与圆有关的动点问题
- 格式:docx
- 大小:229.44 KB
- 文档页数:9
( 1)当点落在梯形的中位线上时,求的值;(全等)( 2)试用表示,并写出的取值范围;(相像)( 3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+相像)【答案】解:( 1 )如图 1 ,为梯形的中位线,则,过点作于点,则有:在中,有在中,又解得:(2)如图 2,交于点,与对于对称,则有:,又又与对于对称,( 3)如图 3,当的外接圆与相切时,则为切点.的圆心落在的中点,设为则有,过点作,连结,得则又解得:(舍去)①②③3.已知在平面直角坐标系 xOy中, O是坐标原点,以 P(1,1)为圆心的⊙ P与 x 轴, y 轴分别相切于点 M和点 N,点 F 从点 M出发,沿 x 轴正方向以每秒1个单位长度的速度运动,连结 PF,过点 PE⊥ PF交 y 轴于点 E,设点 F 运动的时间是 t 秒( t >0)(1)若点E在y轴的负半轴上(以下图),求证:PE=PF;(全等)(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等 +分类议论)(3)作点F对于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x 轴于点 Q,连结 QE.在点 F 运动过程中,能否存在某一时辰,使得以点Q、 O、E 为极点的三角形与以点、、为极点的三角形相像?若存在,请直接写出t 的值;若不存P M F在,请说明原因.(议论对称轴+全等 +相像)【剖析】:(1)连结PM, PN,运用△PMF≌△ PNE证明,(2)分两种状况①当t >1时,点 E 在 y 轴的负半轴上,0<t≤1时,点 E 在y 轴的正半轴或原点上,再依据(1)求解,(3)分两种状况,当 1<t<2 时,当t>2 时,三角形相像时还各有两种状况,依据比率式求出时间 t .【解答】:证明:( 1)如图,连结PM, PN,∵⊙P 与x轴,y轴分别相切于点和点,M N∴PM⊥ MF,PN⊥ ON且 PM=PN,∴∠ PMF=∠ PNE=90°且∠ NPM=90°,∵ PE⊥ PF,∠NPE=∠ MPF=90°﹣∠ MPE,在△ PMF和△ PNE中,,∴△ PMF≌△ PNE(ASA),∴PE=PF,(2)解:①当t> 1 时,点E在y轴的负半轴上,如图,由( 1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t ,a=NE﹣ ON=t ﹣1,∴b﹣ a=1+t ﹣( t ﹣1)=2,∴ b=2+a,②0<t≤1时,如图 2,点E在y轴的正半轴或原点上,同理可证△ PMF≌△ PNE,∴b=OF=OM+MF=1+t ,a=ON﹣ NE=1﹣ t ,∴b+a=1+t +1﹣ t =2,∴b=2﹣ a,(3)如图 3,(Ⅰ)当 1<t<2 时,∵F(1+t ,0), F 和 F′对于点 M对称,∴F′(1﹣t ,0)∵经过 M、E 和 F′三点的抛物线的对称轴交x 轴于点 Q,∴Q(1﹣t ,0)∴ OQ=1﹣t ,由( 1)得△PMF≌△PNE[ 根源 : 学 , 科, 网 ]∴NE=MF=t ,∴ OE=t ﹣1当△ OEQ∽△ MPF∴=∴=,解得, t =,当△ OEQ∽△ MFP时,∴=,=,解得, t =,(Ⅱ)如图4,当t> 2 时,∵F(1+t ,0), F 和 F′对于点 M对称,∴F′(1﹣t ,0)∵经过、和′三点的抛物线的对称轴交x 轴于点,M E F Q∴Q(1﹣ t ,0)∴ OQ=t ﹣1,由( 1)得△≌△∴ = =,∴= ﹣ 1PMF PNE NE MF t OE t当△ OEQ∽△ MPF∴=∴=,无解,当△ OEQ∽△ MFP时,∴= ,=,解得, t =2±,因此当t =,=,=2±时,使得以点、、为极点的三角形与以点、、t t Q O E P M F为极点的三角形相像.【评论】:本题主要考察了圆的综合题,解题的重点是把圆的知识与全等三角形与相像三角形相联合找出线段关系.3.木工黄师傅用长 AB=3,宽 BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心 O1、 O2分别在 CD、 AB上,半径分别是 O1C、 O2A,锯两个外切的半圆拼成一个圆;(圆心距 +勾股)方案三:沿对角线AC将矩形锯成两个三角形,适合平移三角形并锯一个最大的圆;(相像 +设半径)方案四:锯一块小矩形BCEF拼到矩形 AFED下边,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)经过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x< 1),圆的半径为y.(分类议论)①求 y 对于 x 的函数分析式;②当 x 取何值时圆的半径最大,最大部分径为多少?并说明四种方案中哪一个圆形桌面的半径最大.【考点】:圆的综合题【剖析】:( 1)察看图易知,截圆的直径需不超出长方形长、宽中最短的边,由已知长宽分别为3, 2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是惯例的利用勾股定理或三角形相像中对应边长成比率等性质解直角三角形求边长的题目.一般都先设出所求边长,尔后利用关系代入表示其余有关边长,方案二中可利用△O1O2 E为直角三角形,则知足勾股定理整理方程,方案三可利用△AOM∽△ OFN后对应边成比率整理方程,从而可求r的值.(3)①近似( 1)截圆的直径需不超出长方形长、宽中最短的边,固然方案四中新拼的图象不必定为矩形,但直径也不得超出横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为 x,则新拼图形水平方向跨度为 3﹣x,竖直方向跨度为 2+x,则需要先判断大小,尔后分别议论结论.②已有关系表达式,则直接依据不等式性质易得方案四中的最大部分径.另与前三方案比较,即得最后结论.【解答】:解:( 1)方案一中的最大部分径为1.剖析以下:2,则半径最由于长方形的长宽分别为3, 2,那么直接取圆直径最大为大为 1.(2)如图 1,方案二中连结O1, O2,过 O1作 O1E⊥ AB于 E,方案三中,过点O分别作 AB,BF的垂线,交于M,N,此时 M,N恰为⊙ O与 AB, BF的切点.方案二:设半径为 r ,在 Rt△ O1O2E中,∵O1O2=2r , O1E=BC=2, O2E=AB﹣ AO1﹣CO2=3﹣2r ,∴( 2r)2 =22+( 3﹣ 2r)2,解得 r =.方案三:设半径为 r ,在△ AOM和△ OFN中,,∴△ AOM∽△ OFN,∴,∴,解得r =.比较知,方案三半径较大.(3)方案四:①∵ EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为 2+x.近似( 1),所截出圆的直径最大为 3﹣x或 2+x较小的.1.当 3﹣x< 2+x时,即当x>时,r=(3﹣x);2.当 3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当 3﹣x> 2+x时,即当x<时,r=(2+x).②当 x>时,r=(3﹣x)<(3﹣)=;当 x=时, r =(3﹣)=;当 x<时, r =(2+x)<(2+)=,∴方案四,当 x=时, r 最大为.∵1<<<,∴方案四时可取的圆桌面积最大.【评论】:本题考察了圆的基天性质及经过勾股定理、三角形相像等性质求解边长及分段函数的表示与性质议论等内容,题目虽看似新奇不易找到思路,但认真察看每一小问都是惯例的基础考点,因此整体来说是一道质量很高的题目,值得认真练习.4.如图,已知 l 1⊥ l 2,⊙ O与 l 1,l 2都相切,⊙ O的半径为2cm,矩形 ABCD的边 AD、AB分别与 l 1, l 2重合, AB=4 cm, AD=4cm,若⊙ O与矩形 ABCD沿 l 1同时向右挪动,⊙ O的挪动速度为 3cm,矩形ABCD的挪动速度为 4cm/ s,设挪动时间为t(s)(1)如图①,连结OA、 AC,则∠ OAC的度数为105°;(2)如图②,两个图形挪动一段时间后,⊙O抵达⊙O1的地点,矩形ABCD抵达A1B1C1D1的地点,此时点 O1, A1, C1恰幸亏同向来线上,求圆心 O挪动的距离(即 OO1的长);(相像)(3)在挪动过程中,圆心O到矩形对角线AC所在直线的距离在不停变化,设该距离为d(cm),当 d<2时,求 t 的取值范围(解答时能够利用备用图画出有关表示图).(相像+切线)(数形联合 +分类议论)【考点】:圆的综合题.【剖析】:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠ DAC=60°,从而得出答案;(2)第一得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣ 2=t﹣2,求出t的值,从而得出 OO1=3t 得出答案即可;(3)①当直线AC与⊙O第一次相切时,设挪动时间为t 1,②当直线 AC与⊙O第二次相切时,设挪动时间为t 2,分别求出即可.【解答】:解:( 1)∵l⊥ l,⊙ O与 l , l2都相切,121∴∠ OAD=45°,∵ =4,=4 ,AB cm AD cm∴CD=4cm, AD=4cm,∴tan ∠ DAC===,∴∠ DAC=60°,[根源:ZXXK]∴∠ OAC的度数为:∠ OAD+∠ DAC=105°,故答案为: 105;(2)如图地点二,当O1,A1,C1恰幸亏同向来线上时,设⊙O1与 l 1的切点为 E,连结 O1E,可得 O1E=2, O1E⊥ l 1,在 Rt△ A1D1C1中,∵ A1D1=4, C1D1=4,∴tan ∠ C1A1D1=,∴∠ C1A1D1=60°,在Rt△ A1O1E 中,∠ O1A1E=∠ C1A1 D1=60°,∴A E==,1∵ 1 =1﹣1﹣2=﹣2,AE AA OO t∴t ﹣2=,∴t =+2,∴1=3 =2+6;OO t(3)①当直线AC与⊙O第一次相切时,设挪动时间为t 1,如图,此时⊙O 挪动到⊙2 的地点,矩形挪动到2 2 2 2的地点,O ABCD ABCD设⊙ 2 与直线l 1, 2 2 分别相切于点,,连结2,2, 2 2,O A C F G OF OG OA ∴O2F⊥ l 1, O2G⊥ A2G2,由( 2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠ O2A2F=60°,在Rt △ 2 2中, 2 =2,∴ 2 =,A OF OF A F∵OO=3t , AF=AA+A F=4t +,2221∴4t 1+﹣ 3t1=2,∴t 1=2﹣,②当直线AC与⊙ O第二次相切时,设挪动时间为t 2,记第一次相切时为地点一,点 O1,A1,C1共线时地点二,第二次相切时为地点三,由题意知,从地点一到地点二所用时间与地点二到地点三所用时间相等,∴+2﹣( 2﹣)=t2﹣(+2),解得: t 2=2+2,综上所述,当d<2时, t 的取值范围是:2﹣<t<2+2.【评论】:本题主要考察了切线的性质以及锐角三角函数关系等知识,利用分类议论以及数形联合 t 的值是解题重点.5.如图,平面直角坐标系 xOy中,一次函数 y=﹣ x+b( b 为常数, b>0)的图象与 x 轴、 y 轴分别订交于点A、B,半径为4的⊙ O与 x 轴正半轴订交于点 C,与 y 轴订交于点D、E,点D在点 E 上方.(1)若直线AB与有两个交点F、G.①求∠ CFE的度数;2②用含 b 的代数式表示FG,并直接写出 b 的取值范围;(垂径定理+直线方程)(2)设b ≥5,在线段上能否存在点,使∠=45°?若存在,恳求出P点坐标;若不AB P CPE存在,请说明原因.(相切 +圆周角)【考点】:圆的综合题【剖析】:(1)连结CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连结OF,利用两条直线垂直订交求出交点M的坐标,利用勾股定理求出22FM,再求出FG,再依据式子写出 b 的范围,(3)当b=5 时,直线与圆相切,存在点P,使∠ CPE=45°,再利用两条直线垂直订交求出交点P的坐标,【解答】:解:(1)连结CD,EA,∵DE是直径,∴∠ DCE=90°,∵CO⊥ DE,且 DO=EO,∴∠ ODC=OEC=45°,∴∠ CFE=∠ ODC=45°,(2)①如图,作OM⊥ AB点 M,连结 OF,∵OM⊥ AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点 M(b,b)222∴OM=(b)+(b),∵OF=4,2222﹣(2﹣(2∴FM=OF﹣ OM=4b)b),∵FM=FG,∴2=42=4×[4 2﹣()2﹣()2]=64 ﹣2=64×( 1﹣2),FG FM b b b b∵直线 AB与有两个交点F、 G.∴4≤b< 5,(3)如图,当 b=5时,直线与圆相切,∵DE是直径,[根源:]∴∠ DCE=90°,∵CO⊥ DE,且 DO=EO,∴∠ ODC=OEC=45°,∴∠ CFE=∠ ODC=45°,∴存在点 P,使∠ CPE=45°,连结 OP,∵P 是切点,∴OP⊥ AB,∴OP所在的直线为:y=x,又∵ AB所在的直线为:y=﹣x+5,∴P(,).【评论】:本题主要考察了圆与一次函数的知识,解题的重点是作出协助线,明确两条直线垂直时 K的关系.6.如图,矩形 ABCD的边 AB=3cm,AD=4cm,点 E 从点 A出发,沿射线 AD挪动,以 CE为直径作圆 O,点 F 为圆 O与射线 BD的公共点,连结 EF、CF,过点 E作 EG⊥ EF,EG与圆 O订交于点 G,连结 CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止挪动,在点E挪动的过程中,①矩形 EFCG的面积能否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明原因;②求点 G挪动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判断与性质;圆周角定理;切线的性质;相像三角形的判断与性质.【剖析】:( 1)只需证到三个内角等于90°即可.FCE=∠ FDE,从而证到△CFE∽△ DAB,依据(2)易证点D在⊙ O上,依据圆周角定理可得∠S矩形ABCD 相像三角形的性质可获得S 矩形ABCD=2S△CFE=.而后只需求出CF的范围便可求出的范围.依据圆周角定理和矩形的性质可证到∠GDC=∠ FDE=定值,从而获得点G的挪动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:( 1)证明:如图1,∵CE为⊙ O的直径,[根源:学。
圆上的动点例题1: 如图(1):已知⊙O 的半径为6cm , 射 线PM 经 过点O ,OP=10cm ,射线PN 经过点⊙O 相切于点Q 。
A ,B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动,设运动时间为ts 。
求PQ 的长;(2)当为t 何值时,直线AB 与⊙O 相切。
练习:1.如图,⊙O 的半径为1,圆心O 在正三角形的边AB 上沿图示方向移动,当⊙O 移动到与AC边相切时,OA 的长是.2.在直角梯形ABCD 中,AD∥BC,∠B=90°,AD=13cm,BC=5cm,AB 为圆O 的直径,动点P 沿AD 从点A 开始向点D 以1m/s,的速度运动,动点Q 沿CB 从点C 开始向点B 以2cm/s 的速度运动,点P 、Q 分别从A 、C 两点同时出发,当其中一点停止时,另一点也随之停止运动。
是否存在某一时刻t,使直线PQ 与圆O 相切?若存在,求出t 的值,若不存在,说明理由。
A B Q O P N M例题2(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.练习:如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t ≥0). (1)试写出点A ,B 之间的距离d (厘米) 与时间t (秒)之间的函数表达式;(2)问点A 出发后多少秒两圆相切?例题3如图,在平面直角坐标系中,点1O 的坐标为(40) ,,以点1O 为圆心,8为半径的圆与x 轴交于A B ,两点,过A 作直线l 与x 轴负方向相交成60°的角,且交y 轴于C 点,以A B CO 图8H A BNM点2(135)O ,为圆心的圆与x 轴相切于点D . (1)求直线l 的解析式;(2)将2O ⊙以每秒1个单位的速度沿x 轴向左平移,当2O ⊙第一次与1O ⊙外切时,求2O ⊙平移的时间.练习:已知:如图所示,直线l 的解析式为334y x =-,并且与x 轴、y 轴分别交于点A 、B 。
圆形的动点问题
简介
圆形的动点问题是一个经典的数学问题,涉及到在一个固定半径的圆上找到一个动点的运动轨迹。
本文将探讨在给定的圆上找到一个动点的运动轨迹的一种简单策略。
策略
我们可以将圆形的动点问题简化为一个平面几何问题。
设定一个固定半径的圆,我们需要找到一个动点,在圆的周长上运动。
为了简化问题,我们将动点的速度设定为相等和恒定。
步骤
以下是解决圆形的动点问题的简单策略的步骤:
1. 确定圆的半径:首先,我们需要确定给定圆的半径。
这将帮助我们计算动点的运动轨迹。
2. 计算圆的周长:根据圆的半径,我们可以计算出圆的周长。
周长是动点在圆上运动的路径。
3. 确定动点的速度:我们需要确定动点的速度。
假设动点的速
度是相等和恒定的,以便简化问题。
4. 计算动点的运动轨迹:根据动点的速度和圆的周长,我们可
以计算出动点在给定圆上的运动轨迹。
5. 图形化运动轨迹:为了更直观地理解动点在圆上的运动轨迹,可以图形化展示。
结论
通过简化圆形的动点问题,我们可以使用上述策略找到动点的
运动轨迹。
这个问题对几何学及其应用具有重要意义,并且可以帮
助我们理解运动轨迹的计算方法。
请注意,以上策略是一种简化的方法,可能不适用于所有情况。
特殊情况下可能涉及更复杂的数学问题和计算方法。
以上是关于圆形的动点问题的简要介绍和解决策略。
希望这能
为您提供有用的信息。
动点问题(4)------与圆有关的动点直线与圆相切1.如图,⊙O 的半径为1,圆心O 在正三角形的边AB 上沿图示方向移动,当⊙O 移动到与AC 边相切时,OA 的长是 .2.如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,10cm OP ,射线PN 与⊙O 相切于点Q .A B ,两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为t s .(1)求PQ 的长; (2)当t 为何值时,直线AB 与⊙O 相切?3如图,ABC ∆中,090C ∠=,4AC =,3BC =.半径为1的圆的圆心P 以1个单位/s 的速度由点A 沿AC 方向在AC 上移动,设移动时间为t (单位:s ). (1)当t 为何值时,⊙P 与AB 相切;(2)作PD AC ⊥交AB 于点D ,如果⊙P 和线段BC 交于点E ,证明:当165t s=时,四边形PDBE 为平行四边形.4.(2012河北中考25)如图14,(50)(30).A B --,,,点C 在y 轴的正半轴上,CBO∠=45,CD AB ∥,90CDA = ∠.点P 从点(40)Q ,出发,沿x 轴向左以每秒1个单位长的速度运动,运动时间为t 秒.(1) 求点C 的坐标;(2) 当15BCP =∠时,求t 的值;(3) 以点P 为圆心,PC 为半径的P ⊙随点P 的运动而变化,当P ⊙与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.5.如图,形如量角器的半圆O的直径DE=12cm,形如三角板的⊿ABC中,∠ACB=90°,∠ABC= 30°,BC=12cm。
半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC 上。
设运动时间为t (s),当t=0s时,半圆O在⊿ABC的左侧,OC=8cm。
(1)当t为何值时,⊿ABC的一边所在直线与半圆O所在的圆相切?(2)当⊿ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与⊿ABC 三边围成的区域有重叠部分,求重叠部分的面积。
圆的动点问题方法总结
圆的动点问题涉及圆的运动轨迹和动点的位置变化。
在解决这类问题时,我们
可以采用以下方法:
1. 构建几何模型:首先,我们可以通过绘制几何图形来简化问题。
将圆和动点
在纸上画出来,有助于我们更清楚地理解问题。
2. 利用圆的性质:圆有很多重要的性质,我们可以利用这些性质来解决动点问题。
例如,圆的半径和直径之间的关系,圆的切线和切点的性质等。
3. 使用向量方法:在处理圆的动点问题时,向量方法很有用。
我们可以将动点
的位置表示为向量,并使用向量的运算规则来解决问题。
例如,我们可以用位置向量来表示动点的位置,并使用向量的加法和减法来计算动点的移动方向和距离。
4. 应用三角函数:如果涉及到角度的变化,我们可以使用三角函数来解决问题。
例如,如果动点绕圆心旋转,我们可以使用正弦和余弦函数来描述动点在不同位置的坐标变化。
5. 运用解析几何:解析几何是解决圆的动点问题的常用方法之一。
我们可以使
用坐标系和代数方程来描述圆和动点的运动轨迹。
通过求解方程组,我们可以得到动点的位置和移动方向。
总的来说,解决圆的动点问题需要充分利用圆的性质,运用几何、向量、三角
函数和解析几何等方法。
通过选择合适的方法,我们可以更好地理解问题并求解出准确的结果。
关于圆的动点问题常见解决方案[例谈圆中常见两解问题] 由于圆具有对称性,以及点、弦、角等元素在圆中位置的相对性.因此,在解答没有给出图形的圆的有关计算题时,就要仔细审题,周密思考,以防漏解. 一、有关点与圆的位置关系问题例1:点P到⊙O的最大距离是8cm,最小距离是4cm,则⊙O的半径是.分析:题中并没有说明点P与圆的位置关系,故需分点P在圆内与点P在圆外两种情况求解.(如图1)当点P在圆内时,由已知,得PA=4, PB=8.(如图2)当点P在圆外时,由已知,得PA=4,PB=8.综上所述,⊙O的半径为6cm或2cm.二、有关平行弦问题例2:已知四边形ABCD是⊙O的内接梯形,AB∥CD,AB=8,CD=6.⊙O的半径等于5,求梯形ABCD的高.分析:求圆内接梯形的高就是求圆中两条平行弦间的距离.(如图3)当AB、CD在圆心的两侧时,过圆心O作EF⊥AB于E,交CD于F.∵AB∥CD,∴EF⊥CD.连结OA、OD,则△OAE、△ODF都是直角三角形.∴梯形的高EF=OE+OF=3+4=7.(如图4)当AB、CD在圆心O的同侧时,作OF⊥CD于F,交AB于E,连结OA、OD.同理,求得OE=3,OF=4.∴梯形的高EF=OF-OE=4-3=1.综上所述,⊙O的内接梯形ABCD的高为7或1.三、有关公共弦问题例3:⊙O1和⊙O2相交于A、B两点,它们的半径AO1=20,AO2=15,公共弦AB=24,则△AO1O2的周长为 .分析:因为已知两圆的半径不等,所以,圆心可能在公共弦AB 的两侧(如图5),也可能在AB的同侧(如图6).分别在Rt△AO1C和Rt△AO2C中,由勾股定理求得O1C=16,O2C=9.∴O1O2=16+9=25.∴△AO1O2的周长为20+15+25=60.在图6中,同理求得O1C=16,O2C=9.∴O1O2=16-9=7.∴△AO1O2的周长为20+15+7=42.综上所述,△AO1O2的周长为60或42.四、有关两条弦的夹角问题分析:连结OA,则弦AC、AD可能在半径OA的两侧(如图7),也可能在OA的同侧(如图8).在图7中,连结OC.∴∠OAD=30°.∴∠CAD=∠CAO+∠OAD=45°+30°=75°.在图8中,同理求得∠OAD=30°,∠OAC=45°.∴∠CAD=∠OAC-∠OAD=45°-30°=15°.综上所述,∠CAD等于75°或15°.五、有关圆周角问题例5 :PA、PB是⊙O的切线,A、B是切点,∠APB=78°,点C是⊙O上异于A、B的任意一点,则∠ACB=.分析:如图9,因为C是⊙O上异于A、B的任意一点,所以点C可能在优弧AB上,也可能在劣弧 AB上.当点C在优弧AB上时,连结OA、OB,则OA⊥PA,OB⊥PB.又∠APB=78°,∴∠AOB=360°-90°-90°-78°=102°.当点C"在劣弧AB上时,四边形AC"BC是圆内接四边形.∴∠AC"B=180°-∠ACB=180°-51°=129°.综上所述,∠ACB等于51°或129°.六、有关圆的相切问题例6:以O为圆心的两个同心圆的半径分别9cm和5cm,若⊙A 与这两个圆都相切,则⊙A的半径为 .分析:因为相切分内切和外切两种,所以⊙A可能与大圆内切,与小圆外切(如图10),也可能与两个圆都内切(如图11).综上所述,⊙A的半径为2cm或7cm.本文为全文原貌未安装PDF浏览器用户请先下载安装原版全文内容仅供参考。
圆动点问题的常见思路
圆动点问题是一种经典的运动学问题,通常涉及到一个固定圆周上有一动点,且该动点以某种方式移动,例如作简谐振动或绕圆周做匀角速度运动等。
这类问题的求解思路可以归纳为以下几种:
1、构造与分解法:将动点的运动分解成沿圆周方向和垂直于圆周方向的两个独立的运动,然后对它们进行分别处理,最后再合并起来得出完整的解。
2、向量法:将圆周运动转换为向量运算,通过向量的代数运算求解。
3、几何法:利用圆的性质和三角函数,构造相应的几何图形,从而得出所需的解。
4、分析法:根据运动学基本公式,列出运动学方程,然后通过求解方程组来得出所需的解。
5、能量守恒法:对于一些特殊的圆动点问题,可以利用机械能守恒原理来求解。
与圆有关的动点问题GDMDC 06B(1)求/ APC 与Z ACD 的度数⑶OD动点M 从点F 出发,按逆时针方向运动半周Z A = 60o,以点D 为圆心的OD 与边AB 相切于点ES A HD M 3 S △ MDF 时,求动点 M2、如图,在菱形 ABCD 中, A 吐⑴求证:OD 与边BC 也相切向左移动正 M , N 分别是边BC , AD⑵设OD 与BD 相交于点H,与边CD 相交于点F ,连接HF,求图中阴影部分的面积(结果保留二) 经过的弧长(结果保留二)(2)当点P 移动到CB 弧的中点时,求证:四边形 OBP (是菱形 DC 在I 上.过点B 作的一条切线BE , E 为切点.如图1,当点A 在。
O 上时,Z EBA 的度数是 __________ 2,当E , A , D 三点在同一直线上时,求线段 OA 的长 以正方形ABCD 的边AD 与OF 重合的位置为初始位置, (图3),至边BC 与OF 重合时结束移动 MON 的面积的范围. (3) P 点移动到什么位置时,△ APW A ABC 全等,请说明理由1、如图,©O 的直径AB=4 C 为圆周上一点,AC=2过点C 作。
0的切线DC , P 点为优弧CBA 上一动 3、半径为2cm 的与O O 边长为2cm 的正方形ABCD 在水平直线I 的同侧O O 与I 相切于点F (1) ① 填空:如图1,当点 ②如图2,当E ,A , I (2)以正方形ABCD 方形(图3),至边BC 与O O 的公共点,求扇形 D C團2 与AB 、过点 、AD 及O O 半径的长 求y 关于x 的函数关系式 求相应的y 值. &旦刈 AB点(不与A. C 重合)F D C (F 图14、如图,Rt △ ABC 的内切圆O O BC=3,点P 在射线AC 上运动 (1) 直接写出线段AC (2) 设 PH=x , PC=y , (3) 当PH 与O O 相切时DFC /图3BC 、CA 分别相切于点 D 、E 、F ,且Z ACB=90 ° °AB=5 P 作PH 丄AB ,垂足为H .t7』 B\/1X I-0\AM DB5、如图1,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与 M 、 C 重合),以AB 为直径作。
0,过点P 作。
O 的切线,交AD 于点F ,切点为E . (1) 求证:OF // BE ;(2) 设BP=x , AF=y ,求y 关于x 的函数解析式,并写出自变量 x 的取值范围;(3) 延长DC 、FP 交于点G,连接0E 并延长交直线DC 与H (图2),问是否存在点卩,使厶EFO ^^ EHG (E 、F 、0与E 、H 、G 为对应点)?如果存在,试求(2)中x 和y 的值;如果不存在,请说明理 由.6 如图0的半径为1,直线CD 经过圆心0,交。
0于C 、D 两点,直径AB 丄CD ,点M 是直 线CD 上异于点C 、0、D 的一个动点,AM 所在的直线交于。
0于点N ,点P 是直线CD 上另一点, 且 PM=PN . (1) 当点M 在。
0内部,如图一,试判断PN 与。
0的关系,并写出证明过程;(2) 当点M 在。
0外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由; (3) 当点M 在。
0外部,如图三,/ AM0=15 °求图中阴影部分的面积.<E1>A -------------------------C1•/ AB=4 二 0A=0B=0C= AB=2=2D又••• AC=2 ••• AC=0A=0G \A AC0 为等边三角形。
•••/ A0C M AC0M 0AC=60 ,答案:1、解:(1)连接AC 如图所示:•••/ APC=1/ AOC=30。
2又DC与圆O相切于点C,「. OCL DC DCO=90。
•••/ ACDM DCOZ ACO=90 - 60° =30°。
(2)连接PB, OP•/ AB 为直径,/ AOC=60,•/ COB=120。
当点P移动到弧CB的中点时,/ COP M POB=60。
•••△ COP^n^ BOP 都为等边三角形。
• AC=CP=OA=OP•四边形AOP(为菱形。
(3)当点P与B重合时,△ ABC与厶APC重合,显然△ ABC^^ APC当点P继续运动到CP经过圆心时,△ ABC^^CPA理由为:V CP与AB都为圆O的直径,•/ CAP/ ACB=90。
在Rt△ ABC与Rt △ CPA中,AB=CP AC=AC• Rt△ ABC^Rt△ CPA( HL)。
综上所述,当点P与B重合时和点P运动到CP经过圆心时,△ ABC^^CPA2、解:(1)证明:连接DE,过点D作DN丄BC,垂足为点N。
•••四边形ABCD是菱形,• BD平分/ ABC。
VO D与边AB相切于点E,「. DE丄AB。
二DN=DE。
•O D与边BC也相切。
(2)V四边形ABCD 是菱形,AB = 2 3,二AD = AB = 2 3。
又V/ A = 60o,「. DE = ADsin60 0= 3,即O D 的半径是3。
1又V/ HDF = / HADC = 60o, DH = DF, •△ HDF 是等边三角形。
2过点H作HG丄DF,垂足为点G,则HG = 3si n60°= 3 3。
21 3 厂' 9 1—• SH D F S 3 2 “43, S60汉兀汉32扇形HDF :…S阴影=S扇形HDF 一S.HDF3609 —6二-9匸3- 3 =。
4(3)假设点M运动到点M i时,=3二。
24满足S^ HDF = ^/3S^MDF , 过点M1作M i P丄DF,垂足为点P,则9灯3=却3 1 3 M1P,解得M P=-。
4 2 2••• M1P= DM 1。
•/ MQF = 30Q2此时动点M经过的弧长为: 30 二3 _ ■:180 2。
过点M^,作MM2// DF交O D于点M2,则满足S HDF = 3S M1DF =3S'M2DF ,此时/ M2DF = 150o,动点M经过的弧长为: 150 ■: : <35':3•解:(1)①•••半径为2cm的与O O边长为2cm的正方形ABCD在水平直线I的同侧, 点B作的一条切线BE , E为切点,••• OB=4 , EO=2,/ OEB=90 ,•••/ EBA的度数是:30°A在O O上时,过②如图2,•••直线I与O O相切于点F,•••/ OFD=90 ,•••正方形ADCB 中,/ ADC=90•OF // AD ,•/ OF=AD=2 ,•四边形OFDA为平行四边形,•••/ OFD=90 ,•平行四边形OFDA为矩形,•DA 丄AO ,•••正方形ABCD中,DA丄AB ,•O , A, B三点在同一条直线上;•EA 丄OB ,•••/ OEB= / AOE ,•△ EOA BOE ,•OA OEOE - OB,•OE2=OA?OB ,•OA (2+OA ) =4 ,解得:OA=-1土5,•/ OA > 0 ,• OA= 5 -1 ;方法二:在Rt △ OAE 中,cos / EOA= 在Rt △ EOB 中,cos / EOB= OA _ 0A 0E 一2,0E _ 2 0B 一0A 2• 0A 二22 一0A 2'解得:OA=-1土「5 ,OA > 0 ,• OA= n/5 -1 ;方法三:•/ OE 丄EB , EA 丄OB ,•由射影定理,得OE2=OA?OB , • OA (2+OA ) =4 ,解得:0A=-1土 •/ 0A > 0 , ••• 0A=、5-1 ;n i ° ■ 2(2)如图 3,设/ MON=° , S 扇形 MON =---------- X2 = — n (cm ),36090S 随n 的增大而增大,/ MON 取最大值时,S 扇形MON 最大, 当/ MON 取最小值时,S 扇形MON 最小, 如图,过O 点作OK 丄MN 于K ,•••/ MON=2 / NOK , MN=2NK , NK在 Rt △ ONK 中,sin / NOK=——ONNOK 随NK 的增大而增大,•/ MON 随MN 的增大而增大, MN 最大时/ MON 最大,当 MN 最小时/ MON 最小, N , M , A 分别与 D , B , O 重合时,MN 最大,MN=BD , ,S扇形MON 最大=n (cm ), MN 最小,4、(1)连接AO 、DO •设O O 的半径为r .AC= , - ' _卜;-’=4,则O O 的半径r= (AC+BC - AB ) = (4+3 - 5)=1 ; 2 2••• CE 、CF 是O O 的切线,/ ACB=90 ° •••/ CFO= / FCE= / CEO=90 ° CF=CE , •四边形CEOF 是正方形, • CF=OF=1 ;又••• AD 、AF 是O O 的切线, • AF=AD ;• AF=AC - CF=AC - OF=4 -仁3 ,即 AD=3;•••当 ① 当/ MON= / BOD=90② 当MN=DC=2时,• ON=MN=OM ,•••/ NOM=6° ,2 2、S 扇形MON 最小 ------- n ( cm ),3NK在Rt △ ABC 中,由勾股定理得 图3(2)在Rt△ ABC 中,AB=5 , AC=4 , BC=3 , •••/ C=90 ° PH 丄AB ,•••/ C=Z PHA=90 °•••/ A= / A ,• △ AHP s\ ACB ,• FH= AP = AC - PC•莎- AB-,即:'=——-,• y= - x+4,即y与x的函数关系式是3 5 3(3)如图,P'H'与O O相切.•••/ OMH =Z MH 'D= / H'DO=90 °OM=OD ,•四边形OMH D是正方形,•MH =OM=1 ;由(1)知,四边形CFOE是正方形,CF=OF=1 ,•P H =P M+MH =P 'F+FC=P 'C, 即卩x=y ;又由(2)知,y= - x+4 ,3FE、FA是O O的两条切线•/ FAO= / FEO=90 °在Rt△ OAF 和Rt△ OEF 中,r FO=FO\OA=OE•Rt△ FAO也Rt△ FEO (HL ),•/ AOF= / EOF= / AOE ,2•/ AOF= / ABE ,•OF// BE , y= - x+4;3/• PQ=BP - BQ=x - y PF=EF+EP=FA+BP=x+y •/在 Rt △ PFQ 中 2 2 2FQ +QP =PF2 2 .2 + (X - y ) = (x+y ) 化简得:匸 (1 v X V 2);K(3)存在这样的P 点, 理由:I/ EOF= / AOF , •••/ EHG= / EOA=2 / EOF ,当/ EFO= / EHG=2 / EOF 时, 即/ EOF=30。