全等三角形全章复习与巩固(提高)知识讲解.doc
- 格式:doc
- 大小:361.00 KB
- 文档页数:12
全等三角形单元复习与巩固一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;●探索三角形全等的条件,能利用三角形全等进行证明,掌握综合法证明的格式;●掌握尺规作图作角平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质和判定,并会利用角的平分线的性质和判定进行证明;●能用三角形的全等和角平分线性质解决实际问题。
重点难点:●重点:理解证明的基本过程,掌握用综合法证明的格式;三角形全等的性质和条件以及角平分线的性质。
●难点:掌握用综合法证明的格式;选用合适的条件证明两个三角形全等。
学习策略:●通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
在三角形全等知识的基础上,探究理解角平分线的性质和判定,并通过练习加深本章知识的理解及灵活运用。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对知识网络知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。
请在虚线部分填写预习内容,在实线部分填写课堂学习内容。
课堂笔记或者其它补充填在右栏。
知识点一:全等形能够完全的两个图形叫做全等形.知识点二:全等三角形能够完全的两个三角形叫做全等三角形.要点诠释:(1)互相重合的顶点叫做,互相重合的边叫做,互相重合的角叫做.(2)在写两个三角形全等时,通常把的字母写在对应位置上,这样容易写出对应边、对应角.例如,△ABC与△DFE全等,点A与点,点B与点,点C与点是对应顶点,记作△ABC≌△DFE,而不写作△ABC≌△EFD等其他形式.知识点三:全等三角形的性质全等三角形的对应边、对应角.知识点四:两个三角形全等的条件(一)边角边:有和它们的对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).注:运用边角边公理判定两个三角形全等时要抓住角是两边的夹角,边是夹这个角的两边,不要错误认为:两个三角形只要有两条边和一个角对应相等,这两个三角形就一定全等.(二)角边角:有和它们的对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).(三)边边边:对应相等的两个三角形全等(可以简写成“边边边”或“SSS”).以简写成“角角边”或“AAS”)(五)斜边、直角边(HL):在两个直角三角形中,和一条对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。
《全等三角形》全章复习与巩固(基础)知识讲解【学习目标】1. 掌握常见的五种基本尺规作图;理解命题与逆命题、定理与逆定理的意义,并能判断命题的真假;2.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法;4.理解并能应用直角三角形的性质解题;理解并能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法“斜边,直角边”(即“HL”)判定两个直角三角形全等;5.理解并掌握角平分线、线段垂直平分线的性质定理及其逆定理,能用它们解决作图题、几何计算及证明题.【知识网络】【要点梳理】要点一、全等三角形的性质和判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).全等三角形判定2——“边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).全等三角形判定3——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).全等三角形判定4——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).要点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等.(2)可以从已知出发,看已知条件确定证哪两个三角形全等.(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等.(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.3.判定直角三角形全等的特殊方法——斜边直角边定理斜边直角边定理(或简记为HL):斜边和一条直角边分别相等的两个直角三角形全等.要点诠释:判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.要点二、等腰三角形1.等腰三角形的性质及其作用性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质1用之证明同一个三角形中的两角相等,是证明角相等的一个重要依据.性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).性质2用来证明线段相等,角相等,垂直关系等.2.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.3.等边三角形的性质和判定:性质:等边三角形三个内角都相等,并且每一个内角都等于60°.判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.要点诠释:由等边三角形的“三线合一”可得:在直角三角形中,30°所对的直角边等于斜边的一半.要点三、尺规作图、命题、定理与逆命题、逆定理1.尺规作图只能使用圆规和没有刻度的直尺这两种工具作几何图形的方法称为尺规作图.要点诠释:(1)要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.(2)掌握五种基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;经过一已知点作已知直线的垂线;作已知线段的垂直平分线.并能利用本章的知识理解这些基本作图的方法.2.命题与逆命题判断一件事件的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.要点诠释:(1)对于命题的定义要正确理解,也即是通过这句话可以确定一件事是发生了还是没发生,如果这句话不能对于结果给予肯定或者否定的回答,那它就不是命题.(2)每一个命题都可以写成“如果…,那么…”的形式,“如果”后面为题设部分,“那么”后面为结论部分.(3)所有的命题都有逆命题.原命题正确,它的逆命题不一定正确.3.定理与逆定理数学中,有些命题可以从基本事实或者其他真命题出发,用逻用推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.如果一个定理的逆命题也是真命题,那就称它为原定理的逆定理.要点诠释:(1)定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.(2)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理.要点四、角平分线、线段垂直平分线的性质定理及其逆定理1.角平分线性质定理及其逆定理角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边的距离相等的点在角的平分线上.要点诠释:性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意着两者的区别,在使用这两个定理时不要混淆了.2.线段垂直平分线(也称中垂线)的性质定理及其逆定理线段的垂直平分线上的点到线段两端的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.要点诠释:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理则是在结论中确定线段被垂直平分,一定要注意着两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.【典型例题】类型二、全等三角形的性质和判定1、已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E 三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【思路点拨】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【答案与解析】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE 特殊位置关系为BD⊥CE.【总结升华】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形是仔细观察,认真推敲方可.做题时,有时需要先猜后证.举一反三:【变式】如图,已知:AE ⊥AB ,AD ⊥AC ,AB =AC ,∠B =∠C ,求证:BD =CE.【答案】证明:∵AE ⊥AB ,AD ⊥AC ,∴∠EAB =∠DAC =90° ∴∠EAB +∠DAE =∠DAC +∠DAE ,即∠DAB =∠EAC.在△DAB 与△EAC 中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA )∴BD =CE.2、(2016秋•诸暨市期中)如图,已知∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA=PC . 求证:∠PCB+∠BAP=180°.【思路点拨】过点P 作PE ⊥BA 于E ,根据角平分线上的点到角的两边距离相等可得PE=PF ,然后利用HL 证明Rt △PEA 与Rt △PFC 全等,根据全等三角形对应角相等可得∠PAE=∠PCB ,再根据平角的定义解答.【答案与解析】证明:如图,过点P 作PE ⊥BA 于E ,∵∠1=∠2,PF ⊥BC 于F ,∴PE=PF ,∠PEA=∠PFB=90°,在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL ),∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.举一反三:【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==, ∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E +∠EAF =90°,即∠AFE =90°即ED ⊥AC .类型二、等腰三角形3、如图,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.【思路点拨】要判断△AFC 的形状,可通过判断角的关系来得出结论,那么就要看∠FAC 和 ∠FCA 的关系.因为∠BAD =∠BCE ,因此我们只比较∠BAC 和∠BCA 的关系即可.【答案与解析】解:△AFC 是等腰三角形.理由如下:在△BAD 与△BCE 中,∵∠B =∠B ,∠BAD =∠BCE ,BD =BE ,∴△BAD≌△BCE,∴BA=BC,∠BAC=∠BCA,∴∠BAC-∠BAD=∠BCA-∠BCE,即∠FAC=∠FCA.∴AF=CF,∴△AFC是等腰三角形.【总结升华】利用全等三角形来得出角相等是本题解题的关键.举一反三:【变式】如图,∠1=∠2,AB=AD,∠B=∠D=90°,请判断△AEC的形状,并说明理由.【答案】解:△AEC是等腰三角形.理由如下:∵∠1=∠2,∴∠1+∠3=∠2+∠3,即∠BAC=∠DAE,又∵AB=AD,∠B=∠D,∴△ABC≌△ADE(ASA),∴AC=AE.即△AEC是等腰三角形.4、数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).(1)已知:如图①,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小乔发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出两个不同类型且具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(说明:要求画出的两个三角形不相似,且不是等腰三角形.)(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.【思路点拨】(1)根据等边对等角,及角平分线定义,易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,可得AD=BD=CB,∴△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.(2)解:如下图所示:(3)解:如图所示:5、已知角α和线段c如图所示,求作等腰三角形ABC,使其底角∠B=α,腰长AB=c.要求仅用直尺和圆规作图,写出作法,并保留作图痕迹.已知:求作:【思路点拨】作射线BP,再作∠PBQ=∠α;在射线BQ上截取BA=c;以点A为圆心,线段c 为半径作弧交BP于点C;连接AC.则△ABC为所求.【答案与解析】解:作法:(1)作射线BP,再作∠PBQ=∠α;(2)在射线BQ上截取BA=c;(3)以点A为圆心,线段c为半径作弧交BP于点C;(4)连接AC.则△ABC为所求.△ABC就是所求作的三角形.【总结升华】此题主要考查三角形的作法,是一些基本作图的综合应用.举一反三:【变式】已知△ABC,按下列要求作图:(保留作图痕迹,不写作法)(1)作BC边上的高AD;(2)作△ABC的平分线BE.(尺规作图)【答案】解:如图:类型四、角平分线、线段垂直平分线性质定理与逆定理6、如图,AD是△ABC的角平分线,EF是AD的垂直平分线.求证:(1)∠EAD=∠EDA.(2)DF∥AC.(3)∠EAC=∠B.【思路点拨】(1)根据垂直平分线上任意一点,到线段两端点的距离相等可得到AE=DE,再根据等角对等边可得到∠EAD=∠EDA;(2)根据线段垂直平分线的性质证明AF=DF,进而得到∠BAD=∠ADF,再利用角平分线的性质可得到∠BAD=∠CAD,利用等量代换可得∠ADF=∠CAD,再根据平行线的判定即可得到DF∥AC;(3)根据三角形内角与外角的关系可得到结论.【答案与解析】证明:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠BAD=∠ADF,∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∴∠ADF=∠CAD,∴DF∥AC;(3)由(1)∠EAD=∠EDA,即∠ADE=∠CAD+∠EAC,∵∠ADE=∠BAD+∠B,∠BAD=∠CAD,∴∠EAC=∠B.【总结升华】此题主要考查了线段的垂直平分线的性质,等腰三角形的性质,平行线的判定以及三角形内角与外角的关系,题目综合性较强,但是难度不大,需要同学们掌握好基础知识.举一反三:【变式1】如图,BP是△ABC的外角平分线,点P在∠BAC的角平分线上.求证:CP是△ABC的外角平分线.【答案】证明:过P作三边AB、AC、BC的垂线段PD、PE、PF,∵BP是△ABC的外角平分线,PD⊥AD,PF⊥BC,∴PD=PF(角平分线上的点到角两边的距离相等),∵点P在∠BAC的角平分线上,PD⊥AD,PE⊥AE,∴PD=PE(角平分线上的点到角两边的距离相等),∴PF=PE,PF⊥BC,PE⊥AE,∴CP是△ABC的外角平分线(在角的内部,到角两边距离相等的点在角的平分线上).【变式2】如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.。
全等三角形判定二(ASA ,AAS )(提高)【学习目标】1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】【高清课堂:379110 全等三角形判定二,知识点讲解】 要点一、全等三角形判定3——“角边角” 全等三角形判定3——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点二、全等三角形判定4——“角角边” 1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表: 已知条件 可选择的判定方法 一边一角对应相等 SAS AAS ASA 两角对应相等 ASA AAS 两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等; (4)如果以上方法都行不通,就添加辅助线,构造全等三角形. 【典型例题】类型一、全等三角形的判定3——“角边角”1、如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【思路点拨】通过已知条件证明∠DAC=∠C ,∠CBF=∠ADG,则可证△DAE≌△BCF 【答案与解析】 证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC ∴∠ABC=2∠CBF ∵∠ABC=2∠ADG ∴∠CBF=∠ADG在△DAE 与△BCF 中⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA ) ∴DE=BF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等. 举一反三:【高清课堂:379110 全等三角形判定二,例7】【变式】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高, ∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4 ∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA ) ∴PM =HN类型二、全等三角形的判定4——“角角边”2、(2016•黄陂区模拟)如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,过C 点作直线l ,点 D ,E 在直线l 上,连接AD ,BE ,∠ADC=∠CEB=90°.求证:△ADC ≌△CEB .【思路点拨】先证明∠DAC=∠ECB ,根据AAS 证△ADC ≌△CEB . 【答案与解析】证明:∵∠DAC +∠DCA=∠ECB +∠DCA=90°,∴∠DAC=∠ECB , 在△ADC 和△CEB 中,,∴△ADC ≌△CEB (AAS ).【总结升华】本题考查三角形全等的判定方法,注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 举一反三: 【变式】(2015•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF ,AC=DF ;②AB=DE,∠B=∠E .BC=EF ; ③∠B=∠E ,BC=EF ,∠C=∠F ; ④AB=DE,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A.1组B.2组C.3组D.4组【答案】C .解:第①组满足SSS ,能证明△ABC ≌△DEF .第②组满足SAS ,能证明△ABC ≌△DEF . 第③组满足ASA ,能证明△ABC ≌△DEF . 第④组只是SSA ,不能证明△ABC ≌△DEF . 所以有3组能证明△ABC ≌△DEF . 故符合条件的有3组. 故选:C .3、平面内有一等腰直角三角板(∠ACB =90°)和一直线MN .过点C 作CE ⊥MN 于点E ,过点B 作BF ⊥MN 于点F .当点E 与点A 重合时(如图1),易证:AF +BF =2CE .当三角板绕点A 顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF 、BF 、CE 之间又有怎样的数量关系,请直接写出你的猜想,不需证明.【思路点拨】过B 作BH ⊥CE 与点H ,易证△ACE ≌△CBH ,根据全等三角形的对应边相等,即可证得AF +BF =2CE . 【答案与解析】解:图2,AF +BF =2CE 仍成立, 证明:过B 作BH ⊥CE 于点H ,∵∠CBH +∠BCH =∠ACE +∠BCH =90° ∴∠CBH =∠ACE在△ACE 与△CBH 中,90ACH CBH AEC CHB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ACE ≌△CBH .(AAS ) ∴CH =AE ,BF =HE ,CE =EF ,∴AF +BF =AE +EF +BF =CH +EF +HE =CE +EF =2EC .【总结升华】正确作出垂线,构造全等三角形是解决本题的关键. 举一反三:【变式】已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB 于E 、F .当∠EDF 绕D 点旋转到DE ⊥AC 于E 时(如图1),易证12DEF CEF ABC S S S +=△△△;当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.【答案】解:图2成立; 证明图2:过点D 作DM AC DN BC ⊥⊥, 则90DME DNF MDN ∠=∠=∠=°在△AMD 和△DNB 中,AMD=DNB=90A BAD BD ∠∠︒⎧⎪∠=∠⎨⎪=⎩∴△AMD ≌△DNB (AAS ) ∴DM =DN∵∠MDE +∠EDN =∠NDF +∠EDN =90°, ∴∠ MDE =∠NDF 在△DME 与△DNF 中,图2ADBCEMN F90EMD FDN DM DNMDE NDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△DME ≌△DNF (ASA ) ∴DME DNF S S =△△∴DEF CEF DMCN DECF S =S =S S .+△△四边形四边形 可知ABC DMCN 1S =S 2△四边形, ∴12DEF CEF ABC S S S +=△△△ 类型三、全等三角形判定的实际应用4、(2015春•龙岗区期末)小强为了测量一幢高楼高AB ,在旗杆CD 与楼之间选定一点P .测得旗杆顶C 视线PC 与地面夹角∠DPC=36°,测楼顶A 视线PA 与地面夹角∠APB=54°,量得P 到楼底距离PB 与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB 是多少米?【思路点拨】根据题意可得△CPD ≌△PAB (ASA ),进而利用AB=DP=DB ﹣PB 求出即可. 【答案与解析】解:∵∠CPD=36°,∠APB=54°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=54°, 在△CPD 和△PAB 中∵,∴△CPD ≌△PAB (ASA ), ∴DP=AB ,∵DB=36,PB=10, ∴AB=36﹣10=26(m ), 答:楼高AB 是26米.【总结升华】此题主要考查了全等三角形的应用,根据题意得出△CPD ≌△PAB 是解题关键.附录资料:《三角形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力. 【知识网络】【要点梳理】要点一、三角形的有关概念和性质 1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. 2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•丰润区二模)若三角形的两条边长分别为6cm和10cm,则它的第三边长不可能为()A.5cm B.8cm C.10cm D.17cm【思路点拨】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【答案与解析】解:∵三角形的两条边长分别为6cm和10cm,∴第三边长的取值范围是:4<x<16,∴它的第三边长不可能为:17cm.故选:D.【总结升华】此题主要考查了三角形三边关系,正确得出第三边的取值范围是解题关键.【高清课堂:与三角形有关的线段例1】举一反三【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能;(2)不能;(3)能.2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3. (江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部. 举一反三【变式】如图所示,已知△ABC ,试画出△ABC 各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD =BD ,②△BCD 的周长比 △ACD 的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm ,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3.又∵ BC =8,∴ AC =5.答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型三、与三角形有关的角5、(2014春•新泰市期末)已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°,(1)求∠BAE 的度数;(2)求∠C 的度数.【思路点拨】(1)根据AD 是BC 边上的高和∠DAE=10°,求得∠AED 的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC 的度数,再根据三角形的内角和定理就可求得∠C 的度数.【答案与解析】解:(1)∵AD是BC边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣10°=80°.∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°.(2)∵AE是∠BAC平分线,∴∠BAC=2∠BAE=2×30°=60°.∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【总结升华】本题主要考查了三角形的内角和定理、角平分线的定义以及三角形的外角性质.【高清课堂:与三角形有关的角例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】设这个多边形是边形,则它的内角和是,∴,解得.∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三【变式】(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是.【答案】9.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,边数:360°÷40°=9.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【答案】C;类型七、镶嵌问题9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①B、②C、③D、④【答案】C【总结升华】用多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题.。
17《三角形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.【典型例题】类型一、三角形的三边关系1.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( ).A .6个B .5个C .4个D .3个【答案】D【解析】x 的取值范围:511x <<,又x 为偶数,所以x 的值可以是6, 8, 10,故x 的值有3个.【总结升华】不要忽略“x 为偶数”这一条件.举一反三:【变式】三角形的三边长为2,x-3,4,且都为整数,则共能组成 个不同的三角形.当x 为 时,所组成的三角形周长最大.【答案】三;8 (由三角形两边之和大于第三边,两边之差小于第三边,有4-2<x-3<4+2,解得5<x<9,因为x 为整数,故x 可取6,7,8;当x=8时,组成的三角形周长最大为11).2.如图,O 是△ABC 内一点,连接OB 和OC .(1)你能说明OB+OC <AB+AC 的理由吗?(2)若AB =5,AC =6,BC =7,你能写出OB+OC 的取值范围吗?【答案与解析】解:(1)如图,延长BO 交AC 于点E ,根据三角形的三边关系可以得到,在△ABE 中,AB+AE >BE ;在△EOC 中,OE+EC >OC ,两不等式相加,得AB+AE+OE+EC >BE+OC .由图可知,AE+EC =AC ,BE =OB+OE .所以AB+AC+OE >OB+OC+OE ,即OB+OC <AB+AC .(2)因为OB+OC >BC ,所以OB+OC >7.【总结升华】充分利用三角形三边关系的性质进行解题.类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少?【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,∵BD是AC边上的高(已知),∴∠ADB=90°(垂直定义).又∵∠ABD=30°(已知),∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.又∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=120°,又∵∠ABC=∠C,∴∠C=60°.(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,∵∠ABD=30°(已知),所以∠BAD=60°.∴∠BAC=120°.又∵∠BAC+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=60°.∴∠C=30°.综上,∠C的度数为60°或30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.举一反三:【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
备战中考数学(苏版五四学制)巩固复习第十八章全等三角形(含解析)一、单选题1.如图,在△ABC和△DEF中,已知AB=DE,BC=EF,依照(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三个均能够2.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EB.BC=EC,AC=DC C.BC=EC,∠A=∠D D.∠B=∠E,∠A=∠D3.如图,△ABC≌△EDF,∠FED=70°,则∠A的度数是()A.50°B.70°C.90°D.20°4.如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△AC D的条件是()A.AB=AC B.∠B AC=90°C.BD=AC D.∠B=45°5.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是()A.∠A=∠D B.∠E=∠C C.∠A=∠C D.∠1=∠26.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=5,△BCD的面积为5,则ED的长为()A.B.1C.2D.57.如图,点A,E,F,D在同一直线上,若AB∥CD,AB=CD,AE= FD,则图中的全等三角形有()A.1对B.2对C.3对D.4对8.如图所示,两个完全相同的含30°角的Rt△ABC和Rt△AED叠放在一起,BC交DE于点O,AB交DE于点G,BC交AE于点F,且∠DA B=30°,以下三个结论:①AF⊥BC;②△ADG≌△ACF;③O为BC的中点;④AG=BG.其中正确的个数为()A.1B.2C.3D.49.如图,AD平分∠BAC,AB=AC,那么判定△ABD≌△ACD的理由是()A.SSSB.SASC.ASAD.AAS10.在下列条件中,不能说明△ABC≌△A′B′C′的是()A.∠C=∠C′,AC=A′C′,BC=B′C′ B.∠B =∠B′,∠C=∠C′,AB=A′B′C.∠A=∠A′,AB=A′B′,BC=B′C′ D.AB =A′B′,BC=B′C′,AC=A′C11.下列图形是全等三角形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形 D.一个钝角相等的两个等腰三角形12.如图,已知AB=AD,添加一个条件后,仍旧不能判定△ABC≌△ADC 的是()A.CB=CDB.∠BA C=∠DACC.∠BCA=∠D CAD.∠B=∠D=90°二、填空题13.如图,D在线段BE上一点,AB=AC,AD=AE,∠BAC=∠DAE,∠1=22°,∠2=28°,∠3=________°.14.如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,那个条件是________.15.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC 上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF =5cm,则AE=________cm.16.如图,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论:①EM=F N,②CD=DN,③∠FAN=∠EAM.④△ACN≌△ABM.其中正确的有________.17.要用反证法证明命题“一个三角形中不可能有两个角是直角”,第一应假设那个三角形中________.18.如图,在△ABC中,D,E分别是AB,AC的中点,延长DE至F,使EF = DE,若AB = 10,BC = 8,则四边形BCFD的周长为________19.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为__ ______20.如图,点D,E,F,B在同一条直线上,AB∥CD,AE∥CF且AE =CF,若BD=10,BF=3.5,则EF=________.21.若△ABC≌△DEF,AB=DE,BC=EF,则AC的对应边是________,∠ACB的对应角是________.三、解答题22.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求证:AB=AC.四、综合题23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)直截了当写出AB+AC与AE之间的等量关系.24.在△ABC中,∠ACB=90°,AC=BC,直线MN通过点C,且AD ⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC ≌△CEB.②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣B E;(3)当直线MN绕点C旋转到图(3)的位置时,请直截了当写出D E,AD,BE之间的等量关系.25.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,请你添加一个条件使∠DAB=∠EAC.(1)你添加的条件是________;(2)依照上述添加的条件证明∠DAB=∠EAC.答案解析部分一、单选题1.【答案】B【考点】全等三角形的判定【解析】【分析】依照三角形全等的判定中的SAS,即两边夹角.做题时依照已知条件,结合全等的判定方法逐一验证,要由位置选择方法。
《解三角形》全章知识复习与巩固 编稿:张林娟 审稿:孙永钊【学习目标】1. 通过对任意三角形边长和角度关系的度量,掌握正弦定理、余弦定理,并能解一些简单的三角形;2. 能够运用正弦定理、余弦定理等知识和方法解决一些简单的几何计算问题及相关的实际问题. 【知识网络】【要点梳理】 要点一:正弦定理△ABC 中,各边和它所对角的正弦比相等,即:sin sin sin a b cA B C==要点诠释:(1)正弦定理适合于任何三角形,且2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆半径). (2)应用正弦定理解决的题型:①已知两角与一边,求其它;②已知两边与一边的对角,求其它. (3)在“已知两边与一边的对角,求其它”的类型中,可能出现无解、一解或两解,应结合“三角形中大边对大角”定理及几何作图来帮助理解.要点二:余弦定理 在△ABC 中,2222cos a b c bc A =+-, 2222cos b a c ac B =+-, 2222cos c a b ab C =+-.变形为:222cos 2b c a A bc+-=,222cos 2a c b B ac +-=, 222cos 2a b c C ab+-=. 要点诠释:(1)应用余弦定理解决的题型:①已知三边,求各角;②已知两边和一边的对角,求其它;③已知两边和夹角,求其它.(2)正、余弦定理的实质是一样的,从而正弦定理能解的问题余弦定理也一定能解,反之亦然;只是方便程度有别.(3)正、余弦定理可以结合使用. 要点三:三角形的面积公式(1) 111222a b c S ah bh ch ===,其中,,a b c h h h 分别为,,a b c 边上的高;(2) 111sin sin sin 222S ab C bc A ac B ===;(3) S =2a b cp ++=. 要点四:三角形形状的判定方法设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C , 1. 解斜三角形的主要依据(1)角与角关系:由于A B C ++=π,由诱导公式可知, ()()()sin sin sin sin sin sin A B C B C A A C B +=+=+=,,; ()()()cos cos cos cos cos cos .A B C B C A A C B +=+=-+=-,, ; ()()()tan tan tan tan tan tan A B C B C A A C B +=+=-+=-,, ;sincos ,cos sin 2222A B C A B C++==. (2)边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a > b ; (3)边与角关系:正弦定理、余弦定理 2. 常用两种途径(1)由正余弦定理将边转化为角; (2)由正余弦定理将角转化为边. 3. 几种常见的判断方法(1)若sin sin A B =,则△ABC 为等腰三角形;(2)若sin 2sin 2A B =,则△ABC 为等腰三角形或直角三角形; (3)若()sin 0A B -=,则△ABC 为等腰三角形;(4)若()sin 22=0A B -,则△ABC 为等腰三角形或钝角三角形. 要点诠释:(1)化简中将三角形内角和、三角同角基本关系式、诱导公式、两角和与差的三角公式等综合结合起来.(2)在△ABC 中,熟记并会证明:角A ,B ,C 成等差数列⇔B =60°;△ABC 是正三角形的⇔A ,B ,C 成等差数列且a ,b ,c 成等比数列. 要点五:解三角形应用举例的分类1. 距离问题:一点可到达另一点不可到达;两点都不可到达;2. 高度问题(最后都转化为解直角三角形);3. 角度问题;4. 面积问题. 【典型例题】类型一:求解斜三角形中的基本元素例1. △ABC 中,D 为边BC 上的一点,BD =33,5sin 13B =,3cos 5ADC ∠=,求AD . 【思路点拨】确定在在△ABD 中运用正弦定理,将问题转化为求BAD ∠的正弦值. 【解析】由3cos 05ADC ∠=>知2B <π. 由已知得12cos 13B =,4sin 5ADC ∠=,从而sin sin()BAD ADC B ∠=∠-=sin cos cos sin ADC B ADC B ∠-∠412353351351365=⨯-⨯=.由正弦定理得sin sin AD BDB BAD=∠, 所以sin sin BD BAD BAD⋅=∠53313==253365⨯【总结升华】解答此类问题应注意以下几点:(1)画出三角形,把相关数据标注在三角形中,便于确定已知和所求;(2)明确求解所用的定理,有些题目正、余弦定理都可以求解;(3)注意对三角形的内角和定理、大边对大角定理的灵活运用,避免增解、漏解的现象.举一反三:【变式1】设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . 若()()a b c a b c ab +-++=,则角C =_______.【答案】由222()()a b c a b c ab a b c ab +-+-=⇒+-=- 根据余弦定理可得22212cos 223a b c C C ab +-==-⇒=π【变式2】在△ABC 中,已知∠BAC =60°,∠ABC =45°,BC =AC =_______. 【答案】由正弦定理得sin sin AC BCABC BAC=∠∠,即sin 45AC =°得AC =.类型二:判断三角形的形状(或求角)例2. 在△ABC 中,角A B C 、、所对的边分别为a b c ,,,已知1cos24C =-.(1)求sin C 的值;(2)当2a =,2sin sin A C =时,求b 及c 的长.【思路点拨】(1)利用二倍角公式及三角形内角的范围,易求得sinC 的值;(2)首先利用正弦定理将角化为边,易求得边c ,要求边b ,考虑用余弦定理,即先求出cosC 的值.【解析】(1)因为21cos212sin 4C C =-=-,及0C <<π,所以sin C =(2)当a =2,2sinA =sinC 时,由正弦定理sin sin a cA C=,得c =4. 由21cos22cos 14C C =-=-,及0C <<π得cos C =.由余弦定理得2222cos c a b ab C =+-,得2120b ±-=.解得b 或所以4b c ⎧=⎪⎨=⎪⎩或 4.b c ⎧=⎪⎨=⎪⎩【总结升华】解答该类题目要注意以下几个方面:(1)借助图形标注已知和所求;(2)利用三角形的性质把相关条件化归到同一个三角形中;(3)注意灵活利用正、余弦定理,实施边、角互化.举一反三:【变式1】在△ABC 中,角A B C 、、所对的边分别为a b c ,,,若22a b -,sin C B =,则A 的度数为 【答案 】30°sin C B c =⇒=,222222a b a b c c -⇒---2222b c a c ⇒+-=,∴ 2222cos 222b c a c c A bc bc b +-=====, ∴ A =30°【变式2】设△ABC 的内角A B C 、、所对的边分别为a b c ,,,若三边的长为连续的三个正整数,且320cos A B C b a A =>>,,则sin sin sin A B C ::为( )A .4:3:2 B. 5:6:7 C. 5:4:3 D. 6:5:4 【答案】D由于a ,b ,c 三边的长为连续的三个正整数,且A >B >C ,可设三边长分别为 a 、a-1、a-2.又3b=20acosA ,可得33(1)5cos 20202(2)b a a A a a a --===- 解得6a =,故三边是6,5,4.由正弦定理可得sinA :sinB :sinC=6:5:4类型三:解决与面积有关的问题例3. 已知ABC △1,且sin sin A B C +=. (1)求边AB 的长;(2)若ABC △的面积为1sin 6C ,求角C 的度数.【思路点拨】(1)由正弦定理及三角形的周长,易求出边AB 的长;(2)画出简易图,将已知条件在图上标出来,运用余弦定理求得角C 的余弦值.【解析】(1)由题意及正弦定理,得1AB BC AC ++, BC AC +=,两式相减,得1AB =.(2)由ABC △的面积11sin sin 26BC AC C C ⋅⋅=,得13BC AC ⋅=,由余弦定理,得222cos 2AC BC AB C AC BC +-=⋅ 22()2122AC BC AC BC AB AC BC +-⋅-==⋅,所以60C =.【总结升华】解答该类题目要注意以下几个方面:(1)借助图形标注已知和所求;(2)利用三角形的性质把相关条件化归到同一个三角形中;(3)注意灵活利用正、余弦定理,实施边、角互化.【变式1】在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S =________由2222cos a b c bc A =+-可得3AC =,故面积1==2S AB AC ⨯.【变式2】.在△ABC 中,已知8,5BC AC ==,三角形面积为12,则cos2C = . 【答案】725三角形面积S =1sin 2BC AC C ⨯⨯,可得3sin =5C ,故2cos212sin C C = =725.类型四:三角形的综合应用例4. 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (1)求B 的大小;(2)求cos sin A C +的取值范围.【思路点拨】(1)利用正弦定理将边进行角的转换,求得B 的正弦值,进而求B ;(2)利用三角形中的内角和定理,利用三角函数的知识进行求解.【解析】(1)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =.(2)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭3cos 2A A =3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=,2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭.3A π⎛⎫<+< ⎪⎝⎭所以cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. 【总结升华】本题考查解三角形,三角恒等变换以及正弦定理的应用.高考中,三角解答题一般有两种题型:一、解三角形:主要是运用正余弦定理来求解边长,角度,周长,面积等;二、三角函数的图像与性质:主要是运用和角公式,倍角公式,辅助角公式进行三角恒等变换,求解三角函数的最小正周期,单调区间,最值(值域)等.来年需要注意第二种题型的考查. 举一反三:【变式1】已知a b c ,,为△ABC 的三个内角A B C ,,的对边,向量m =1-),n =(cos sin A A ,).若m ⊥n ,且cos cos sin a B b A c C +=,则角B = 【答案】6π【变式2】已知函数21()cos cos 2222x x xf x +-,△ABC 中三个内角A B C ,,的对边分别为a b c ,,.(1)求()f x 的单调增区间;(2)若()1f B C +=,1a b ==,求角C 的大小.【答案】(I )因为21()cos cos 2222x x xf x =+-cos 1cos 22121x x x x =+-=++ πsin()6x =+又sin y x =的单调递增区间为ππ2π,2π 22k k -+(),(Z)k ∈ 所以令πππ2π2π262k x k -<+<+ 解得2ππ2π2π 33k x k -<<+ 所以函数()f x 的单调增区间为2ππ(2π,2π) 33k k -+,(Z)k ∈(2)因为()1,f B C +=所以πsin()16B C ++=,又(0,π)B C +∈,ππ7π(,)666B C ++∈所以πππ,623B C B C ++=+=, 所以2π3A =. 由正弦定理sin sin B Ab a=, 把3,1a b ==代入,得到1sin 2B =,又,b a <B A <,所以π6B =,所以π6C =.类型五:利用正、余弦定理解决实际问题例5. 在2012年的“利剑”军事演习中红方为了准确分析战场形势,在两个相距为3a的军事基地C 和D ,测得蓝方两支精锐部队分别在A 处和B 处,且∠ADB =30°,∠BDC =30°,∠DCA =60°,∠ACB =45°,如下图所示,求蓝方这两支精锐部队的距离.【思路点拨】首先根据问题的背景,把相关数据标注在图形中,转化到解三角形中求边长的问题,然后根据已知选用相应的定理进行求解,最后把求解的结果还原为实际问题的答案.【解法】解法一:∵ ∠ADC =∠ADB+∠CDB =60°,∠ACD =60°, ∴ ∠DAC =60°, ∴ 3AD CD ==, 在△BCD 中,∠DBC =180°-30°-105°=45°, 由正弦定理得sin sin DB CDBCD DBC=∠∠, 62sin 3334sin 2BCD BD CDaDBC +∠+===∠. 在△ADB 中,由余弦定理得,2222cos AB AD BD AD BD ADB =+-⋅⋅∠22233333333248a a a a a ⎛⎫++=+-⨯⨯⨯= ⎪ ⎪⎝⎭, ∴ 6AB a =或6aAB =-(舍去), ∴ 蓝方这两支精锐部队的距离为6a . 解法二:(同解法一)3AD DC AC a ===, 在△BCD 中,∠DBC =45°,由正弦定理得sin30sin 45BC CD=°°, ∴ 6BC a =, 在△ABC 中,由余弦定理得2222cos 45AB AC BC AC BC =+-⋅⋅°2223336232488a a a a a =+-⨯⨯⨯=, ∴ 6AB a =或6aAB =(舍去), ∴ 蓝方这两支精锐部队的距离为6a . 【总结升华】测量两个不可到达的点之间的距离问题,一般是把求距离问题转化为求三角形的边长问题,首先要明确题意,根据条件和图形特征寻找可解的三角形,然后利用正弦定理或余弦定理求解,另外基线的选取要恰当.举一反三:【变式1】如图,A 、B 两点都在河的对岸(不可到达),测量者在河岸边选定两点C 、D ,测得40CD m =,并且在C 、D 两点分别测得060ACB ∠=,060ADB ∠=,030BCD ∠=,045ADC ∠=,求河的对岸的两点A 、B 间的距离。
全等三角形全章复习与巩固(提高)责编:某老师【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式; 3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质进行证明. 【知识网络】【要点梳理】【高清课堂:388614 全等三角形单元复习,知识要点】 要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边 要点三、角平分线的性质 1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法:可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、巧引辅助线构造全等三角形(1).倍长中线法1、已知,如图,△ABC中,D是BC中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.【思路点拨】因为D 是BC 的中点,按倍长中线法,倍长过中点的线段DF ,使DG =DF,证明△EDG ≌△EDF ,△FDC≌△GDB,这样就把BE 、CF 与EF 线段转化到了△BEG 中,利用两边之和大于第三边可证.【答案与解析】BE +CF >EF ;证明:延长FD 到G ,使DG =DF,连接BG 、EG∵D 是BC 中点 ∴BD=CD 又∵DE⊥DF在△EDG 和△EDF 中ED ED EDG EDF DG DF =⎧⎪∠=∠⎨⎪=⎩∴△EDG ≌△EDF (SAS ) ∴EG=EF在△FDC 与△GDB 中⎪⎩⎪⎨⎧=∠=∠=DG DF BD CD 21 ∴△FDC≌△GDB(SAS) ∴CF=BG ∵BG+BE >EG ∴BE+CF >EF【总结升华】有中点的时候作辅助线可考虑倍长中线法(或倍长过中点的线段). 举一反三:【变式】已知:如图所示,CE 、CB 分别是△ABC 与△ADC 的中线,且∠ACB =∠ABC.求证:CD =2CE .【答案】证明: 延长CE 至F 使EF =CE ,连接BF . ∵ EC 为中线,∴ AE=BE.在△AEC与△BEF中,,,,AE BEAEC BEF CE EF=⎧⎪∠=∠⎨⎪=⎩∴△AEC≌△BEF(SAS).∴ AC=BF,∠A=∠FBE.(全等三角形对应边、角相等)又∵∠ACB=∠ABC,∠DBC=∠ACB+∠A,∠FBC=∠ABC+∠A.∴ AC=AB,∠DBC=∠FBC.∴ AB=BF.又∵ BC为△ADC的中线,∴ AB=BD.即BF=BD.在△FCB与△DCB中,,,,BF BDFBC DBC BC BC=⎧⎪∠=∠⎨⎪=⎩∴△FCB≌△DCB(SAS).∴ CF=CD.即CD=2CE.(2).作以角平分线为对称轴的翻折变换构造全等三角形2、(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF ∥BC交AC于点F.试说明AE=CF.【思路点拨】作EH⊥AB于H,作FG⊥BC于G,根据角平分线的性质可得EH=ED,再证ED=FG,则EH=FG,通过证明△AEH≌△CFG即可.【答案与解析】解:作EH⊥AB于H,作FG⊥BC于G,∵∠1=∠2,AD⊥BC,∴EH=ED(角平分线的性质)∵EF∥BC,AD⊥BC,FG⊥BC,∴四边形EFGD是矩形,∴ED=FG,∴EH=FG,∵∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,又∵∠AHE=∠FGC=90°,∴△AEH≌△CFG(AAS)∴AE=CF.【总结升华】本题考查了角平分线的性质;由角平分线构造全等,综合利用了角平分线的性质、同角的余角相等、全等三角形的判定等知识点. 举一反三:【变式】如图,AD 是ABC ∆的角平分线,H ,G 分别在AC ,AB 上,且HD =BD.(1)求证:∠B 与∠AHD 互补;(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.【答案】 证明:(1)在AB 上取一点M, 使得AM =AH, 连接DM.∵ ∠CAD=∠BAD, AD=AD, ∴ △AHD≌△AMD. ∴ HD=MD, ∠AHD=∠AMD. ∵ HD=DB,∴ DB= MD. ∴ ∠DMB=∠B.∵ ∠AMD+∠DMB =180︒, ∴ ∠AHD+∠B=180︒. 即 ∠B 与∠AHD 互补.(2)由(1)∠AHD=∠AMD, HD=MD, ∠AHD+∠B=180︒.∵ ∠B+2∠DGA =180︒, ∴ ∠AHD=2∠DGA. ∴ ∠AMD=2∠DGM.∵ ∠AMD=∠DGM+∠GDM. ∴ 2∠DGM=∠DGM+∠GDM. ∴ ∠DGM=∠GDM. ∴ MD=MG. ∴ HD= MG.∵ AG= AM +MG,∴ AG= AH +HD.(3).利用截长(或补短)法作构造全等三角形3、(2015•新宾县模拟)如图,△ABC 中,AB=AC ,点P 是三角形右外一点,且∠APB=∠ABC .(1)如图1,若∠BAC=60°,点P 恰巧在∠ABC 的平分线上,PA=2,求PB 的长; (2)如图2,若∠BAC=60°,探究PA ,PB ,PC 的数量关系,并证明; (3)如图3,若∠BAC=120°,请直接写出PA ,PB ,PC 的数量关系.M G HDCA【思路点拨】(1)AB=AC,∠BAC=60°,证得△ABC是等边三角形,∠APB=∠ABC,得到∠APB=60°,又点P恰巧在∠ABC的平分线上,得到∠ABP=30°,得到直角三角形,利用直角三角形的性质解出结果.(2)在BP上截取PD,使PD=PA,连结AD,得到△ADP是等边三角形,再通过三角形全等证得结论.(3)以A为圆心,以AP的长为半径画弧交BP于D,连接AD,过点A作AF⊥BP交BP 于F,得到等腰三角形,然后通过三角形全等证得结论.【答案与解析】解:(1)∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∠APB=∠ABC,∴∠APB=60°,又∵点P恰巧在∠ABC的平分线上,∴∠ABP=30°,∴∠PAB=90°,∴BP=2AP,∵AP=2,∴BP=4;(2)结论:PA+PC=PB.证明:如图1,在BP上截取PD,使PD=PA,连结AD,∵∠APB=60°,∴△ADP是等边三角形,∴∠DAP=60°,∴∠1=∠2,PA=PD,在△ABD与△ACP中,,∴△ABD≌△ACP,∴PC=BD,∴PA+PC=PB;(3)结论:PA+PC=PB.证明:如图2,以A 为圆心,以AP 的长为半径画弧交BP 于D ,连接AD ,过点A 作AF ⊥BP 交BP 于F , ∴AP=AD ,∵∠BAC=120°, ∴∠ABC=30°, ∴∠APB=30°, ∴∠DAP=120°, ∴∠1=∠2,在△ABD 与△ACP 中,,∴△ABD ≌△ACP , ∴BD=PC , ∵AF ⊥PD , ∴PF=AP ,∴PD=AP , ∴PA+PC=PB .【总结升华】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,直角三角形的性质,等边三角形的判定和性质,截长补短作辅助线构造全等三角形是解题的关键. 举一反三:【变式】如图,AD 是△ABC 的角平分线,AB >AC,求证:AB -AC >BD -DC【答案】证明:在AB 上截取AE =AC,连结DE∵AD 是△ABC 的角平分线, ∴∠BAD=∠CAD 在△AED 与△ACD 中⎪⎩⎪⎨⎧=∠=∠=AD AD CAD BAD AC AE EDCBA∴△AED≌△ADC(SAS)∴DE=DC在△BED中,BE>BD-DC即AB-AE>BD-DC∴AB-AC>BD-DC(4).在角的平分线上取一点向角的两边作垂线段4、(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF ∥BC交AC于点F.试说明AE=CF.【思路点拨】作EH⊥AB于H,作FG⊥BC于G,根据角平分线的性质可得EH=ED,再证ED=FG,则EH=FG,通过证明△AEH≌△CFG即可.【答案与解析】解:作EH⊥AB于H,作FG⊥BC于G,∵∠1=∠2,AD⊥BC,∴EH=ED(角平分线的性质)∵EF∥BC,AD⊥BC,FG⊥BC,∴四边形EFGD是矩形,∴ED=FG,∴EH=FG,∵∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,又∵∠AHE=∠FGC=90°,∴△AEH≌△CFG(AAS)∴AE=CF.【总结升华】本题考查了角平分线的性质;已知角平分线,构造全等三角形,综合利用了角平分线的性质、同角的余角相等、全等三角形的判定等知识点.5、如图所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,12AE BD,求证:BD是∠ABC的平分线.【答案与解析】证明:延长AE和BC,交于点F,∵AC⊥BC,BE⊥AE,∠ADE=∠BDC(对顶角相等),∴∠EAD+∠ADE=∠CBD+∠BDC.即∠EAD=∠CBD.在Rt△ACF和Rt△BCD中.所以Rt△ACF≌Rt△BCD(ASA).则AF=BD(全等三角形对应边相等).∵AE=BD,∴AE=AF,即AE=EF.在Rt△BEA和Rt△BEF中,则Rt△BEA≌Rt△BEF(SAS).所以∠ABE=∠FBE(全等三角形对应角相等),即BD是∠ABC的平分线.【总结升华】如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.类型二、全等三角形动态型问题【高清课堂:379111 直角三角形全等的判定,巩固练习5】6、在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,垂足分别为E,F.(1)如图1当直线l不与底边AB相交时,求证:EF=AE+BF.(2)将直线l绕点C顺时针旋转,使l与底边AB相交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系,①AD>BD;②AD=BD;③AD<BD.【答案与解析】证明:(1)∵AE ⊥l ,BF ⊥l ,∴∠AEC =∠CFB =90°,∠1+∠2=90°∵∠ACB =90°,∴∠2+∠3=90° ∴∠1=∠3。