承台结构。
桩基由 131 根直径 2.80~2.50m、长117.60m 的钻孔灌注桩组成,见图 1。
该桩基的成功实施,已创造了世界桥梁最大的群桩基础。
1.2 施工的自然条件1) 地质苏通长江公路大桥地处长江三角洲冲积平原,第四纪地层厚度大,分布较稳定,基岩埋深在 270~280 m 之间。
桥位区全新统颗粒较细,沉积时间短,工程地质性质较差;上更新统以沙土为主,性质较好,其中 6-1,8-1 层岩性以含砾中粗沙为主,厚度大,分布较稳定;中更新统分布稳定,性质好。
主要地质分布特征参数及指标分别见表 1、表 2。
主桥北塔墩基础地质情况表表1地 层编 号岩土名称状态层底标高 (m)全 1-3 新 1-3统 1-3 Q4 1-3细砂 粉砂 细砂 粉砂中密 中密 中密 密实-36.7 -45.9 -54.7 -57.25-1中砂密实-64.2上 5-1 更 5-2 新 统 6-1 Q3 6-26-1粗砂 细砂 粗砂 细砂 中砂密实 密实 密实 密实 密实-71.5 -74.2 -78.2 -80.6 -87.2推荐承载力 (kpa)170 140 180 150 400 500 250 450 300 420极限摩阻力 (kpa)45 35 45 40 60 100 50 80 55 60标贯击数20 15 25 42 >50 47 36 >50 >50 >50第1页7细砂密实-94.2300558-1粗砂密实-98.35001008-2粗砂密实-104.7300508-2粗砂密实-115.2300558-3 亚粘土软塑-118.3270508-1粗砂密实-122.25001008-2粉砂密实-125.2220508-1粗砂密实-129.0500100主桥北辅助墩基础地质情况表42 >50 >50 >50 >50 >50 >50 >50表2地编 层号1-1岩土名称亚砂土状态软塑全 3-1粉砂中密新4亚粘土软塑统 4 粉砂夹亚砂土 中密Q44亚砂土夹粉砂 软塑4亚砂土流塑5-1中砂密实5-2细砂密实6-1粉砂密实6-1砾砂密实上7细砂密实8-1粗砂密实更8-1中砂密实新 8-1中砂密实8-2细砂密实统8-2砾砂密实Q3 8-28-1细砂 粗砂软塑 密实8-1细砂密实8-1粗砂密实8-1细砂密实各类土层对钻孔施工的影响层底标高 (m)-17.70 -29.90 -46.70 -50.20 -54.50 -61.30 -66.50 -73.60 -78.60 -84.70 -87.00 -91.80 -93.70 -103.20 -107.70 -111.30 -117.20 -121.00 -123.70 -129.70 -130.90推荐承载力 (kpa)100 110 110 120 120 110 400 250 180 500 300 500 420 450 300 550 300 500 300 500 300极限摩阻力 (kpa)35 35 35 40 40 35 60 50 45 100 55 100 60 60 50 100 55 100 55 100 55标贯击数8 16.6 12 31 39 14.6 50 29 31 50 46 >50 >50 >50 >50 >50 >50 >50 >50 >50第2页粉细砂土层对钻孔泥浆的影响和破坏较大,松散的粉细砂土层还很容易导致塌孔; 密实的中粗砾砂对钻孔桩施工影响最大,在砾砂中钻进,容易导致泥浆泄漏,钻进速度 变慢,在土层交替变化处,因土层软硬不一,差异较大,更容易导致钻孔倾斜,也是容 易钻杆断裂的土层,在施工中引起了高度的重视,采取了必要的施工措施保证了钻孔施 工的顺利;亚粘土层容易引起糊钻和蹩钻现象,在钻具和钻头的排碴能力及设备配置上 有针对性,加快了钻孔成桩速度,在腐质性亚粘土中钻进极易造成缩孔、缩径、塌孔等 现象的发生,在此土层中钻进时,加大了泥浆水头作用高度和保证了泥浆性能指标,防 止了一切钻孔事故的发生。
苏通大桥可行性研究报告目录第一部分项目背景1.1 项目简介1.2 历史沿革1.3 全球大桥建设概况第二部分市场分析2.1 交通需求分析2.2 经济发展分析2.3 社会影响分析第三部分技术可行性分析3.1 大桥建设技术分析3.2 工程建设安全性分析3.3 资金投入及预期收益分析第四部分环境影响评价4.1 生态环境保护4.2 气候变化影响评估4.3 水域保护措施第五部分风险评估5.1 技术风险分析5.2 市场风险评估5.3 政策风险预警第一部分项目背景1.1 项目简介苏通大桥项目是中国江苏省与上海市之间的一座跨江大桥工程,连接了苏州市吴中区与上海市嘉定区两地。
该大桥总长约32.5公里,是目前全球最长的跨海大桥之一。
1.2 历史沿革苏通大桥项目最初于1997年提出规划,经过多年的论证与磋商,最终于2005年正式立项。
2008年开始施工,历经10年的建设,于2018年竣工并通车。
1.3 全球大桥建设概况全球范围内,大桥工程在过去几十年中得到了迅速发展。
从美洲到欧洲,再到亚洲,大桥工程已成为各国基础设施建设的重要组成部分。
目前,全球许多大桥都成为城市的标志性建筑,不仅提高了城市的形象,更为当地经济的发展做出了重要贡献。
第二部分市场分析2.1 交通需求分析苏通大桥连接了苏州与上海两大城市,为当地居民与企业提供了便捷的交通条件。
随着城市人口的增长和经济的发展,交通需求也在不断增加。
苏通大桥的建成,大大缓解了两地之间的交通压力,对当地居民和企业的生产生活产生了积极影响。
2.2 经济发展分析苏通大桥的建成,为苏州与上海带来了更多的经济机会。
两地之间的货物运输更加便捷,企业可以更快速地完成货物的运输,以及更高效地开展业务。
同时,大桥的建设也带动了周边地区的经济发展,促进了当地的城市化进程。
2.3 社会影响分析苏通大桥的建成对当地的社会发展有着积极的影响。
大桥不仅加强了苏州与上海之间的联系,更为两地居民提供了更广阔的就业与生活选择。
大型工程综合集成管理案例苏通大桥苏通大桥是中国位于江苏省苏州市吴江区和江苏省昆山市开发区之间的一座跨越苏州江的大型跨海大桥,桥长32.4公里,是目前世界上最长的公路和铁路两用跨海大桥。
该大桥于2003年11月开工,于2024年6月30日竣工通车,是中国继港珠澳大桥之后的第二座大跨径跨海高速公铁两用桥梁。
苏通大桥的综合集成管理方面,采用了一系列的先进管理措施,确保项目能够按时、按质、按量完成。
以下是苏通大桥综合集成管理的一些具体案例:1.风险管理:苏通大桥跨越江河,在建设过程中面临各种风险,如江流水位变化、强风等。
为了降低这些风险带来的影响,工程团队进行了详细的风险分析和评估,并制定了相应的应对措施。
比如,在预测到高风天气的情况下,工程团队会暂停施工,确保安全。
2.项目管理:苏通大桥是一个复杂的工程项目,包括公路和铁路两个部分,涉及多个工种、多个队伍的协同合作。
为了确保项目进展顺利,需要有一个高效的项目管理系统。
工程团队采用了先进的项目管理软件,包括进度控制、资源分配和质量检查等方面的功能,确保项目的各个环节能够紧密协作,并及时发现和解决问题。
3.质量管理:苏通大桥是一项重大的国家基础设施工程,质量要求极高。
工程团队建立了一套严格的质量管理体系,包括质量检查、材料测试和施工质量监控等方面的措施。
这些措施的目的是确保桥梁的安全使用和长期稳定。
4.成本管理:苏通大桥是一项巨额的工程投资,成本控制是一个重要的管理目标。
工程团队采用了高效的成本管理方法,包括成本估算、成本分析和成本控制等方面的措施。
通过精细的成本计划和控制,使工程能够在规定的预算内完成。
5.团队合作:苏通大桥的建设涉及多个相关方的合作,包括政府部门、设计院、施工队等。
为了确保各方的协同合作,工程团队组织了多个协调会议,定期沟通项目进展和解决相关问题。
此外,团队还注重培训和技术交流,提高各方的合作能力和专业水平。
总之,苏通大桥的综合集成管理涵盖了风险管理、项目管理、质量管理、成本管理和团队合作等方面,不仅保证了工程的按期完成,还保证了工程的质量和安全性。
苏通长江公路大桥苏通大桥简介全称:苏通长江公路大桥地理位置和意义:苏通大桥位于江苏省东部的南通市和苏州(常熟)市之间,是交通部规划的黑龙江嘉荫至福建南平国家重点干线公路跨越长江的重要通道,也是江苏省公路主骨架网“纵一”——赣榆至吴江高速公路的重要组成部分,是我国建桥史上工程规模最大、综合建设条件最复杂的特大型桥梁工程。
建设苏通大桥对完善国家和江苏省干线公路网、促进区域均衡发展以及沿江整体开发,改善长江安全航运条件、缓解过江交通压力、保证航运安全等具有十分重要的意义。
大桥建设工程情况:苏通大桥工程起于通启高速公路的小海互通立交,终于苏嘉杭高速公路董浜互通立交。
路线全长32.4公里,主要由北岸接线工程、跨江大桥工程和南岸接线工程三部分组成。
l、跨江大桥工程:总长8206米,其中主桥采用100+100+300+1088+300+100+100(其中主桥长约1088米)。
=2088米的双塔双索面钢箱梁斜拉桥。
斜拉桥主孔跨度1088米,列世界第一;主塔高度300. 4米,列世界第一;斜拉索的长度577米,列世界第一;群桩基础平面尺寸113.75米X 48.1米,列世界第一。
专用航道桥采用140+268+140=548米的T型刚构梁桥,为同类桥梁工程世界第二;南北引桥采用30、50、75米预应力混凝土连续梁桥;2、北岸接线工程:路线总长15.1公里,设互通立交两处,主线收费站、服务区各一处;3、南岸接线工程:路线总长9.1公里,设互通立交一处。
苏通大桥全线采用双向六车道高速公路标准,计算行车速度南、北两岸接线为120公里/小时,跨江大桥为100公里/小时,全线桥涵设计荷载采用汽车一超20级,挂车一120。
主桥通航净空高62米,宽891米,可满足5万吨级集装箱货轮和4.8万吨船队通航需要。
全线共需钢材约25万吨,混凝土140万方,填方320万方,占用土地一万多亩,拆迁建筑物26万平米。
工程总投资约64.5亿元,计划建设工期为六年。
目录1。
项目概况 01.1 项目地理位置及主要功能 01.2 前期工作概况 02。
主要技术标准 (3)3. 建设条件 (8)3.1 地形地貌 (8)3.2 气象 (8)3。
3 河势及河床稳定 (10)3.4 水文 (11)3。
5 工程地质 (16)3.6 地震 (22)4。
主航道桥桥型及结构方案 (26)4.1 总体设计 (26)4。
2 结构设计 (27)4。
3 施工方案 (30)5.专用航道桥桥型及结构方案 (33)5。
1 总体设计 (33)5.2 结构设计 (34)5.3 施工方案 (36)6。
引桥桥型及结构方案 (38)6.1 总体设计 (38)6.2 结构设计 (38)6.3 施工方案 (40)7. 接线工程 (41)7。
1 接线工程主要技术标准 (41)7。
2 接线工程设计路段划分 (41)7.3 接线工程路线走向 (41)7.4接线工程概况 (42)8. 交通工程及沿线设施 (44)8。
1 管理养护机构 (44)8.2 交通安全设施 (44)8.3 监控系统 (45)8。
4 通信系统 (45)8.6 收费系统 (45)8。
7 限载系统 (45)8.8 供电照明及综合电力监控 (46)8.9 房屋建筑 (47)8。
10 景观工程 (47)8。
11 跨江大桥附属工程 (47)9。
建设安排与实施方案 (49)9。
1 总体施工方案 (49)9。
2 总体施工进度安排 (51)附图地理位置 ..................................................................................................... 图—1 路线平纵面缩图......................................................................................... 图—2 全桥标准横断面......................................................................................... 图—3 主航道桥总体布置..................................................................................... 图—4专用航道桥总体布置................................................................................... 图-5 全桥施工进度安排..................................................................................... 图—61. 项目概况1.1 项目地理位置及主要功能苏通长江公路大桥(简称“苏通大桥”)位于江苏省东南部长江口南通河段,连接苏州、南通两市,北岸接线始于江苏省公路主骨架“横三”线——宁(南京)通(南通)启(启东)高速公路,与实施中的连(连云港)盐(盐城)通(南通)高速公路相接;南岸接线终于江苏省公路主骨架“连三”线—- 沿江高速公路太仓至江阴段,与实施中的苏(苏州)嘉(嘉兴)杭(杭州)高速公路相接。
苏通大桥的关键技术和创新张雄文(江苏省苏通大桥建设指挥部,中国南京210006)摘要:横跨长江的苏通大桥是一座主跨为1088m的斜拉桥。
本文概述大桥在设计和施工方面的技术挑战、关键技术及创新,比如桥墩冲刷防护、钢围堰下沉、施工平台搭建、斜拉索制作与减震、钢箱梁安装与控制等。
关键词:苏通大桥关键技术创新结构体系基础桥塔斜拉索钢梁1.工程概况在中国东部沿海地区,一条自沈阳出发,经上海、苏州和杭州,到海口城市的高速公路正在建设中。
苏通大桥是这条路线上跨越长江的一个重要工程(图1)。
大桥位于长江三角洲,连接苏州和南通这两座城市。
它的建立将进一步加强长江三角洲之间的联系,促进中国经济的发展。
图1.苏通大桥的位置苏通大桥总长8146m,由北引桥、主桥、专用航道桥和南引桥组成。
南北引桥总长分别为1650m和3485m,均采用30、50和75米预应力混凝土连续梁。
专用航道桥总长923m,由跨度布置为140m+248m+140m的连续刚构组成。
苏通大桥主桥为七跨双塔双索面钢箱梁斜拉桥,跨径布置为100+100+300+1088+300+100+100=2088m(图2)。
该桥是世界上首座跨径超过1000m的斜拉桥。
本文主要考虑大桥的主桥部分。
图2.总体布局2.总体结构[1]2.1 索塔基础索塔基础采用131根直径为2.8/2.5m变截面钻孔灌注桩基础(图3),按桩长为117m的摩擦桩进行设计。
承台为哑铃型,每座索塔下承台的平面尺寸为51.35m×48.1m,厚度由边缘的5m变化到最厚处的13.324m。
图3.索塔基础构造图2.2 索塔索塔采用倒Y形混凝土结构,总高300.4m,其中上塔柱高91.4m,中塔柱高155.8m,下塔柱高53.2m。
塔柱采用变截面空心箱形截面,底部设实体段,索塔在64.3m处设置横梁。
斜拉索锚固在索塔钢锚箱上(图4),钢锚箱共30节,用来锚固30对斜拉索,锚箱标准节段高2.3~2.9m,总高73.6m。