结构化学第十章 次级键及超分子结构化学次级键及超分子结构化学
- 格式:ppt
- 大小:1.98 MB
- 文档页数:42
第十章次级键和超分子结构次级键是除共价键、离子键和金属键以外,其他各种化学键的总称。
次级键涉及分子间和分子内基团间的相互作用、涉及超分子、各种分子组合体和聚集体的结构和性质、涉及生命物质内部的作用等等,内涵极为丰富。
10.1 键价和键的强度早期的键级和键长的关系:'log 711'n d d n −=n’为键级;d n 为键长。
键价理论认为:键长是化学键强弱的一种量度,原子组成分子化学键,键长值小、键强度高、键价数值大;反之,键长值大、键强度低、键价数值小;1)两原子间的键长r ij 与键价S ij 的关系:]/exp[0B r R S ij ij −=Nij ij R r S −=)/(0或 式中R 0和R(或R 0和N)是和原子种类及价态有关的经验常数2)键价和规则:每个原子所连诸键的键价之和等于该原子的原子价。
10.2 氢键X—H…Y用来表示氢键,其中X—Hσ键的电子云偏向高电负性的X原子,导致出现屏蔽小的带正电性的氢原子核,它强烈地被另一个高电负性的Y原子所吸引。
氢键的一些特点:1)大多数氢键X—H…Y是不对称的,H—X距离较近,H—Y距离较远;2) X—H…Y可以为直线形θ=180°,能量上有利;也可为弯曲形,即θ<180°;3)X和Y间的距离作为氢键的键长,键长越短,氢键越强,H原子处于中心点时,是最强的氢键;4)氢键的实测键长要比氢键中共价键键长加范德华半径之和要短;5)氢键X—H…Y和Y—R键间形成的角度α,通常为100°~140°之间;6)一般情况,氢键中H原子是二配位,有时有三、四配位;7)多数氢键,只有一个H原子是直接指向Y上的孤对电子,但有例外。
非常规氢键1) X—H…π(质子受体是π键和大π键)2) X—H…M(质子受体是富电子的过渡金属)3) X—H…H—Y (二氢键)冰和水中的氢键:水分子四面体的四个顶点都可形成氢键,有11种晶型,常见的是I型h氢键和物质的性能:1)物质溶解性能;2)物质的熔沸点和气化焓; 3)粘度和表面张力;4)氢键在生命物质中的作用;10.3 非氢键型的次级键:除氢键和范德华力以外的次级键,主要包括:非金属原子间的次级键;金属原子与非金属原子间的次级键;金属原子间的次级键。
结构化学基础知识点结构化学课程是高等学校化学专业的主干课程之一,也是应用化学、材料化学等专业的基础理论课。
接下来店铺为你整理了结构化学基础知识点,一起来看看吧。
结构化学基础知识点:量子力学经典物理学是由Newton(牛顿)的力学,Maxwell(麦克斯韦)的电磁场理论,Gibbs(吉布斯)的热力学和Boltzmann(玻耳兹曼)的统计物理学等组成,而经典物理学却无法解释黑体辐射,光电效应,电子波性等微观的现象。
黑体:是一种可以全部吸收照射到它上面的各种波长辐射的物体,带一个微孔的空心金属球,非常接近黑体,进入金属球小孔的辐射,经多次吸收,反射使射入的辐射实际全被吸收,当空腔受热,空腔壁会发出辐射,极少数从小孔逸出,它是理想的吸收体也是理想的放射体,若把几种金属物体加热到同一温度,黑体放热最多,用棱镜把黑体发出的辐射分开就可测出指定狭窄的频率范围的黑体的能量。
规律:频率相同下黑体的能量随温度的升高而增大,温度相同下黑体的能量呈峰型,峰植大致出现在频率范围是0.6-1.0/10-14S-1。
且随着温度的升高,能量最大值向高频移动.加热金属块时,开始发红光,后依次为橙,白,蓝白。
黑体辐射频率为v的能量是hv的整数倍.光电效应和光子学说:Planck能量量子化提出标志量子理论的诞生。
光电效应是光照在金属表面上使金属放出电子的现象,实验证实:1.只有当照射光的频率超过金属最小频率(临阈频率)时,金属才能发出电子,不同金属的最小频率不同,大多金属的最小频率位于紫外区。
2.增强光照而不改变照射光频率,则只能使发射的光电子数增多,不影响动能。
3.照射光的频率增强,逸出电子动能增强。
光是一束光子流,每一种频率的光的能量都有一个最小单位光子,其能量和光子的频率成正比,即 E=hv光子还有质量,但是光子的静止质量是0,按相对论质能定律光子的质量是m=hv/c2光子的动量:p=mc=hv/c=h/波长光的强度取决于单位体积内光子的数目,即光子密度。
三生结构学名词解释(共6篇)以下是网友分享的关于三生结构学名词解释的资料6篇,希望对您有所帮助,就爱阅读感谢您的支持。
船舶结构力学名词解释篇一弹性固定端:它受梁端力矩M作用后产生一个等于力矩M 的转角Ɵ即存在如下关系Q0=A0M。
几何不变体系:是指如果不考虑材料应变所产生的变形,体系在受到任何载荷作用后能够保持其固有的几何形状和位置的体系。
不可动节点简单刚架:在实际结构中,大多数刚架受力变形后节点线位移可以不计,于是计算强度时在节点处可加上固定铰支座,故称为不可动节点刚架。
位移法:以杆系结构节点处的位移作为基本未知量的方法。
翘曲:非圆截面杆件扭转变形后,杆件的截面已不再保持为平面,而是变为曲面,这种现象称为翘曲。
用李兹法求结构问题是,要求所选挠度曲线必须满足位移边界线。
(错,还含有其他)薄壁杆件约束扭转时,杆件各横截面上没有正应力,只有扭转引起的剪应力。
(对,杆件上平行于杆轴的直线在变形后长度不变且仍为直线)简述复杂弯曲梁的叠加原理:当梁上同时受到几个不同的横向荷重及一定的轴向力作用时,分别求出在该轴向力作用下的各个横向荷重单独作用于梁时的弯曲要素,然后进行叠加,即得到在该轴向力作用下几个不同的横向荷重同时作用于梁时的弯曲要素。
矩阵位移法中,为什么要进行坐标转移?对哪些量要进行坐标转换?答:建立节点静力平衡方程是在总坐标系中进行的,因此,一般来说在矩阵位移法中有一个坐标转换问题。
要把各杆元在其局部坐标系中的节点位移向量,杆端力向量以及刚度矩阵,转换成坐标系中的节点位移向量,杆端力向量以及刚度矩阵。
杆元固端力向量也要换成坐标系中的杆元固端力向量。
简述薄板弯曲理论中的三条基本假定。
1板变形前垂直于中面的法线在板变形后仍为直线,且是变形后中面的法线,这一假定称为直法线假定。
2垂直于板面的应力分量与其他应力分量相比可以忽略不计,即假定其=0。
3薄板中面内的各点都没有平行于中面的位移,即假定不计因板发生弯曲而产生的中面的变形,从而不计板弯曲产生的中面力。
1. 量子效应:(1)粒子可以存在多种状态,它们可由υ1 ,υ2,···,υn 等描述;(2)能量量子化;(3)存在零点能;(4)没有经典运动轨道,只有概率分布;(5)存在节点,节点多,能量高。
上述这些微观粒子的特性,统称量子效应。
2. 次级键:强相互作用的化学键和范德华力之间的种种键力统称为次级键。
3. 超分子:由两种或两种以上分子依靠分子间相互作用结合在一起,组装成复杂的、有组织的聚集体,并保持一定的完整性,使其具有明确的微观结构和宏观特性。
4. 超共轭效应:指C—H等σ键轨道和相邻原子的π键轨道或其他轨道互相叠加,扩大σ电子的活动范围所产生的离域效应。
5. 前线轨道:分子中有一系列能及从低到高排列的分子轨道,电子只填充了其中能量较低的一部分,已填电子的能量最高轨道称为最高占据轨道(HOMO),能量最低的空轨道称为最低空轨道(LUMO),这些轨道统称前线轨道。
6. 成键轨道、反键轨道、非键轨道:两个能级相近的原子轨道组合成分子轨道时,能级低于原子轨道能级的称为成键轨道,高于原子轨道能级的称为反键轨道,等于原子轨道能级的称为非键轨道。
7. 群:群是按照一定规律相互联系的一些元(又称元素)的集合,这些元可以是操作、数字、矩阵或算符等。
8. 对称操作:能不改变物体内部任何两点间的距离而使物体复原的操作叫对称操作。
9. 对称元素:对称操作所据以进行的旋转轴、镜面和对称中心等几何元素称为对称元素。
10. 点阵能/晶格能:指在0 K时,1mol离子化合物中的正负离子,由相互远离的气态,结合成离子晶体时所释放出的能量。
11. 化学键:在分子或晶体中两个或多个原子间的强烈相互作用,导致形成相对稳定的分子和晶体。
(广义:化学键是将原子结合成物质世界的作用力。
)12. 黑体:一种能全部吸收照射到它上面的各种波长辐射的物体。
13. 能量量子化:频率为v的能量,其数值是不连续的,只能为hv的整数倍,称为能量量子化。
结构化学名词解释1.量子效应:(1)粒子可以存在多种状态,它们可由υ1,υ2,···,υn等描述;(2)能量量子化;(3)存在零点能;(4)没有经典运动轨道,只有概率分布;(5)存在节点,节点多,能量高。
上述这些微观粒子的特性,统称量子效应。
2.次级键:强相互作用的化学键和范德华力之间的种种键力统称为次级键。
3.超分子:由两种或两种以上分子依靠分子间相互作用结合在一起,组装成复杂的、有组织的聚集体,并保持一定的完整性,使其具有明确的微观结构和宏观特性。
4.超共轭效应:指C—H等σ键轨道和相邻原子的π键轨道或其他轨道互相叠加,扩大σ电子的活动范围所产生的离域效应。
5.前线轨道:分子中有一系列能及从低到高排列的分子轨道,电子只填充了其中能量较低的一部分,已填电子的能量最高轨道称为最高占据轨道(HOMO),能量最低的空轨道称为最低空轨道(LUMO),这些轨道统称前线轨道。
6.成键轨道、反键轨道、非键轨道:两个能级相近的原子轨道组合成分子轨道时,能级低于原子轨道能级的称为成键轨道,高于原子轨道能级的称为反键轨道,等于原子轨道能级的称为非键轨道。
7.群:群是按照一定规律相互联系的一些元(又称元素)的集合,这些元可以是操作、数字、矩阵或算符等。
8.对称操作:能不改变物体内部任何两点间的距离而使物体复原的操作叫对称操作。
9.对称元素:对称操作所据以进行的旋转轴、镜面和对称中心等几何元素称为对称元素。
10.点阵能/晶格能:指在0 K时,1mol离子化合物中的正负离子,由相互远离的气态,结合成离子晶体时所释放出的能量。
11.化学键:在分子或晶体中两个或多个原子间的强烈相互作用,导致形成相对稳定的分子和晶体。
(广义:化学键是将原子结合成物质世界的作用力。
)12.黑体:一种能全部吸收照射到它上面的各种波长辐射的物体。
13.能量量子化:频率为v的能量,其数值是不连续的,只能为hv的整数倍,称为能量量子化。
10次级键及超分子结构化学【10.1】在硫酸盐和硼酸盐中,24SO −和33BO −的构型分别为正四面体和平面正三角形,S O −键和B O −键的键长平均值分别为148pm 和136.6pm ,试计算S O −和B O −键的键价以及S 原子和B 原子的键价和。
解:将查得的0R 值和B 值数据代入计算价键的公式。
exp[()/]ij ij ij S R r B =− 24SO −: 162.4pm 148pmexp1.4837pmS −==S 原子的键价和为4 1.48 5.92×=。
此值和S 原子的氧化态6相近。
33BO −: 137.1pm 136.6pmexp1.0137pmS −==B 原子的键价和为3 1.01 3.03×=。
此值和B 原子的原子价3相近。
【10.2】2ClO −(弯曲形)、3ClO −(三角锥形)和4ClO −(四面体形)离子中,Cl O −键的平均键长值分别为157pm ,148pm 和142.5pm ,试分别计算其键价及键价和。
解:2ClO −: 171pm 157pmexp1.4637pmS −==2ClO −中Cl 原子键价和为2 1.46 2.92×=和氧化态为3相近。
3ClO −: 167pm 148pmexp1.6737pmS −==3ClO −中Cl 原子的键价和为3 1.67 5.01×=和氧化态为5相近。
4ClO −: 163.2pm 14.25pmexp1.7537pmS −==4ClO −中Cl 原子的键价和为4 1.757.0×=和氧化态为7相近。
【10.3】试计算下列化合物已标明键长值的Xe F −键的键价。
说明稀有气体Xe 原子在不同条件下和其他原子形成化学键的情况。
[按(10.1.3)式计算Xe F −键时0R 值为Xe 2+ 200pm ,Xe 4+ 193pm ,Xe 6+ 189pm ,B 值为37pm]。