圆中动点问题
- 格式:doc
- 大小:660.50 KB
- 文档页数:10
2024河北数学中考备考重难专题:圆的综合题动点问题考情分析年份题号题型分值考查内容设问形式202022解答题9(1)①圆上的点到圆心的距离都相等(即为半径),全等三角形的判定(SAS)②全等三角形的对应角相等,三角形内外角关系(2)切线性质,扇形面积计算(1)①求证三角形全等②写出三个角间的数量关系,并证明(2)指出线段与半圆的位置关系,求扇形面积20222510(1)弧长公式,锐角三角函数,平行线的性质(2)点圆最值,直线与圆的位置关系,勾股定理(3)分类讨论思想,勾股定理,锐角三角函数(1)求角度数及x的值(2)求x最小值,指出直线与圆的位置关系(3)求x的值例(2022河北预测卷)如图,点A是⊙O外一点,连接AO交⊙O于点B,点P从点B出发,在⊙O上按顺时针方向运动一周,过点P且垂直于AO的射线PM也随之运动,PM交AO于点C,交⊙O于点Q.连接AQ,OP,AP.例题图(1)求证:AP=AQ;(2)若AO=2PO=6.最大时,求AQ的值;①当S△APO②当AP与⊙O相切时,求点P运动路径的长.练习(2022河北定心卷)如图,∠AOC=90°,OA=OC=3,以点O为圆心,OA为半径作⊙O,分别过点A,C,作⊙O的切线AB,CB,两切线交于点B,点M是线段OA上一点(不与点A,O重合),连接CM并延长交⊙O于点D,OE平分∠AOD交DC于点E.练习题图(1)求证:四边形OABC为正方形;(2)连接AC,若OD∥AC,求∠ODC的度数;(3)随着点M位置的改变,直接写出点E所经过的路径l的取值范围.练习(2022河北定制卷)如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,动点M 从点A出发,以2cm/s的速度沿AB向点B运动,同时动点N从点C出发,以3cm/s的速度沿CA向点A运动,当一点停止运动时,另一点也随即停止运动.以AM为直径作⊙O,连接MN,设运动时间为t(s)(t>0).练习题图(1)试用含t的代数式表示出AM及AN的长度,并直接写出t的取值范围;(2)当t为何值时,MN与⊙O相切?(3)若线段MN与⊙O有两个交点,求t的取值范围.答案典例精讲例(1)证明:∵PQ⊥AO于点C,OB为⊙O的半径,∴PC=QC,∠ACP=∠ACQ=90°,在△ACP和△ACQ中,A=A∠A=∠AA=A,∴△ACP≌△ACQ(SAS),∴AP=AQ;(2)解:①如解图①,∵S△APO=12×AO·PC,且AO=6,=3PC,∴当PC最大时,S△APO最大,∴S△APO最大,∴当点C与点O重合时,PC最大,即S△APO∵AO=2PO=6,∴PO=3,在Rt△AOP中,AP=B2+B2=62+32=35,由(1)得AP=AQ,∴AQ=35;解图①②当AP与⊙O相切时,则AP⊥PO,即∠APO=90°,当点P在AO上方时,如解图②,∵AO=2PO=6,∠APO=90°,∴PO=3,∴cos∠AOP=B B=12,∴∠AOP=60°,∴点P运动路径的长为60H3180=π;解图②解图③例题图当点P在AO下方时,如解图③,根据圆的轴对称性可得点P运动路径的长为300H3180=5π.综上所述,点P的运动路径长为π或5π.课堂练兵练习(1)证明:∵BA,BC是⊙O的切线,∴∠BAO=∠BCO=90°.又∵∠AOC=90°,∴四边形OABC为矩形.∵OA=OC,∴四边形OABC为正方形;(2)解:如解图,连接AC,∵在Rt△AOC中,∠AOC=90°,OA=OC,∴∠OAC=∠OCA=45°.又∵OD∥AC,∴∠DOC=180°-∠OCA=135°.∵OD=OC,∴∠ODC=180°-135°2=22.5°;解图(3)在⊙O中,已知∠AOD=2∠DCA,∵OE平分∠AOD,∴∠EOA=∠DCA∴A、C、O、E四点共圆∵∠AOC=90°,∴AC为直径如解图,连接AC ,取AC 的中点Q ,AQ 为半径∴点E 在以AC 的中点Q 为圆心,AQ 为半径的圆弧OA 上运动.连接QO ,∵OA =OC =3,Q 为AC 的中点,∴∠OQA =90°,AC =32,∴QA =322,∴OA ︵的长为90×π×322180=32π4.∴点E 所经过的路径l 的取值范围为0<l <32π4.例题解图课后小练练习解:(1)由题意得,AM =2t ,CN =3t ,在Rt △ABC 中,AC =B 2+A 2=62+82=10,∴AN =AC -CN =10-3t ,∵AB =6cm ,动点M 速度为2cm /s ,∴动点M 的最长运动时间为62=3s ,∵AC =10cm ,动点N 的速度为3cm /s ,∴动点N 的最长运动时间为103s ,∴t 的取值范围为0<t ≤3;(2)若MN 与⊙O 相切,则AB ⊥MN ,即∠AMN =90°,∵∠ABC =90°,∴∠AMN =∠ABC ,∵∠MAN =∠BAC ,∴△AMN ∽△ABC ,A B =A A ,即26=10-310,解得t =3019,∴当t =3019时,MN 与⊙O 相切;(3)由(2)得,当t>3019时,直线MN与⊙O有两个交点,如解图,当点N恰好在⊙O上时,线段MN与⊙O的两个交点恰好为M,N,∵AM为⊙O的直径,∴∠ANM=90°=∠B,∵∠MAN=∠CAB,∴△AMN∽△ACB,A A=A B,即210=10-36,解得t=5021,∴若线段MN与⊙O有两个交点,则t的取值范围为3019<t≤5021.解图。
1、(8分)如图,在Rt △ABC 中,∠ACB =90°,AC =6㎝,BC =8㎝,P 为BC 的中点.动点Q 从点P 出发,沿射线PC 方向以2㎝/s 的速度运动,以P 为圆心,PQ 长为半径作圆.设点Q 运动的时间为t s .⑴当t =1.2时,判断直线AB 与⊙P 的位置关系,并说明理由;⑵已知⊙O 为△ABC 的外接圆,若⊙P 与⊙O 相切,求t 的值.解⑴直线AB 与⊙P 相切.如图,过点P 作PD ⊥AB , 垂足为D .在Rt △A BC 中,∠ACB =90°,∵AC =6cm ,BC =8cm , ∴2210AB AC BC cm +=.∵P 为BC 的中点,∴PB =4cm .∵∠P DB =∠ACB =90°,∠PBD =∠ABC .∴△PBD ∽△ABC . ∴PD PB AC AB =,即4610PD =,∴PD =2.4(cm) . 当 1.2t =时,2 2.4PQ t ==(cm)∴PD PQ =,即圆心P 到直线AB 的距离等于⊙P 的半径.∴直线AB 与⊙P 相切.⑵ ∠ACB =90°,∴AB 为△ABC 的外切圆的直径.∴152OB AB cm ==. 连接OP .∵P 为BC 的中点,∴132OP AC cm ==. ∵点P 在⊙O 内部,∴⊙P 与⊙O 只能内切.∴523t -=或253t -=,∴t =1或4.∴⊙P 与⊙O 相切时,t 的值为1或4.AB C PQ O(第26题)2、如图:AB 是 ⊙O 的直径,弦BC=2㎝, ∠ABC=60°。
(1)若D 是AB 延长线上一点,连接CD ,当BD 长为多少时,CD 与⊙O 相切。
(2)若动点E 以2㎝/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1㎝/s 的速度从B 点出发沿BC 方向运动,设运动时间为t(0<t <2),连接EF ,当t 为何值时,△BEF 为直角三角形。
( 1)当点落在梯形的中位线上时,求的值;(全等)( 2)试用表示,并写出的取值范围;(相像)( 3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+相像)【答案】解:( 1 )如图 1 ,为梯形的中位线,则,过点作于点,则有:在中,有在中,又解得:(2)如图 2,交于点,与对于对称,则有:,又又与对于对称,( 3)如图 3,当的外接圆与相切时,则为切点.的圆心落在的中点,设为则有,过点作,连结,得则又解得:(舍去)①②③3.已知在平面直角坐标系 xOy中, O是坐标原点,以 P(1,1)为圆心的⊙ P与 x 轴, y 轴分别相切于点 M和点 N,点 F 从点 M出发,沿 x 轴正方向以每秒1个单位长度的速度运动,连结 PF,过点 PE⊥ PF交 y 轴于点 E,设点 F 运动的时间是 t 秒( t >0)(1)若点E在y轴的负半轴上(以下图),求证:PE=PF;(全等)(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等 +分类议论)(3)作点F对于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x 轴于点 Q,连结 QE.在点 F 运动过程中,能否存在某一时辰,使得以点Q、 O、E 为极点的三角形与以点、、为极点的三角形相像?若存在,请直接写出t 的值;若不存P M F在,请说明原因.(议论对称轴+全等 +相像)【剖析】:(1)连结PM, PN,运用△PMF≌△ PNE证明,(2)分两种状况①当t >1时,点 E 在 y 轴的负半轴上,0<t≤1时,点 E 在y 轴的正半轴或原点上,再依据(1)求解,(3)分两种状况,当 1<t<2 时,当t>2 时,三角形相像时还各有两种状况,依据比率式求出时间 t .【解答】:证明:( 1)如图,连结PM, PN,∵⊙P 与x轴,y轴分别相切于点和点,M N∴PM⊥ MF,PN⊥ ON且 PM=PN,∴∠ PMF=∠ PNE=90°且∠ NPM=90°,∵ PE⊥ PF,∠NPE=∠ MPF=90°﹣∠ MPE,在△ PMF和△ PNE中,,∴△ PMF≌△ PNE(ASA),∴PE=PF,(2)解:①当t> 1 时,点E在y轴的负半轴上,如图,由( 1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t ,a=NE﹣ ON=t ﹣1,∴b﹣ a=1+t ﹣( t ﹣1)=2,∴ b=2+a,②0<t≤1时,如图 2,点E在y轴的正半轴或原点上,同理可证△ PMF≌△ PNE,∴b=OF=OM+MF=1+t ,a=ON﹣ NE=1﹣ t ,∴b+a=1+t +1﹣ t =2,∴b=2﹣ a,(3)如图 3,(Ⅰ)当 1<t<2 时,∵F(1+t ,0), F 和 F′对于点 M对称,∴F′(1﹣t ,0)∵经过 M、E 和 F′三点的抛物线的对称轴交x 轴于点 Q,∴Q(1﹣t ,0)∴ OQ=1﹣t ,由( 1)得△PMF≌△PNE[ 根源 : 学 , 科, 网 ]∴NE=MF=t ,∴ OE=t ﹣1当△ OEQ∽△ MPF∴=∴=,解得, t =,当△ OEQ∽△ MFP时,∴=,=,解得, t =,(Ⅱ)如图4,当t> 2 时,∵F(1+t ,0), F 和 F′对于点 M对称,∴F′(1﹣t ,0)∵经过、和′三点的抛物线的对称轴交x 轴于点,M E F Q∴Q(1﹣ t ,0)∴ OQ=t ﹣1,由( 1)得△≌△∴ = =,∴= ﹣ 1PMF PNE NE MF t OE t当△ OEQ∽△ MPF∴=∴=,无解,当△ OEQ∽△ MFP时,∴= ,=,解得, t =2±,因此当t =,=,=2±时,使得以点、、为极点的三角形与以点、、t t Q O E P M F为极点的三角形相像.【评论】:本题主要考察了圆的综合题,解题的重点是把圆的知识与全等三角形与相像三角形相联合找出线段关系.3.木工黄师傅用长 AB=3,宽 BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心 O1、 O2分别在 CD、 AB上,半径分别是 O1C、 O2A,锯两个外切的半圆拼成一个圆;(圆心距 +勾股)方案三:沿对角线AC将矩形锯成两个三角形,适合平移三角形并锯一个最大的圆;(相像 +设半径)方案四:锯一块小矩形BCEF拼到矩形 AFED下边,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)经过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x< 1),圆的半径为y.(分类议论)①求 y 对于 x 的函数分析式;②当 x 取何值时圆的半径最大,最大部分径为多少?并说明四种方案中哪一个圆形桌面的半径最大.【考点】:圆的综合题【剖析】:( 1)察看图易知,截圆的直径需不超出长方形长、宽中最短的边,由已知长宽分别为3, 2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是惯例的利用勾股定理或三角形相像中对应边长成比率等性质解直角三角形求边长的题目.一般都先设出所求边长,尔后利用关系代入表示其余有关边长,方案二中可利用△O1O2 E为直角三角形,则知足勾股定理整理方程,方案三可利用△AOM∽△ OFN后对应边成比率整理方程,从而可求r的值.(3)①近似( 1)截圆的直径需不超出长方形长、宽中最短的边,固然方案四中新拼的图象不必定为矩形,但直径也不得超出横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为 x,则新拼图形水平方向跨度为 3﹣x,竖直方向跨度为 2+x,则需要先判断大小,尔后分别议论结论.②已有关系表达式,则直接依据不等式性质易得方案四中的最大部分径.另与前三方案比较,即得最后结论.【解答】:解:( 1)方案一中的最大部分径为1.剖析以下:2,则半径最由于长方形的长宽分别为3, 2,那么直接取圆直径最大为大为 1.(2)如图 1,方案二中连结O1, O2,过 O1作 O1E⊥ AB于 E,方案三中,过点O分别作 AB,BF的垂线,交于M,N,此时 M,N恰为⊙ O与 AB, BF的切点.方案二:设半径为 r ,在 Rt△ O1O2E中,∵O1O2=2r , O1E=BC=2, O2E=AB﹣ AO1﹣CO2=3﹣2r ,∴( 2r)2 =22+( 3﹣ 2r)2,解得 r =.方案三:设半径为 r ,在△ AOM和△ OFN中,,∴△ AOM∽△ OFN,∴,∴,解得r =.比较知,方案三半径较大.(3)方案四:①∵ EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为 2+x.近似( 1),所截出圆的直径最大为 3﹣x或 2+x较小的.1.当 3﹣x< 2+x时,即当x>时,r=(3﹣x);2.当 3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当 3﹣x> 2+x时,即当x<时,r=(2+x).②当 x>时,r=(3﹣x)<(3﹣)=;当 x=时, r =(3﹣)=;当 x<时, r =(2+x)<(2+)=,∴方案四,当 x=时, r 最大为.∵1<<<,∴方案四时可取的圆桌面积最大.【评论】:本题考察了圆的基天性质及经过勾股定理、三角形相像等性质求解边长及分段函数的表示与性质议论等内容,题目虽看似新奇不易找到思路,但认真察看每一小问都是惯例的基础考点,因此整体来说是一道质量很高的题目,值得认真练习.4.如图,已知 l 1⊥ l 2,⊙ O与 l 1,l 2都相切,⊙ O的半径为2cm,矩形 ABCD的边 AD、AB分别与 l 1, l 2重合, AB=4 cm, AD=4cm,若⊙ O与矩形 ABCD沿 l 1同时向右挪动,⊙ O的挪动速度为 3cm,矩形ABCD的挪动速度为 4cm/ s,设挪动时间为t(s)(1)如图①,连结OA、 AC,则∠ OAC的度数为105°;(2)如图②,两个图形挪动一段时间后,⊙O抵达⊙O1的地点,矩形ABCD抵达A1B1C1D1的地点,此时点 O1, A1, C1恰幸亏同向来线上,求圆心 O挪动的距离(即 OO1的长);(相像)(3)在挪动过程中,圆心O到矩形对角线AC所在直线的距离在不停变化,设该距离为d(cm),当 d<2时,求 t 的取值范围(解答时能够利用备用图画出有关表示图).(相像+切线)(数形联合 +分类议论)【考点】:圆的综合题.【剖析】:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠ DAC=60°,从而得出答案;(2)第一得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣ 2=t﹣2,求出t的值,从而得出 OO1=3t 得出答案即可;(3)①当直线AC与⊙O第一次相切时,设挪动时间为t 1,②当直线 AC与⊙O第二次相切时,设挪动时间为t 2,分别求出即可.【解答】:解:( 1)∵l⊥ l,⊙ O与 l , l2都相切,121∴∠ OAD=45°,∵ =4,=4 ,AB cm AD cm∴CD=4cm, AD=4cm,∴tan ∠ DAC===,∴∠ DAC=60°,[根源:ZXXK]∴∠ OAC的度数为:∠ OAD+∠ DAC=105°,故答案为: 105;(2)如图地点二,当O1,A1,C1恰幸亏同向来线上时,设⊙O1与 l 1的切点为 E,连结 O1E,可得 O1E=2, O1E⊥ l 1,在 Rt△ A1D1C1中,∵ A1D1=4, C1D1=4,∴tan ∠ C1A1D1=,∴∠ C1A1D1=60°,在Rt△ A1O1E 中,∠ O1A1E=∠ C1A1 D1=60°,∴A E==,1∵ 1 =1﹣1﹣2=﹣2,AE AA OO t∴t ﹣2=,∴t =+2,∴1=3 =2+6;OO t(3)①当直线AC与⊙O第一次相切时,设挪动时间为t 1,如图,此时⊙O 挪动到⊙2 的地点,矩形挪动到2 2 2 2的地点,O ABCD ABCD设⊙ 2 与直线l 1, 2 2 分别相切于点,,连结2,2, 2 2,O A C F G OF OG OA ∴O2F⊥ l 1, O2G⊥ A2G2,由( 2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠ O2A2F=60°,在Rt △ 2 2中, 2 =2,∴ 2 =,A OF OF A F∵OO=3t , AF=AA+A F=4t +,2221∴4t 1+﹣ 3t1=2,∴t 1=2﹣,②当直线AC与⊙ O第二次相切时,设挪动时间为t 2,记第一次相切时为地点一,点 O1,A1,C1共线时地点二,第二次相切时为地点三,由题意知,从地点一到地点二所用时间与地点二到地点三所用时间相等,∴+2﹣( 2﹣)=t2﹣(+2),解得: t 2=2+2,综上所述,当d<2时, t 的取值范围是:2﹣<t<2+2.【评论】:本题主要考察了切线的性质以及锐角三角函数关系等知识,利用分类议论以及数形联合 t 的值是解题重点.5.如图,平面直角坐标系 xOy中,一次函数 y=﹣ x+b( b 为常数, b>0)的图象与 x 轴、 y 轴分别订交于点A、B,半径为4的⊙ O与 x 轴正半轴订交于点 C,与 y 轴订交于点D、E,点D在点 E 上方.(1)若直线AB与有两个交点F、G.①求∠ CFE的度数;2②用含 b 的代数式表示FG,并直接写出 b 的取值范围;(垂径定理+直线方程)(2)设b ≥5,在线段上能否存在点,使∠=45°?若存在,恳求出P点坐标;若不AB P CPE存在,请说明原因.(相切 +圆周角)【考点】:圆的综合题【剖析】:(1)连结CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连结OF,利用两条直线垂直订交求出交点M的坐标,利用勾股定理求出22FM,再求出FG,再依据式子写出 b 的范围,(3)当b=5 时,直线与圆相切,存在点P,使∠ CPE=45°,再利用两条直线垂直订交求出交点P的坐标,【解答】:解:(1)连结CD,EA,∵DE是直径,∴∠ DCE=90°,∵CO⊥ DE,且 DO=EO,∴∠ ODC=OEC=45°,∴∠ CFE=∠ ODC=45°,(2)①如图,作OM⊥ AB点 M,连结 OF,∵OM⊥ AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点 M(b,b)222∴OM=(b)+(b),∵OF=4,2222﹣(2﹣(2∴FM=OF﹣ OM=4b)b),∵FM=FG,∴2=42=4×[4 2﹣()2﹣()2]=64 ﹣2=64×( 1﹣2),FG FM b b b b∵直线 AB与有两个交点F、 G.∴4≤b< 5,(3)如图,当 b=5时,直线与圆相切,∵DE是直径,[根源:]∴∠ DCE=90°,∵CO⊥ DE,且 DO=EO,∴∠ ODC=OEC=45°,∴∠ CFE=∠ ODC=45°,∴存在点 P,使∠ CPE=45°,连结 OP,∵P 是切点,∴OP⊥ AB,∴OP所在的直线为:y=x,又∵ AB所在的直线为:y=﹣x+5,∴P(,).【评论】:本题主要考察了圆与一次函数的知识,解题的重点是作出协助线,明确两条直线垂直时 K的关系.6.如图,矩形 ABCD的边 AB=3cm,AD=4cm,点 E 从点 A出发,沿射线 AD挪动,以 CE为直径作圆 O,点 F 为圆 O与射线 BD的公共点,连结 EF、CF,过点 E作 EG⊥ EF,EG与圆 O订交于点 G,连结 CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止挪动,在点E挪动的过程中,①矩形 EFCG的面积能否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明原因;②求点 G挪动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判断与性质;圆周角定理;切线的性质;相像三角形的判断与性质.【剖析】:( 1)只需证到三个内角等于90°即可.FCE=∠ FDE,从而证到△CFE∽△ DAB,依据(2)易证点D在⊙ O上,依据圆周角定理可得∠S矩形ABCD 相像三角形的性质可获得S 矩形ABCD=2S△CFE=.而后只需求出CF的范围便可求出的范围.依据圆周角定理和矩形的性质可证到∠GDC=∠ FDE=定值,从而获得点G的挪动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:( 1)证明:如图1,∵CE为⊙ O的直径,[根源:学。
圆上的动点例题1: 如图(1):已知⊙O 的半径为6cm , 射 线PM 经 过点O ,OP=10cm ,射线PN 经过点⊙O 相切于点Q 。
A ,B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动,设运动时间为ts 。
求PQ 的长;(2)当为t 何值时,直线AB 与⊙O 相切。
练习:1.如图,⊙O 的半径为1,圆心O 在正三角形的边AB 上沿图示方向移动,当⊙O 移动到与AC边相切时,OA 的长是.2.在直角梯形ABCD 中,AD∥BC,∠B=90°,AD=13cm,BC=5cm,AB 为圆O 的直径,动点P 沿AD 从点A 开始向点D 以1m/s,的速度运动,动点Q 沿CB 从点C 开始向点B 以2cm/s 的速度运动,点P 、Q 分别从A 、C 两点同时出发,当其中一点停止时,另一点也随之停止运动。
是否存在某一时刻t,使直线PQ 与圆O 相切?若存在,求出t 的值,若不存在,说明理由。
A B Q O P N M例题2(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.练习:如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t ≥0). (1)试写出点A ,B 之间的距离d (厘米) 与时间t (秒)之间的函数表达式;(2)问点A 出发后多少秒两圆相切?例题3如图,在平面直角坐标系中,点1O 的坐标为(40) ,,以点1O 为圆心,8为半径的圆与x 轴交于A B ,两点,过A 作直线l 与x 轴负方向相交成60°的角,且交y 轴于C 点,以A B CO 图8H A BNM点2(135)O ,为圆心的圆与x 轴相切于点D . (1)求直线l 的解析式;(2)将2O ⊙以每秒1个单位的速度沿x 轴向左平移,当2O ⊙第一次与1O ⊙外切时,求2O ⊙平移的时间.练习:已知:如图所示,直线l 的解析式为334y x =-,并且与x 轴、y 轴分别交于点A 、B 。
圆形的动点问题
简介
圆形的动点问题是一个经典的数学问题,涉及到在一个固定半径的圆上找到一个动点的运动轨迹。
本文将探讨在给定的圆上找到一个动点的运动轨迹的一种简单策略。
策略
我们可以将圆形的动点问题简化为一个平面几何问题。
设定一个固定半径的圆,我们需要找到一个动点,在圆的周长上运动。
为了简化问题,我们将动点的速度设定为相等和恒定。
步骤
以下是解决圆形的动点问题的简单策略的步骤:
1. 确定圆的半径:首先,我们需要确定给定圆的半径。
这将帮助我们计算动点的运动轨迹。
2. 计算圆的周长:根据圆的半径,我们可以计算出圆的周长。
周长是动点在圆上运动的路径。
3. 确定动点的速度:我们需要确定动点的速度。
假设动点的速
度是相等和恒定的,以便简化问题。
4. 计算动点的运动轨迹:根据动点的速度和圆的周长,我们可
以计算出动点在给定圆上的运动轨迹。
5. 图形化运动轨迹:为了更直观地理解动点在圆上的运动轨迹,可以图形化展示。
结论
通过简化圆形的动点问题,我们可以使用上述策略找到动点的
运动轨迹。
这个问题对几何学及其应用具有重要意义,并且可以帮
助我们理解运动轨迹的计算方法。
请注意,以上策略是一种简化的方法,可能不适用于所有情况。
特殊情况下可能涉及更复杂的数学问题和计算方法。
以上是关于圆形的动点问题的简要介绍和解决策略。
希望这能
为您提供有用的信息。
动点问题(4)------与圆有关的动点直线与圆相切1.如图,⊙O 的半径为1,圆心O 在正三角形的边AB 上沿图示方向移动,当⊙O 移动到与AC 边相切时,OA 的长是 .2.如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,10cm OP ,射线PN 与⊙O 相切于点Q .A B ,两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为t s .(1)求PQ 的长; (2)当t 为何值时,直线AB 与⊙O 相切?3如图,ABC ∆中,090C ∠=,4AC =,3BC =.半径为1的圆的圆心P 以1个单位/s 的速度由点A 沿AC 方向在AC 上移动,设移动时间为t (单位:s ). (1)当t 为何值时,⊙P 与AB 相切;(2)作PD AC ⊥交AB 于点D ,如果⊙P 和线段BC 交于点E ,证明:当165t s=时,四边形PDBE 为平行四边形.4.(2012河北中考25)如图14,(50)(30).A B --,,,点C 在y 轴的正半轴上,CBO∠=45,CD AB ∥,90CDA = ∠.点P 从点(40)Q ,出发,沿x 轴向左以每秒1个单位长的速度运动,运动时间为t 秒.(1) 求点C 的坐标;(2) 当15BCP =∠时,求t 的值;(3) 以点P 为圆心,PC 为半径的P ⊙随点P 的运动而变化,当P ⊙与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.5.如图,形如量角器的半圆O的直径DE=12cm,形如三角板的⊿ABC中,∠ACB=90°,∠ABC= 30°,BC=12cm。
半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC 上。
设运动时间为t (s),当t=0s时,半圆O在⊿ABC的左侧,OC=8cm。
(1)当t为何值时,⊿ABC的一边所在直线与半圆O所在的圆相切?(2)当⊿ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与⊿ABC 三边围成的区域有重叠部分,求重叠部分的面积。
圆的动点问题方法总结
圆的动点问题涉及圆的运动轨迹和动点的位置变化。
在解决这类问题时,我们
可以采用以下方法:
1. 构建几何模型:首先,我们可以通过绘制几何图形来简化问题。
将圆和动点
在纸上画出来,有助于我们更清楚地理解问题。
2. 利用圆的性质:圆有很多重要的性质,我们可以利用这些性质来解决动点问题。
例如,圆的半径和直径之间的关系,圆的切线和切点的性质等。
3. 使用向量方法:在处理圆的动点问题时,向量方法很有用。
我们可以将动点
的位置表示为向量,并使用向量的运算规则来解决问题。
例如,我们可以用位置向量来表示动点的位置,并使用向量的加法和减法来计算动点的移动方向和距离。
4. 应用三角函数:如果涉及到角度的变化,我们可以使用三角函数来解决问题。
例如,如果动点绕圆心旋转,我们可以使用正弦和余弦函数来描述动点在不同位置的坐标变化。
5. 运用解析几何:解析几何是解决圆的动点问题的常用方法之一。
我们可以使
用坐标系和代数方程来描述圆和动点的运动轨迹。
通过求解方程组,我们可以得到动点的位置和移动方向。
总的来说,解决圆的动点问题需要充分利用圆的性质,运用几何、向量、三角
函数和解析几何等方法。
通过选择合适的方法,我们可以更好地理解问题并求解出准确的结果。
圆中的动态问题【方法点拨】圆中的动态问题实际是圆的分类讨论问题,做这种题型重要的是如何将动点转化为固定的点,从而将题型变为分类讨论【典型例题】题型一:圆中的折叠问题例题一 (2012江西南昌12分)已知,纸片⊙O 的半径为2,如图1,沿弦AB 折叠操作.(1)①折叠后的»AB所在圆的圆心为O ′时,求O ′A 的长度; ②如图2,当折叠后的»AB经过圆心为O 时,求¼AOB 的长度; ③如图3,当弦AB =2时,求圆心O 到弦AB 的距离; (2)在图1中,再将纸片⊙O 沿弦CD 折叠操作.①如图4,当AB ∥CD ,折叠后的»AB与»CD 所在圆外切于点P 时,设点O 到弦AB .CD 的距离之和为d ,求d 的值; ②如图5,当AB 与CD 不平行,折叠后的»AB与»CD 所在圆外切于点P 时,设点M 为AB 的中点,点N 为CD 的中点,试探究四边形OMPN 的形状,并证明你的结论.【答案】解:(1)①折叠后的»AB所在圆O ′与⊙O 是等圆,∴O ′A =OA =2。
②当»AB经过圆O 时,折叠后的»AB 所在圆O ′在⊙O 上,如图2所示,连接O ′A .OA .O ′B ,OB ,OO ′。
∵△OO ′A ,△OO ′B 为等边三角形,∴∠AO ′B =∠AO ′O +∠BO ′O =60°+60°=120°。
∴¼AOB的长度120241803ππ⋅⋅==。
③如图3所示,连接OA ,OB , ∵OA =OB =AB =2,∴△AOB 为等边三角形。
过点O 作OE ⊥AB 于点E ,∴OE =OA •sin 60°=3。
(2)①如图4,当折叠后的»AB与»CD 所在圆外切于点P 时, 过点O 作EF ⊥AB 交AB 于点H 、交¼AEB于点E ,交CD 于点G 、交¼CFD 于点F ,即点E 、H 、P 、O 、G 、F 在直径EF 上。
∵AB ∥CD ,∴EF 垂直平分AB 和CD 。
根据垂径定理及折叠,可知PH =12PE ,PG =12PF 。
又∵EF =4,∴点O 到AB .CD 的距离之和d 为:d =PH +PG =12PE +12PF =12(PE +PF )=2。
②如图5,当AB 与CD 不平行时,四边形是OMPN 平行四边形。
证明如下:设O ′,O ″为¼APB和¼CPD 所在圆的圆心, ∵点O ′与点O 关于AB 对称,点O ″于点O 关于CD 对称, ∴点M 为的OO ′中点,点N 为OO ″的中点。
∵折叠后的¼APB与¼CPD 所在圆外切, ∴连心线O ′O ″必过切点P 。
∵折叠后的¼APB与¼CPD 所在圆与⊙O 是等圆, ∴O ′P =O ″P =2,∴PM =12OO ″=ON ,PN =12OO ′=OM , ∴四边形OMPN 是平行四边形。
【考点】翻折变换(折叠问题)相切两圆的性质,等边三角形的判定和性质,平行四边形的判定,垂径定理,弧长的计算,解直角三角形,三角形中位线定理。
【分析】(1)①折叠后的»AB所在圆O ′与⊙O 是等圆,可得O ′A 的长度。
②如图2,过点O 作OE ⊥AB 交⊙O 于点E ,连接OA .OB .AE 、BE ,可得△OAE 、△OBE 为等边三角形,从而得到¼AOB的圆心角,再根据弧长公式计算即可。
③如图3,连接O ′A .O ′B ,过点O ′作O ′E ⊥AB 于点E ,可得△AO ′B 为等边三角形,根据三角函数的知识可求折叠后求¼AOB所在圆的圆心O ′到弦AB 的距离。
(2)①如图4,¼AEB与¼CFD 所在圆外切于点P 时,过点O 作EF ⊥AB 交¼AEB 于于点E ,交¼CFD 于点F ,根据垂径定理及折叠,可求点O 到AB .CD 的距离之和。
②由三角形中位线定理,根据两组对边分别相等的四边形是平行四边形即可得证。
变式一 如图是一圆形纸片,AB 是直径,BC 是弦,将纸片沿弦BC 折叠后,劣弧BC 与AB 交于点D ,得到¼BDC . (1)若BD ︵=CD ︵,求证:¼BDC 必经过圆心O ; (2)若AB =8,BD ︵=2CD ︵,求BC 的长.变式二 如图,△ABC 内接于⊙O ,AD ⊥BC ,OE ⊥BC ,OE=12BC .(1)求∠BAC 的度数;(2)将△ACD 沿AC 折叠为△ACF ,将△ABD 沿AB 折叠为△ABG ,延长FC 和GB 相交于点H ;求证:四边形AFHG 是正方形; (3)若BD=6,CD=4,求AD 的长. 题型二:圆中的旋转问题例题二 (2011湖南常德,25.10分)已知△ABC ,分别以AC 和BC 为直径作半圆12O O 、,P 是AB 的中点。
(1)如图8,若△ABC 是等腰三角形,且AC=BC ,在»» AC BC 、上分别取点E 、F ,使12AO E BO F ∠=∠,则有结论①12PO E FO P ∆≅∆.②四边形12PO CO 是菱形。
请给出结论②的证明;(2)如图9,若(1)中△ABC 是任意三角形,其它条件不变,则(1)中的两个结论还成立吗?若成立,请给出证明; (3)如图10,若PC 是⊙1O 的切线,求证:2223AB BC AC =+(1)∵BC 是⊙O2直径,则O2是BC 的中点又P 是AB 的中点.,∴P O2是△ABC 的中位线∴P O2 =12AC 又AC 是⊙O1直径∴P O2= O1C =12AC 同理P O1= O2C =12BC∵AC =BC ∴P O2= O1C =P O1= O2C ∴四边形12PO CO 是菱形(2)结论①△PO1E ≌△PO2F 成立,结论②不成立O DCA B证明:在(1)中已证PO2=12AC ,又O1E =12AC∴PO2=O1E 同理可得PO1=O2F∵PO2是△ABC 的中位线 ∴PO2∥AC ∴∠PO2B =∠ACB同理∠P O1A =∠ACB ∴∠PO2B =∠P O1A ∵∠AO1E =∠BO2F ∴∠P O1A+∠AO1E =∠PO2B+∠BO2F 即∠P O1E =∠F O2 P 、 ∴△EO1P ≌△PO2F ; (3)延长AC 交⊙O2于点D ,连接BD . ∵BC 是⊙O2的直径,则∠D =90°, 又PC 是⊙O1的切线,则∠ACP =90°, ∴∠ACP =∠D 又∠PAC =∠BAD ∴△APC ∽△BAD 又P 是AB 的中点∴12AC AP AD AB ==∴AC =CD∴在Rt △BCD 中,2222²BC CD BD AC BD =+=+ 在Rt △ABD 中,222AB AD BD =+ ∴()22222243AB AC BD AC BD AC =+=++∴2223AB BC AC =+评析:要证一个四边形是菱形,可证它的四条边相等,也可证明它是有一组邻边相等的平行四边形或对角线互相垂直的平行四边形;要证两三角形全等,可通过SSS ,SAS ,ASA ,或AAS 来加以判断;当待证式中出现多个平方的形式时,应首先考虑勾股定理及等量代换. 变式一 阅读下列材料,然后解答问题。
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆。
圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形。
如图(十三),已知正四边形ABCD 的外接圆⊙O ,⊙O 的面积为S 1,正四边形ABCD 的面积为S 2,以圆心O 为顶点作∠MON ,使∠MON =90°,将∠MON 绕点O 旋转,OM 、ON 分别与⊙O 相交于点E 、F ,分别与正四边形ABCD 的边相交于点G 、H 。
设OE 、OF 、»EF及正四边形ABCD 的边围成的图形(图中阴影部分)的面积为S (1)当OM 经过点A 时(如图①),则S 、S 1、S 2之间的关系为:S = (用含S 1、S 2的代数式表示); (2)当OM ⊥AB 时(如图②),点G 为垂足,则(1)中的结论仍然成立吗?请说明理由。
(3)当∠MON 旋转到任意位置时(如图③,)则(1)中的结论仍然成立吗?请说明理由.【答案】解:(1)124S S (2)成立。
理由:连OB ,可证图中的两个阴影部分的面积之和等于图①的阴影部分的面积(3)成立。
过点O 分别作AB 、B C 的垂线交AB 、BC 于点P 、Q ,交圆于点X 、Y ,可证直角三角形OPG 全等于直角三角形OQH ,可说明两阴影部分面积之和等于图①的阴影部分面积. 变式二 (2012•杭州)如图,AE 切⊙O 于点E ,AT 交⊙O 于点M ,N ,线段OE 交AT 于点C ,OB⊥AT 于点B ,已知∠EAT=30°,AE=3,MN=2. (1)求∠COB 的度数; (2)求⊙O 的半径R ; (3)点F 在⊙O 上(是劣弧),且EF=5,把△OBC 经过平移、旋转和相似变换后,使它的两个顶点分别与点E ,F 重合.在EF 的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在 ⊙O 上的三角形吗?请在图中画出这个三角形,并求出这个三角形 与△OBC 的周长之比. 考点: 切线的性质;含30度角的直角三角形;勾股定理;垂径定理;平移的性质;旋转的性质;相似三角形的判定与性质。
专题: 计算题。
分析: (1)由AE 与圆O 相切,根据切线的性质得到AE 与CE 垂直,又OB 与AT 垂直,可得出两直角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似可得出三角形AEC 与三角形OBC 相似,根据相似三角形的对应角相等可得出所求的角与∠A 相等,由∠A 的度数即可求出所求角的度数;(2)在直角三角形AEC 中,由AE 及tanA 的值,利用锐角三角函数定义求出CE 的长,再由OB 垂直于MN ,由垂径定理得到B 为MN 的中点,根据MN 的长求出MB 的长,在直角三角形OBM 中,由半径OM=R ,及MB 的长,利用勾股定理表示出OB 的长,在直角三角形OBC 中,由表示出OB 及cos30°的值,利用锐角三角函数定义表示出OC ,用OE ﹣OC=EC 列出关于R 的方程,求出方程的解得到半径R 的值;(3)把△OBC 经过平移、旋转和相似变换后,使它的两个顶点分别与点E ,F 重合.在EF 的同一侧,这样的三角形共有6个,如图所示,每小图2个,顶点在圆上的三角形,延长EO 与圆交于点D ,连接DF ,由第二问求出半径,的长直径ED 的长,根据ED 为直径,利用直径所对的圆周角为直角,得到三角形EFD 为直角三角形,由∠FDE 为30°,利用锐角三角函数定义求出DF 的长,表示出三角形EFD 的周长,再由第二问求出的三角形OBC 的三边表示出三角形BOC 的周长,即可求出两三角形的周长之比. 解答: 解:(1)∵AE 切⊙O 于点E ,∴AE⊥CE,又OB⊥AT, ∴∠AEC=∠CBO=90°, 又∠BCO=∠ACE,∴△AEC∽△OBC,又∠A=30°, ∴∠COB=∠A=30°;(2)∵AE=3,∠A=30°,∴在Rt△AEC中,tanA=tan30°=,即EC=AEtan30°=3,∵OB⊥MN,∴B为MN的中点,又MN=2,∴MB=MN=,连接OM,在△MOB中,OM=R,MB=,∴OB==,在△COB中,∠BOC=30°,∵cos∠BOC=cos30°==,∴BO=OC,∴OC=OB=,又OC+EC=OM=R,∴R=+3,整理得:R2+18R﹣115=0,即(R+23)(R﹣5)=0,解得:R=﹣23(舍去)或R=5,则R=5;(3)在EF同一侧,△COB经过平移、旋转和相似变换后,这样的三角形有6个,如图,每小图2个,顶点在圆上的三角形,如图所示:延长EO交圆O于点D,连接DF,如图所示,∵EF=5,直径ED=10,可得出∠FDE=30°,∴FD=5,则C△EFD=5+10+5=15+5,由(2)可得C△COB=3+,∴C△EFD:C△COB=(15+5):(3+)=5:1.点评:此题考查了切线的性质,垂径定理,勾股定理,相似三角形的判定与性质,含30°直角三角形的性质,平移及旋转的性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.题型三:圆中的动点例题三(2012江苏南京10分)如图,A、B为⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合),我们称∠APB 为⊙O上关于A、B的滑动角。