定义法及模拟法求概率
- 格式:ppt
- 大小:1.19 MB
- 文档页数:50
当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。
设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。
蒙特卡罗模拟因摩纳哥著名的赌场而得名。
它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。
数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。
但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。
最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。
科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特性时才表露出来。
贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。
”蒙特卡罗方法(MC)蒙特卡罗(Monte Carlo)方法:蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。
传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
这也是我们采用该方法的原因。
蒙特卡罗方法的基本原理及思想如下:当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。
高中概率知识点总结高中概率知识点总结概率,又称或然率、机会率、机率(几率)或可能性,它是概率论的基本概念。
概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
以下是小编整理的高中概率知识点总结,希望能够帮助到大家!高中概率知识点总结篇1一.算法,概率和统计1.算法初步(约12课时)(1)算法的含义、程序框图①通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。
②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。
在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
(2)基本算法语句经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。
(3)通过阅读中国古代中的算法案例,体会中国古代对世界发展的贡献。
3.概率(约8课时)(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
(2)通过实例,了解两个互斥事件的概率加法公式。
(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
(4)了解随机数的意义,能运用模拟(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。
(5)通过阅读材料,了解人类认识随机现象的过程。
2.统计(约16课时)(1)随机抽样①能从现实生活或其他学科中提出具有一定价值的统计问题。
②结合具体的实际问题情境,理解随机抽样的必要性和重要性。
③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
④能通过试验、查阅、设计调查问卷等方法收集数据。
(2)用样本估计总体①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。
§1.4 概率的公理化定义及概率的性质一、几何概率一个随机试验,如果数学模型是古典概型,那么描述这个实验的样本空间Ω,文件域 F 和概率P 已在前面得到解决。
在古典概型中,试验的结果是有限的,受到了很大的限制。
在实际问题中经常遇到试验结果是无限的情况的。
例如,若我们在一个面积为ΩS 的区域Ω中,等可能的任意投点,这里等可能的确切意义是这样的:在区域Ω中有任意一个小区域A ,若它的面积为A S , 则点A 落在A 中的可能性大小与A S 成正比,而与A 的位置及形状无关。
如果点A 落在区域A 这个随机事件仍记为A ,则由P(Ω)=1可得Ω=S S A P A)(, 这一类概率称为几何概率。
同样,如果在一条线段上投点,那么只需要将面积改为长度,如果在一个立方体内投点,则只需将面积改为体积。
例1:(会面问题)甲乙两人约定在6时到7时之间某处会面,并约定先到者应等候另一人一刻钟,过时即可离去,求两人能会面的概率。
解:以x 和y 分别表示甲乙约会的时间,则600,600≤≤≤≤y x 。
两人能会面的充要条件是15≤-y x 在平面上建立直角坐标系(如教材图)则(x,y )的所有可能结果是边长为60米的正方形,而可能会面的时间由图中阴影部分表示。
这是一个几何概率问题,由等可能性 167604560)(222=-==ΩS S A P A例2 蒲丰(Buffon )投针问题。
平面上画有等距离的平行线,平行线间的距离为a(a>0),向平面任意投掷一枚长为l(l<a)的针,试求针与平行线相交的概率。
解:假设x 表示针的中点与最近一条平行线的距离,又以ϕ表示针与此直线间的交角,有20ax ≤≤,πϕ≤≤0 由这两式可以确定ϕ,x 平面上的一个矩形 }0,20),({πϕϕ≤≤≤≤=Ωax x , 这时为了针与平行线相交,其条件为ϕsin 2lx ≤,由这个不等式表示的区域A 是图中的阴影部分 }sin 2,20),({ϕϕlx a x x A ≤≤≤=由等可能性可知 a la d lS S A P A ππϕϕπ22sin 2)(0===⎰Ω 若l,a 为已知,则以π值代入上式,即可计算得P (A )的值。
均匀随机数的产生教学设计教学目标:1.能够利用随机模拟试验估计事件的概率.2.了解把未知量的估计问题转化为随机模拟问题.3.会根据题目条件合理设计简单的随机模拟试验. 教学重点:会根据题目条件合理设计简单的随机模拟试验. 教学方法:讲练结合、启发式. 教学过程: 知识梳理知识点1: 均匀随机数定义:如果试验的结果是在区间[a ,b]上的__________,并且出现每一个实数都是________的,则称这些实数为均匀随机数. 知识点2:均匀随机数的产生1.计算器上产生[0,1]的均匀随机数的函数是________函数.2.Excel 软件产生[0,1]区间上均匀随机数的函数为“________”. 知识点3:用模拟方法近似计算某事件概率的方法[化解疑难](1)均匀随机数的理解①均匀随机数是随机产生的,在一定的区域长度上出现的概率是均等的.②均匀随机数是小数或整数,相邻两个均匀随机数的步长是人为设定的.(2)应用模拟试验近似计算概率的方法要点分析用均匀随机数模拟试验时,首先把实际问题转化为可以用随机数来模拟试验结果的概率模型,也就是怎样用随机数刻画影响随机事件结果的量.我们可以从以下几个方面考虑:①由影响随机事件结果的量的个数确定需要产生的随机数组数.如长度型、角度型只用一组,面积型需要两组.②由所有基本事件总体对应的区域确定产生随机数的范围.③由事件A发生的条件确定随机数所应满足的关系式求事件A的概率.基础自测1.用均匀随机数进行随机模拟,可以解决( )A.只能求几何概型的概率,不能解决其他问题B.不仅能求几何概型的概率,还能计算图形的面积C.不但能估计几何概型的概率,还能估计图形的面积D.最适合估计古典概型的概率解析:很明显用均匀随机数进行随机模拟,不但能估计几何概型的概率,还能估计图形的面积,得到的是近似值,不是精确值,用均匀随机数进行随机模拟,不适合估计古典概型的概率.2.将[0,1]内的均匀随机数转化为[-2,6]内的均匀随机数,需实施的变换为( )A.a=a1*8B.a=a1*8+2C.a=a1*8-2D.a=a1*6解析:将[0,1]内的随机数转化为[a,b]内的随机数需进行的变化为a=a1*(b-a)+a=a1*8-2.答案:C3.下列关于随机数的说法中:①计算器只能产生(0,1)之间的随机数;②计算器能产生指定两个整数值之间的均匀随机数;用随机模拟法估计长度型几何概型自主练透型例1、 取一根长度为5 m 的绳子,拉直后在任意位置剪断,用均匀随机模拟方法估计剪得两段的长都不小于2 m 的概率有多大? 解析: 设剪得两段的长都不小于2 m 为事件A.法一:(1)利用计算器或计算机产生n 个0~1之间的均匀随机数,x =RAND ; (2)作伸缩变换:y =x*(5-0),转化为[0,5]上的均匀随机数; (3)统计出[2,3]内均匀随机数的个数m ; (4)则概率P(A)的近似值为m/n.法二:(1)做一个带有指针的转盘,把圆周五等分,标上刻度[0,5](这里5和0重合); (2)固定指针转动转盘或固定转盘旋转指针,记下指针在[2,3]内(表示剪断绳子位置在[2,3]范围内)的次数m 及试验总次数n ; (3)则概率P(A)的近似值为m/n. [归纳升华]利用随机模拟计算概率的步骤 (1)确定概率模型;(2)进行随机模拟试验,即利用计算器等以及伸缩和平移变换得到[a,b]上的均匀随机数;(3)统计计算;(4)得出结论,近似求得概率.1.已知米粒等可能地落入如图所示的四边形ABCD 内,如果通过大量的实验发现米粒落入△BCD 内的频率稳定在49附近,那么点A 和点C 到直线BD 的距离之比约为 .解析: 设米粒落入△BCD 内的频率为P 1,米粒落入△BAD 内的频率为P 2,点C 和点A 到直线BD的距离分别为d 1,d 2,根据题意:P 2=1-P 1=1-49=59, 又∵P 1=S △BCDS 四边形ABCD=12×BD ×d 1S 四边形ABCD , P 2=S △BAD S 四边形ABCD =12×BD ×d 2S 四边形ABCD∴P 2P1=d 2d 1=54. 用随机模拟估计面积型的几何概型多维探究型如图所示,在墙上挂着一块边长为32 cm 的正方形木板,上面画了小、中、大三个同心圆,半径分别为3 cm ,6 cm ,9 cm ,某人站在3 m 之外向此板投镖,假设投镖击在线上或没有投中木板不算,可重投,用随机模拟的方法估计:(1)“投中小圆内”的概率是多少?(2)“投中小圆与中圆形成的圆环”的概率是多少?解析:记事件A ={投中小圆内},事件B={投中小圆与中圆形成的圆环}.按如下步骤进行:(1)用计算机产生两组[0,1]上的均匀随机数,a1=RAND,b1=RAND;(2)经过伸缩和平移变换,a=a1·32-16,b=b1·32-16,得到两组[-16,16]上的均匀随机数;(3)统计投在小圆内的次数N1(即满足a2+b2<9的点(a,b)的个数),投中小圆与中圆形成的圆环的次数N2(即满足9<a2+b2<36的点(a,b)的个数),投中木板的总次数N(即满足-16<a<16,-16<b<16的点(a,b)的个数);(4)计算频率f n(A)=N1N,f n(B)=N2N,即分别为概率P(A),P(B)的近似值.[归纳升华]用随机模拟方法估计长度型与面积型几何概型的概率的联系与区别(1)联系:二者模拟试验的方法和步骤基本相同,都需产生随机数;(2)区别:长度型几何概型只要产生一组均匀随机数即可,所求事件的概率为表示事件的长度之比,对面积型几何概型问题,一般需要确定点的位置,而一组随机数是不能在平面上确定点的位置的,故需要利用两组均匀随机数分别表示点的横纵坐标,从而确定点的位置,所求事件的概率为点的个数比.2.现向图中所示正方形内随机地投掷飞镖,试用随机模拟的方法求飞镖落在阴影部分的概率.解析:(1)利用计算器或计算机产生两组0至1区间内的均匀随机数a1、b1(共N组);(2)经过平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2;(3)数出满足不等式b<2a-43,即6a-3b>4的数组数N1.所求概率P≈N1N.可以发现,试验次数越多,概率P越接近25 144.利用随机模拟的方法计算不规则图形的面积多维探究型(1)如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23D.无法计算(2)利用随机模拟的方法近似计算图中阴影部分(抛物线y =2-2x -x 2与x 轴围成的图形)的面积.解析: (1)由几何概型的公式可得S 阴影S 正方形=23,又S 正方形=4, ∴S 阴影=4×23=83.(2)①利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND ;②经过平移和伸缩变换,a =a 1·4-3,b =b 1·3,得到一组[-3,1]和一组[0,3]上的均匀随机数;③统计试验总次数N 和落在阴影部分的点数N 1(满足条件b <2-2a -a 2的点(a ,b )的个数);④计算频率N 1N就是点落在阴影部分的概率的近似值;⑤设阴影部分的面积为S ,由几何概型概率公式得点落在阴影部分的概率为S 12,所以S 12≈N 1N ,故S ≈12N 1N即为阴影部分面积的近似值.[归纳升华]利用随机模拟法估计图形面积的步骤(1)把已知图形放在平面直角坐标系中,将图形看成某规则图形(长方形或圆等)内的一部分,并用阴影表示;(2)利用随机模拟方法在规则图形内任取一点,求出落在阴影部分的概率P (A )=N 1N ;(3)设阴影部分的面积是S ,规则图形的面积是S ′,则有S S ′=N 1N ,解得S =N 1NS ′,则已知图形面积的近似值为N 1NS ′.3.利用随机模拟的方法近似计算图中阴影部分(曲线y =2x与直线x =±1及x 轴围成的图形)的面积.解析: 设事件A 为“随机向正方形内投点,所投的点落在阴影部分”,操作步骤如下:第一步,用计数器n 记录做了多少次试验,用计数器m 记录其中有多少次(x ,y )满足-1<x <1,0<y <2x(即点落在图中阴影部分),首先设置n =0,m =0;第二步,用变换rand( )*2-1产生-1~1之间的均匀随机数x 表示所投点的横坐标,用变换rand( )*2产生0~2之间的均匀随机数y 表示所投点的纵坐标;第三步,判断点是否落在阴影部分,即是否满足y <2x,如果是, 则计数器m 的值加1,即m =m +1,如果不是,m 的值保持不变;第四步,表示随机试验次数的计数器n的值加1,即n=n+1,如果还要试验,则返回步骤第二步继续执行,否则结束.程序结束后事件A发生的频率mn作为事件A的概率的近似值.设阴影部分的面积为S,正方形面积为4,由几何概型概率计算公式得,P(A)=S4,所以mn≈S4,故4mn可作为阴影部分面积S的近似值.。
解简单的概率转换问题概率转换问题是概率论中的一个重要内容,其涉及到数学模型、数据分析和逻辑推理等方面的知识。
在解决简单的概率转换问题时,我们需要运用一些基本的概率规则和计算方法。
本文将从概率的定义、概率转换的常见问题以及解决问题的方法等角度进行探讨。
一、概率的定义概率是描述事件发生可能性的数值,通常用0到1之间的一个实数表示。
概率P(A)表示事件A发生的可能性大小,其数值在0到1之间,其中0表示不可能发生,1表示必然发生。
在计算概率时,我们需要运用概率的基本性质和规则,例如加法原理、乘法原理等。
二、概率转换的常见问题1. 联合概率问题:给定两个事件A和B,如何计算两个事件同时发生的概率P(A∩B)?根据乘法原理,P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。
2. 条件概率问题:给定事件A,如何计算在事件A发生的条件下,事件B发生的概率P(B|A)?根据条件概率的定义,P(B|A) = P(A∩B) /P(A),其中P(A∩B)表示事件A和B同时发生的概率,P(A)表示事件A 发生的概率。
3. 相互独立事件问题:如果两个事件A和B是相互独立的,那么事件A的发生与否不会对事件B的发生造成影响,反之亦然。
在独立事件条件下,P(A∩B) = P(A) × P(B),其中P(A)和P(B)分别表示事件A和B发生的概率。
三、解决问题的方法在解决概率转换问题时,我们可以运用以下几种常用的方法:1. 统计法:通过实验、观测或调查等手段,获取事件发生的频率数据,然后根据频率估计概率。
例如,我们可以通过投掷一枚均匀的骰子来估计掷出1的概率。
2. 理论法:通过利用概率的基本性质和规则,运用数学推理的方法,计算概率。
例如,通过使用条件概率的计算公式,可以计算出在已知某些条件下的事件发生概率。
3. 模拟法:通过构建概率模型,使用计算机进行模拟,得到事件发生的概率。
概率模拟使用随机数生成器进行概率模拟概率模拟:使用随机数生成器进行概率模拟概率模拟是一种通过生成随机事件来模拟研究概率问题的方法。
为了有效进行概率模拟,我们常常使用随机数生成器来产生符合一定概率分布的随机数。
本文将介绍概率模拟的基本原理,并详细说明如何使用随机数生成器进行概率模拟。
一、概率模拟基本原理概率模拟是基于概率论的一种分析方法,通过模拟随机事件的发生情况来预测其概率分布。
在现实世界中,很多事件的结果是不确定的,无法通过精确计算得到其概率。
这时候,我们可以通过随机数生成器模拟一系列随机事件,然后根据模拟结果统计频率,从而推断真实概率。
概率模拟的基本原理可以用以下步骤总结:1. 定义随机试验:明确研究对象、试验过程和结果。
2. 设定概率分布:根据实际情况,假设事件的概率分布。
3. 生成随机数:使用随机数生成器生成符合设定概率分布的随机数。
4. 进行模拟:多次独立地重复试验,并记录事件发生的频率。
5. 统计频率:根据模拟结果统计频率分布,推断真实概率。
二、随机数生成器的选择随机数生成器是概率模拟的关键工具,它能够生成满足特定概率分布的随机数序列。
在选择随机数生成器时,需要考虑以下几个因素:1. 均匀性:生成的随机数应该具有均匀分布特性,保证随机性。
2. 独立性:生成的随机数应该相互独立,避免序列中的随机数之间存在相关性。
3. 有效性:生成的随机数应该能够满足模拟的需求,有足够的精度和范围。
常用的随机数生成器包括线性同余法、Mersenne Twister算法等。
三、使用随机数生成器进行概率模拟的步骤使用随机数生成器进行概率模拟通常包括以下几个步骤:1. 确定模拟的随机事件和概率分布。
在进行概率模拟前,首先需要明确研究对象和所关注的随机事件,并根据实际情况设定相应的概率分布。
2. 设定随机数生成器参数。
根据所选择的随机数生成器,设定相应的参数,如随机数种子、生成的随机数范围等。
3. 生成随机数序列。
排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。
在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。
1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。
2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。
3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。
4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。
5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。
6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。
7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。
8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。
9. 对称性法,利用排列组合的对称性质,简化计算过程。
10. 逆向思维法,从问题的逆向思考,求解排列组合问题。
11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。
12. 构造法,通过构造合适的排列组合模型,求解问题。
13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。
14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。
15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。
16. 模拟法,通过模拟排列组合过程,求解问题。
17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。
18. 穷举法,通过穷举所有可能的情况,求解问题。
19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。
第九章概率初步知识点归纳【知识梳理】 济宁附中李涛1、事件类型:○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.○2不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件. ○3不确定事件: 许多事情我们无法确定它会不会发生,称为不确定事件(又叫随机事件). 说明:(1)必然事件、不可能事件都称为确定性事件.(2)事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, ① 必然事件发生的概率为1,即P(必然事件)=1; ② 不可能事件发生的概率为0,即P (不可能事件)=0; ③ 如果A 为不确定事件,那么0<P(A)<12、概率定义(1)概率的频率定义:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
(2)概率的一般定义:就是刻划(描述)事件发生的可能性的大小的量叫做概率.又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。
是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。
3、概率表示方法一般地,事件用英文大写字母A ,B ,C ,…,表示。
事件A 的概率p ,可记为P (A )=P4、概率的计算 ①等可能事件的概率• 古典概型古典概型讨论的对象是所有可能结果为有限个等可能的情形,每个基本事件发生的可能性是相同的。
历史上古典概型是由研究诸如掷骰子一类赌博游戏中的问题引起的。
计算古典概型,公式:分析方法:(1)列举法(适应一个过程):列出所有等可能基本事件结果,再数清所求事件所含的基本事件个数,最后相除。
以下补充是初三学习内容:(2)列表法(适应两个过程):当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.特别注意放回去与不放回去的列表法的不同.如:一只箱子中有三张卡片,上面分别是数字1、2、3,第一抽出一张后再放回去再抽第二次,两次抽到数字为数字1和2或者2和1的概率是多少?若不放回去,两次抽到数字为数字1和2或者2和1的概率是多少?放回去 P (1和2)=92 不放回去P (1和2)=62(3,3)(3,2)(3,1)3(2,3)(2,2)(2,1)2(1,3)(1,2)(1,1)1第一次结果321第二次(3,2)(3,1)3(2,3)(2,1)2(1,3)(1,2)1第一次结果321第二次(3)树状图法(适应一个两个或多个过程):当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 还是以上例题:(1)放回去,树状图如下:由树状图可知,总共有9种等可能结果,而两次抽到数字为数字1和2或者2和1的结果有两种。
概率初步知识点归纳1、概率的有关概念1.概率的定义:*种事件在*一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划〔描述〕事件发生的可能性的大小的量叫做概率.2、事件类型:○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.○2不可能事件:有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.○3不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件.必然事件、不可能事件都是在事先能肯定它们会发生,或事先能肯定它们不会发生的事件,因此它们也可以称为确定性事件.不确定事件都是事先我们不能肯定它们会不会发生,我们把这类事件称为随机事件。
练习:1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A.让比赛更富有情趣B.让比赛更具有神秘色彩C.表达比赛的公平性D.让比赛更有挑战性2.小掷一枚硬币,结果是一连9次掷出正面向上,则他第10次掷硬币时,出现正面向上的概率是( ).A.0 B.1 C.0.5 D.不能确定3.关于频率与概率的关系,以下说确的是( ).A.频率等于概率B.当试验次数很多时,频率会稳定在概率附近C.当试验次数很多时,概率会稳定在频率附近D.试验得到的频率与概率不可能相等4.以下说确的是( ).A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.*种彩票中奖的概率是1%,因此买100该种彩票一定会中奖C.天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等5.以下说确的是( ).A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B."从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C.一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀) D.抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,则一次出现正面,一次出现反面6.在一个不透明的袋子中装有4个除颜色外完全一样的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ).A .21 B .31 C .61 D .81 7.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测工程为耐力类,抽测工程为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进展测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ). A .31B .32C .61D .918.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,则一次过关的概率为( ). A .32 B .41 C .51 D .101 9.下面4个说法中,正确的个数为( ).(1)"从袋中取出一只红球的概率是99%〞,这句话的意思是肯定会取出一只红球,因为概率已经很大(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差异,因为小对取出一只红球没有把握,所以小说:"从袋中取出一只红球的概率是50%〞 (3)小说,这次考试我得90分以上的概率是200% (4)"从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小 A .3 B .2 C .1 D .0 10.以下说确的是( ).A .可能性很小的事件在一次试验中一定不会发生B .可能性很小的事件在一次试验中一定发生C .可能性很小的事件在一次试验中有可能发生D .不可能事件在一次试验中也可能发生 3、〔重点〕概率的计算1、概率的计算方式:概率的计算有理论计算和实验计算两种方式,根据概率获得的方式不同,它的计算方法也不同.2、如何求具有上述特点的随机事件的概率呢.如果一次试验中共有n 种可能出现的结果,而且这些结果出现的可能性都一样,其中事件A 包含的结果有m 种,则事件A 发生的概率P(A)=n m。
第三节 模拟方法—概率的应用[考纲传真] 1.了解随机数的意义,能运用随机模拟方法估计概率.2.了解几何概型的意义.1.模拟方法对于某些无法确切知道的概率问题,常借助模拟方法来估计某些随机事件发生的概率.用模拟方法可以在短时间内完成大量的重复试验.2.几何概型(1)向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型.(2)几何概型中的G 也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.[常用结论] 几种常见的几何概型(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;(3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)随机模拟方法是以事件发生的频率估计概率. ( ) (2)与面积有关的几何概型的概率与几何图形的形状有关. ( ) (3)在一个正方形区域内任取一点的概率为0. ( ) (4)从区间[1,10]内任取一个数,取到1的概率是110.( )[答案] (1)√ (2)× (3)√ (4)×2.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A .12B .134B [坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.]3.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )A B C DA [∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).]4.已知正方体ABCD A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M ABCD 的体积小于16的概率为________.12 [在正方体ABCD A 1B 1C 1D 1中,设M ABCD 的高为h ,则13×S 四边形ABCD×h =16.又S四边形ABCD=1,所以h =12.若体积小于16,则h <12.即点M 在正方体的下半部分,所以P =12.]5.如图所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.0.18 [由题意知,S 阴S 正=1801 000=0.18,∵S 正=1,∴S 阴=0.18.]与长度(角度)有关的几何概型1.在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形的面积大于20 cm 2的概率为 ( )63C .23D .45C [设|AC |=x ,则|BC |=12-x ,所以x (12-x )>20,解得2<x <10,故所求概率P =10-212=23.] 2.(2017·某某高考)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.59[由6+x -x 2≥0,解得-2≤x ≤3,∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5,∴P =59.]3.如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.34[过点C 作交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠A 内时,AM <AC .又∠A =45°,所以∠A =67.5°,故所求概率为P =67.5°90°=34.] [规律方法] 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).与面积有关的几何概型►考法1 与平面图形面积有关的问题【例1】 (2017·全国卷Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14 B .π8C .12D .π4B [不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知所求概率P =S 黑S 正方形=π24=π8.故选B.]►考法2 与线性规划知识交汇命题的问题【例2】 在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( )A .14B .12C .23D .34A [依题意作出图像如图,则P (y ≤2x )=S 阴影S 正方形=12×12×112=14.][规律方法] 1.与平面几何、解析几何等知识交汇问题的解题思路利用平面几何、解析几何等相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率.2.与线性规划交汇问题的解题思路先根据约束条件作出可行域,再确定形状,求面积大小,进而代入公式求概率.(1)已知实数m ∈[0,1],n ∈[0,2],则关于x 的一元二次方程4x 2+4mx -n2+2n =0有实数根的概率是( )A .1-π4B .π4C .π-32D .π2-1(2)在满足不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0的平面内随机取一点M (x 0,y 0),设事件A =“y 0-2x 0”,那么事件A 发生的概率是( )A .14 B .34 C .13D .23(1)A (2)B [(1)方程有实数根,即Δ=16m 2-16(-n 2+2n )≥0,m 2+n 2-2n ≥0,m 2+(n -1)2≥1,画出图形如图所示,长方形面积为2,半圆的面积为π2,故概率为2-π22=1-π4.(2)作出不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0的平面区域即△ABC ,其面积为4,且事件A =“y 0<2x 0”表示的区域为△AOC ,其面积为3,所以事件A 发生的概率是34.]与体积有关的几何概型1.已知正三棱锥S ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ABC<12V S ABC 的概率是( ) A .78 B .34 C .12D .14A [当P 在三棱锥的三条侧棱的中点所在的平面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.]2.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF BCE 内自由飞翔,则它飞入几何体F AMCD 内的概率为( )A .34B .23 C .13D .12D [由题图可知V F AMCD =13×S四边形AMCD×DF =14a 3,V ADF BCE =12a 3,所以它飞入几何体F AMCD内的概率为14a 312a 3=12.][规律方法] 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.1.(2016·全国卷Ⅰ)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13B .12C .23D .34B [如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=12.故选B.]2.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A .710B .58C .38D .310B [如图,若该行人在时间段AB 的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB 长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.]3.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A .4n mB .2n mC .4m nD .2m nC [因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC内的数对有m个.用随机模拟的方法可得S扇形S正方形=mn,即π4=mn,所以π=4mn.]六概率与统计中的高考热点问题[命题解读] 1. 统计与概率是高考中相对独立的一块内容,处理问题的方式、方法体现了较高的思维含量,该类问题以应用题为载体,注重考查学生的数学建模及阅读理解能力、分类讨论与化归转化能力.2.概率问题的核心是概率计算,其中事件的互斥、对立是概率计算的核心. 统计问题的核心是样本数据的获得及分析方法,重点是频率分布直方图、茎叶图和样本的数字特征,统计与概率内容相互渗透,背景新颖.统计与统计案例以统计图表或文字叙述的实际问题为载体,通过对相关数据的分析、抽象概括,作出估计、判断. 常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查,考查学生的数据处理能力与运算能力及应用意识.【例1】已知某班n名同学的数学测试成绩(单位:分,满分100分)的频率分布直方图如图所示,其中a,b,c成等差数列,且成绩在[90,100]内的有6人.(1)求n的值;(2)规定60分以下为不及格,若不及格的人中女生有4人,而及格的人中,男生比女生少4人,借助独立性检验分析能否在犯错误的概率不超过0.10的前提下认为“本次测试的及格情况与性别有关”?附:P(χ2≥x0)0.100.050.0100.005 x0 2.706 3.841 6.6357.879χ2=n ad-bc2a+b c+d a+c b+d.[解](1)依题意得⎩⎪⎨⎪⎧10×0.035+0.025+c +2b +a =1,2b =a +c ,解得b =0.01.因为成绩在[90,100]内的有6人, 所以n =60.01×10=60.(2)由于2b =a +c ,而b =0.01,可得a +c =0.02,则不及格的人数为0.02×10×60=12,及格的人数为60-12=48,设及格的人中,女生有x 人,则男生有x -4人,于是x +x -4=48,解得x =26,故及格的人中,女生有26人,男生有22人.于是本次测试的及格情况与性别的2×2列联表如下:及格 不及格 总计 男 22 8 30 女 26 4 30 总计481260所以χ2=60×22×4-8×26230×30×48×12=1.667<2.706,故不能在犯错误的概率不超过0.10的前提下认为“本次测试的及格情况与性别有关”.[规律方法] 独立性检验的方法 (1)构造2×2列联表; (2)计算χ2;(3)查表确定有多大的把握判定两个变量有关联.易错提示:查表时不是查最大允许值,而是先根据题目要求的百分比找到第一行对应的数值,再将该数值对应的临界值与求得的χ2相比较.另外,表中第一行数据表示两个变量没有关联的可能性p ,所以其有关联的可能性为1-p .近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:(1)请将如图的列联表补充完整.若用分层抽样的方法在患三高疾病的人群中抽9人,其中女生抽多少人?(2)为了研究患三高疾病是否与性别有关,请计算出统计量χ2,并说明是否可以在犯错误的概率不超过0.005的前提下认为患三高疾病与性别有关.患三高疾病 不患三高疾病总计 男630女 总计36下面的临界值表供参考:P (χ2≥x 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 x 02.0722.7063.8415.0246.6357.87910.828(参考公式χ2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d )[解] (1)完善补充列联表如下:患三高疾病不患三高疾病总计 男 24 6 30 女 12 18 30 总计362460在患三高疾病人群中抽9人,则抽取比例为936=14,所以女性应该抽取12×14=3(人).(2)根据2×2列联表,则 χ2=60×24×18-6×12230×30×36×24=10>7.879.所以可以在犯错误的概率不超过0.005的前提下认为患三高疾病与性别有关.常见概率模型的概率概率. 解决简单的古典概型试题可用直接法(定义法),对于较为复杂的事件的概率,可以利用所求事件的性质将其转化为互斥事件或对立事件的概率求解.【例2】 (2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天数216362574(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.[解] (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300; 若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100, 所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8,因此Y 大于零的概率的估计值为0.8.[规律方法] 统计以考查抽样方法、样本的频率分布、样本特征数的计算为主,概率以考查概率计算为主,往往和实际问题相结合,要注意理解实际问题的意义,使之和相应的概率计算对应起来,只有这样才能有效地解决问题.某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2,3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7,则中一等奖,等于6或5,则中二等奖,等于4,则中三等奖,其余结果为不中奖.(1)求中二等奖的概率; (2)求不中奖的概率.[解] (1)记“中二等奖”为事件A .从五个小球中一次任意摸出两个小球,不同的结果有{0,1},{0,2},{0,3},{0,4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共10个基本事件.记两个小球的编号之和为x ,由题意可知,事件A 包括两个互斥事件:x =5,x =6. 事件x =5的取法有2种,即{1,4},{2,3},故P (x =5)=210=15;事件x =6的取法有1种,即{2,4},故P (x =6)=110.所以P (A )=P (x =5)+P (x =6)=15+110=310.(2)记“不中奖”为事件B ,则“中奖”为事件B ,由题意可知,事件B 包括三个互斥事件:中一等奖(x =7),中二等奖(事件A ),中三等奖(x =4).事件x =7的取法有1种,即{3,4},故P (x =7)=110;事件x =4的取法有{0,4},{1,3},共2种,故P (x =4)=210=15.由(1)可知,P (A )=310.所以P (B )=P (x =7)+P (x =4)+P (A )=110+15+310=35.所以不中奖的概率为P (B )=1-P (B )=1-35=25.统计与概率的综合应用统计和概率知识相结合命题统计概率解答题已经是一个新的命题趋向,概率和统计知识初步综合解答题的主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键,在此基础上掌握好样本数字特征及各类概率的计算.【例3】 (本小题满分12分)(2018·全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表 日用 水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) 频数13249265日用 水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6)频数151310165(2)估计该家庭使用节水龙头后,日用水量小于0.35 m 3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)[信息提取]看到作频率分布直方图,想到作频率分布直方图的作图规则; 看到求概率,想到利用频率分布直方图求概率的方法; 看到估计节水量,想到求使用节水龙头前后的用水量. [规X 解答] (1)如图所示.4分(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m 3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,6分因此该家庭使用节水龙头后,日用水量小于0.35 m 3的概率的估计值为0.48.7分 (3)该家庭未使用节水龙头50天日用水量的平均数为x -1=150(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.9分该家庭使用了节水龙头后50天日用水量的平均数为x -2=150(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.11分估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m 3).12分 [易错与防X] 作频率分布直方图时注意纵轴单位是“f iΔx i”,计算平均数时运算要准确,避免“会而不对”的失误.[通性通法] 概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.长时间用手机上网严重影响着学生的身体健康,某校为了解A ,B 两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(1)你能否估计哪个班级平均每周上网时间较长?(2)从A 班的样本数据中随机抽取一个不超过19的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b ,求a >b 的概率.[解] (1)A 班样本数据的平均值为15(9+11+14+20+31)=17,由此估计A 班学生每周平均上网时间为17小时;B 班样本数据的平均值为15(11+12+21+25+26)=19,由此估计B 班学生每周平均上网时间为19小时. 所以B 班学生上网时间较长.(2)A 班的样本数据中不超过19的数据a 有3个,分别为9,11,14,B 班的样本数据中不超过21的数据b 也有3个,分别为11,12,21.从A 班和B 班的样本数据中各随机抽取一个共有9种不同的情况,分别为(9,11),(9,12),(9,21),(11,11),(11,12),(11,21),(14,11),(14,12),(14,21),其中a >b 的情况有(14,11),(14,12),2种,故a >b 的概率P =29.[大题增分专训]1.某校高三期中考试后,数学教师对本次全部数学成绩按1∶20进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:分数 段(分) [50,70) [70,90) [90,110) [110,130) [130,150] 总计 频数b 频率 a0.25(1)求表中a ,b 的值及成绩在[90,110)X 围内的样本数,并估计这次考试全校高三学生数学成绩的及格率(成绩在[90,150]内为及格);(2)若从茎叶图中成绩在[100,130)X 围内的样本中一次性抽取两个,求取出两个样本数字之差的绝对值小于或等于10的概率.[解] (1)由茎叶图知成绩在[50,70)X 围内的有2人,在[110,130)X 围内的有3人,∴a =0.1,b =3.∵成绩在[90,110)X 围内的频率为1-0.1-0.25-0.25=0.4, ∴成绩在[90,110)X 围内的样本数为20×0.4=8. 估计这次考试全校高三学生数学成绩的及格率为P =1-0.1-0.25=0.65.(2)所有可能的结果为(100,102),(100,106),(100,106),(100,116),(100,118),(100,128),(102,106),(102,106),(102,116),(102,118),(102,128),(106,106),(106,116),(106,118),(106,128),(106,116),(106,118),(106,128),(116,118),(116,128),(118,128),共21个,取出的两个样本中数字之差小于或等于10的结果为(100,102),(100,106),(100,106),(102,106),(102,106),(106,106),(106,116),(106,116),(116,118),(118,128),共10个,∴P (A )=1021.2.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日期 12月1日12月2日12月3日12月4日12月5日温差x (℃)101113128程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻的2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y 关于x 的线性回归方程y =bx +a ;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(附:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y =bx +a 的斜率和截距的最小二乘估计分别为b =∑ni =1x i y i -n x y∑ni =1x 2i -n x2,a =y -b x .)[解] (1)设抽到不相邻两组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况是等可能出现的,其中抽到相邻两组数据的情况共有4种,所以P (A )=1-410=35,故选取的2组数据恰好是不相邻的2天数据的概率为35. (2)由数据,求得x =13×(11+13+12)=12,y =13×(25+30+26)=27,∑3i =1x i y i =11×25+13×30+12×26=977,∑3i =1x 2i =112+132+122=434,所以b =∑3i =1x i y i -3x y∑3i =1x 2i -3x2=977-3×12×27434-3×122=52,a =27-52×12=-3. 所以回归直线方程为y =52x -3.(3)当x =10时,y =22,|22-23|<2,同理当x =8时,y =17,|17-16|<2. 所以该研究得到的线性回归方程是可靠的.。
初中数学概率知识点总结初中数学知识点:概率事件随机事件:事件可分为确定事件和不确定事件,不确定事件又称为随机事件。
在一定条件下,可能发生也可能不发生的事件。
事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,,表示事件A的概率p,可记为P(A)=P。
事件的概率:随机事件A的概率为0随机事件特点:1.可以在相同的条件下重复进行;2.每个试验的可能结果不止一个,并且能事先预测试验的所有可能结果;3.进行一次试验之前不能确定哪一个结果会出现。
注意:①随机事件发生与否,事先是不能确定的;②必然事件发生的机会是1;不可能事件发生的机会是0;随机事件发生的机会在0-1之间。
③要判断一个事件是必然事件、随机事件、还是不可能事件,要从定义出发。
必然事件:事件可分为确定事件和不确定事件,确定事件可分为必然事件和不可能事件。
在一定的条件下,一定发生的事件。
事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,,表示事件A的概率p,可记为P(A)=P。
必然事件的概率为1。
1、事件的分类:事件可分为确定事件和不确定事件,确定事件可分为必然事件和不可能事件。
2、事件的定义:必然事件:在一定的条件下,一定发生的事件。
不可能事件:在一定的条件下,一定不发生的事件。
3、事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,,表示事件A的概率p,可记为P(A)=P。
4、事件的概率:必然事件的概率为1,不可能事件的概率为0。
初中概率知识点-利用频率估计概率1、利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
3、随机数在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。
把这些随机产生的数据称为随机数。
1、古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
第二十五章概率初步25.1随机事件与概率25.随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点.了解随机事件发生的可能性是有大有小的,不同的随机事件发生的可能性的大小不同.重点随机事件的特点.难点判断现实生活中哪些事件是随机事件.一、情境引入分析说明下列事件能否一定发生:①今天不上课;②煮熟的鸭子飞了;③明天地球还在转动;④木材燃烧会放出热量;⑤掷一枚硬币,出现正面朝上.二、自主探究1.提出问题教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球,分组讨论从这三个袋子里摸出黄色乒乓球的情况.学生积极参加,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.2.概念得出从上面的事件可看出,对于任何事件发生的可能性有三种情况:(1)必然事件:在一定条件下必然要发生的事件;(2)不可能事件:在一定条件下不可能发生的事件;(3)随机事件:在一定条件下可能发生也可能不发生的事件.3.随机事件发生的可能性有大小袋子中有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的情况下,随机地从袋子中摸出一个球.(1)是白球还是黑球?(2)经过多次试验,摸出的黑球和白球哪个次数多?说明了什么问题?结论:一般地,随机事件发生的可能性有大小,不同的随机事件发生的可能性的大小有可能不同.三、巩固练习教材第128页练习四、课堂小结(学生归纳,老师点评)本节课应掌握:(1)必然事件,不可能事件,随机事件的概念.(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.五、作业布置教材第129页 练习1,2.25. 概 率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系. 2.理解概率的定义及计算公式P(A)=mn ,明确概率的取值范围,能求简单的等可能性事件的概率.重点在具体情境中了解概率的意义,理解概率定义及计算公式P(A)=mn .难点了解概率的定义,理解概率计算的两个前提条件.活动1 创设情境(1)事件可以分为哪几类?什么是随机事件?随机事件发生的可能性一样吗?(2)在同样的条件下,某一随机事件可能发生也可能不发生,那么它发生的可能性究竟有多大?能否用数值进行刻画呢?这节课我们就来研究这个问题. 活动2 试验活动试验1:每位学生拿出课前准备好的分别标有1,2,3,4,5号的5根纸签,从中随机地抽取一根,观察上面的数字,看看有几种可能.(如此多次重复)试验2:教师随意抛掷一枚质地均匀的骰子,请学生观察骰子向上一面的点数,看看有几种不同的可能.(如此可重复多次)(1)试验1中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?(2)试验2中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?活动3 引出概率1.从数量上刻画一个随机事件A 发生的可能性的大小,我们把它叫做这个随机事件A 的概率,记为P(A).2.概率计算必须满足的两个前提条件:(1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等.3.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=________.4.随机事件A 发生的概率的取值范围是________,如果A 是必然发生的事件,那么P(A)=________,如果A 是不可能发生的事件,那么P(A)=________.活动4 精讲例题例1 下列事件中哪些是等可能性事件,哪些不是? (1)运动员射击一次中靶心与不中靶心; (2)随意抛掷一枚硬币反面向上与正面向上;(3)随意抛掷一只可乐纸杯杯口朝上,或杯底朝上,或横卧;(4)分别从写有1,3,5,7,9中一个数的五张卡片中任抽1张结果是1,或3,或5,或7,或9.答案:(1)不是等可能事件;(2)是等可能事件;(3)不是等可能事件;(4)是等可能事件. 例2 学生自己阅读教材第131页~132页例1及解答过程.例3 教师引导学生分析讲解教材第132页例2.想一想:把此题(1)和(3)两问及答案联系起来,你有什么发现?例4 教师引导学生分析讲解教材第133页例3. 活动5 过关练习教材第133页 练习第1~3题.,这些球除了颜色外都相同.从袋子中随机地摸出一个球,它是红色与它是绿色的可能性相等吗?两者的概率分别是多少?2.一个质地均匀的小正方体骰子,六个面分别标有数字1,2,2,3,4,4,掷骰子后,观察向上一面的数字.(1)出现数字1的概率是多少?(2)出现的数字是偶数的概率是多少?(3)哪两个数字出现的概率相等?分别是多少?答案:,P(摸到红球)=58,P(摸到绿球)=38;2.(1)16;(2)23;(3)数字1和3出现的概率相同,都是16,数字2和4出现的概率相同,都是13.活动6 课堂小结与作业布置 课堂小结1.随机事件概率的意义,等可能性事件的概率计算公式P(A)=mn.2.概率计算的两个前提条件:可能出现的结果只有有限个;各种结果出现的可能性相同. 作业布置教材第134页~135页 习题第3~6题. 用列举法求概率(2课时)第1课时 用列举法和列表法求概率1.会用列举法和列表法求简单事件的概率.2.能利用概率知识解决计算涉及两个因素的一个事件概率的简单实际问题.重点正确理解和区分一次试验中涉及两个因素与所包含的两步试验. 难点当可能出现的结果很多时,会用列表法列出所有可能的结果.活动1 创设情境我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这就是一个游戏双方获胜概率大小的问题. 下面我们来做一个小游戏,规则如下:老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问:你们觉得这个游戏公平吗?学生思考计算后回答问题:把其所能产生的结果全部列出来,应该是正正、正反、反正、反反,共有四种可能,并且每种结果出现的可能性相同.(1)记满足两枚硬币一正一反的事件为A ,则P(A)=24=12;(2)记满足两枚硬币两面一样的事件为B ,则P(B)=24=12.由此可知,双方获胜的概率一样,所以游戏是公平的.当一次试验涉及两个因素,并且可能出现的结果数目比较少时,我们看到结果很容易被全部列出来;若出现结果的数目较多时,要想不重不漏地列出所有可能的结果,还有什么更好的方法呢?我们来看下面的这个问题.活动2 探索交流例1 为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A ,B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A ,B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.在这个环节里,首先可以让学生自己用列举法列出所有的情况,很多学生会发现列出所有的情况会有困难,会漏掉一些情况.这个时候可以要求学生分组讨论,探索交流,然后引导学生将实际问题转化为数学问题,即“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”由于事件的随机性,我们必须考虑事件发生概率的大小.此时,首先引导学生观看转盘动画,同学们会发现这个游戏涉及A ,B 两个转盘,即涉及两个因素,与上节课所讲授单转盘概率问题相比,可能产生的结果数目增多了,变复杂了,列举时很容易造成重复或遗漏.怎样避免这个问题呢?实际上,可以将这个游戏分两步进行,教师指导学生构造下列表格:BA 45 7 1 68分析:首先考虑转动,可能出现的结果就会有3个;接着考虑转动B 盘:当A 盘指针指向1时,B 盘指针可能指向4,5,7三个数字中的任意一个.当A 盘指针指向6或8时,B 盘指针同样可能指向4,5,7三个数字中的任意一个,这样一共会产生9种不同的结果.学生独立填写表格,通过观察与计算,得出结论(即列表法).B A 4 5 7 1 (1,4) (1,5) (1,7) 6(6,4)(6,5)(6,7)8(8,4) (8,5) (8,7) 从表中可以发现:A 盘数字大于B 盘数字的结果共有5种,而B 盘数字大于A 盘数字的结果共有4种.∴P(A 数较大)=59,P(B 数较大)=49,∴P(A 数较大)>P(B 数较大),∴选择A 装置的获胜可能性较大.在学生填写表格过程中,注意向学生强调数对的有序性.由于游戏是分两步进行的,我们也可用其他的方法来列举.即先转动B 盘,可能出现4,5,7三种结果;第二步考虑转动A 盘,可能出现1,6,8三种情况.活动3 例题精讲通过上面例1的分析,学生对用列表法求概率有了初步的了解,为了帮助学生熟练掌握这种方法,教师引导学生分析解决教材第136页例2.然后引导学生进行题后小结:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:(1)列表;(2)通过表格计数,确定公式P(A )=mn 中的m 和n 的值;(3)利用公式P(A )=mn计算事件发生的概率.活动4 过关练习教材第138页 练习第1~2题. 活动5 课堂小结与作业布置 课堂小结引导学生从知识、方法、情感三方面来谈一谈这节课的收获,要求每个学生在组内交流,派小组代表发言.作业布置教材第139页~140页 习题第1~3题和第5题.第2课时 用树状图求概率1.理解并掌握用树状图求概率的方法,并利用它们解决问题.2.正确认识在什么条件下使用列表法,在什么条件下使用树状图法.重点理解树状图的应用方法及条件,用画树状图的方法求概率. 难点用树状图列举各种可能的结果,求实际问题中的概率.一、复习引入用列举法求概率的方法.(1)总共有几种可能,即求出n ;(2)每个事件中有几种可能的结果,即求出m ,从而求出概率.什么时候用列表法?列举所有可能的结果的方法有哪些? 二、探索新知 画树状图求概率例1 甲口袋中装有2个相同的球,它们分别写有字母A 和B ;乙口袋中3个相同的球,它们分别写有字母C ,D 和E ;丙口袋中2个相同的球,. (1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?(2)取出的三个球上全是辅音字母的概率是多少?例1与上节课的例题比较,有所不同:要从三个袋子里摸球,即涉及到三个因素.此时同学们会发现用列表法就不太方便,可以尝试树状图法.本游戏可分三步进行.分步画图和分类排列相关的结论是解题的关键.从图形上可以看出所有可能出现的结果共有12个,即:A A A A A AB B B B B BC CD DE E C C D D E E H I H I H I H I H I H I (幻灯片上用颜色区分)这些结果出现的可能性相等.(1)只有一个元音字母的结果(黄色)有5个,即ACH ,ADH ,BCI ,BDI ,BEH ,所以P (1个元音)=512;有两个元音的结果(白色)有4个,即ACI ,ADI ,AEH ,BEI ,所以P (2个元音)=412=13;全部为元音字母的结果(绿色)只有1个,即AEI ,所以P (3个元音)=112.(2)全是辅音字母的结果(红色)共有2个,即BCH ,BDH ,所以P (3个辅音)=212=16.通过例1的解答,很容易得出题后小结:当一次试验要涉及3个或更多的因素时,通常采用“画树形图”. 运用树状图法求概率的步骤如下:(幻灯片) ①画树状图;②列出结果,确定公式P (A )=mn 中m 和n 的值;③利用公式P (A )=mn 计算.三、巩固练习教材第139页 练习四、课堂小结本节课应掌握:1.利用树状图法求概率.2.什么时候用列表法,什么时候用树状图法,各自的应用特点:有两个元素且情况较多时用列表法,当有三个或三个以上元素时用树状图法.五、作业布置教材第140页习题6,9.用频率估计概率1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.会设计模拟试验,能应用模拟试验求概率.重点对利用频率估计概率的理解和应用.难点对利用频率估计概率的理解.一、情境引入某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率错误!(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1),,,,0.75,;(2)0.75.二、自主探究利用频率估计概率1.试验要求:(1)把全班分成10或12组,每组中有一名学生投掷硬币,另一名同学做记录,其余同学观察试验,计算结果,各组必须在同样条件下进行.(2)明确任务,每组掷币50次,认真统计“正面朝上”的频数,算出“正面朝上”的频率,整理试验的数据,并记录下来.2.各组汇报试验结果:把各组试验数据汇报给教师,教师积累后填入表格,板书,学生计算出累加后的频率.(由于试验次数较小,有可能有些组的最后结果和自己的猜想有出入)3.根据列表填在教材第142页图中,观察频率变化情况,小组交流后阐述所得结论.4.思考:教材第143页“思考”.5.问题1:教材第144页问题1.分析:幼树的成活率是实际问题中的概率,在这个实验过程中,移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举法求概率,只能用频率估计概率.解:教师引导学生完成方法总结:(1)先计算出每次试验的频率;(2)观察频率活动情况,选择最接近且围绕波动的频率数作为概率.用频率估计概率的应用教材第145页问题2分析:学生阅读表25-6提供的信息:(1)估测出损坏率.(实质也是概率问题)(2)算出完好柑橘的质量.(3)计算出实际成本,再确定定价.三、巩固练习教材第147页练习.四、课堂小结(1)利用频率估计概率,建立在大量重复试验的基础上.(2)利用频率估计概率,得到的概率是近似值.五、作业布置教材第147~148页习题1,2,5.。
《概率的初步认识》单元备课一、单元整体目标分析1. 教学目标〖知识与技能〗(1)理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念。
(2)理解随机事件的频率定义及概率的统计定义,知道根据概率的统计定义计算概率的方法, 理解频率和概率的区别和联系;(3)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(4)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B) (5)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.〖过程与方法〗(1)通过实例理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念。
(2)根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键;(3)通过事件的关系推导事件的运算,运算也体现事件关系。
〖情感、态度、价值观〗通过对概率的学习,使学生对对立统一的辨证规律有进一步的认识.2.教学重点、难点〖重点〗1、根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象, 理解频率和概率的区别和联系.2、概率的加法公式及其应用,事件的关系与运算。
〖难点〗1、理解随机事件的频率和概率定义及计算方法, 理解频率和概率的区别和联系.2、概率的加法公式及其应用,事件的关系与运算。
二.教学方式分析1.教科书首先通过具体实例给出了随机事件的定义,通过抛掷硬币的试验,观察正面朝上的次数和比例,引出了随机事件出现的频数和频率的定义,并且利用计算机模拟掷硬币试验,给出试验结果的统计表和直观的折线图,使学生观察到随着试验次数的增加,随机事件发生的频率稳定在某个常数附近,从而给出概率的统计定义。
概率初步知识点总结25.1 概率1.随机事件(1)确定事件事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.(2)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.随机事件发生的可能性(概率)的计算方法:2.可能性大小(1)理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.(2)实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.3.概率的意义(1)一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.(3)概率取值范围:0≤p≤1.(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.•用列举法求概率1.概率的公式(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.2. 几何概型的概率问题是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g 的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即P=g的测度G的测度简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.3.列举法和树状法(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.(5)当有两个元素时,可用树形图列举,也可以列表列举.4.游戏公平性(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)概率=所求情况数总情况数.25.3 利用频率估计概率1. 利用频率估计概率(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.2.模拟实验(1)在一些有关抽取实物实验中通常用摸取卡片代替了实际的物品或人抽取,这样的实验称为模拟实验.(2)模拟实验是用卡片、小球编号等形式代替实物进行实验,或用计算机编号等进行实验,目的在于省时、省力,但能达到同样的效果.(3)模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,这部分内容根据《新课标》要求,只要设计出一个模拟实验即可.。
事件的相互独立性、条件概率与全概率公式[课程标准]1.结合有限样本空间,了解两个随机事件独立性的含义.结合古典概型,利用独立性计算概率.2.了解条件概率,能计算简单随机事件的条件概率.3.结合古典概型,了解条件概率与独立性的关系.4.会利用乘法公式和全概率公式计算概率.1.相互独立事件(1)定义:对任意两个事件A与B,如果P(AB)=01P(A)P(B)成立,则称事件A与事件B相互独立,简称独立.(2)性质:如果事件A与B相互独立,那么A与B-,A-与B,A-与B-也都02相互独立.2.条件概率设A,B为两个随机事件,且P(A)>0,称P(B|A)=03P(AB)为在事件AP(A)发生的条件下,事件B发生的条件概率,简称条件概率.3.乘法公式对任意两个事件A与B,若P(A)>0,则P(AB)=04P(A)P(B|A).4.条件概率的性质设P(A)>0,则(1)P(Ω|A)=051;(2)如果B和C是两个互斥事件,则P(B∪C|A)=06P(B|A)+P(C|A);(3)如果B-与B互为对立事件,则P(B-|A)=071-P(B|A).5.全概率公式设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=错误!.1.事件间的关系及表示(1)A,B中至少有一个发生的事件为A∪B.(2)A,B都发生的事件为AB.(3)A,B都不发生的事件为A-B-.(4)A,B恰有一个发生的事件为(A B-)∪(A-B).(5)A,B至多有一个发生的事件为(AB)∪(A-B)∪(A-B-).2.条件概率的计算常采用缩小样本空间法求解.3.乘法公式可以推广为P(A1A2A3)=P(A1)·P(A2|A1)P(A3|A1A2),其中P(A1)>0,P(A1A2)>0.4.贝叶斯公式设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,P(B)>0,有P(A i|B)=P(A i)P(B|A i)P(B)=错误!,i=1,2,…,n.1.(人教A必修第二册习题10.2T2改编)若P(AB)=19,P(A-)=23,P(B)=13,则事件A与B的关系是()A.事件A与B互斥B.事件A与B对立C.事件A与B相互独立D.事件A与B既互斥又相互独立答案C解析∵P (A )=1-P (A -)=1-23=13,∴P (AB )=P (A )P (B )=19≠0,∴事件A 与B 相互独立、事件A 与B 不互斥,故不对立.故选C.2.(2023·舟山模拟)甲、乙去同一家药店购买一种医用外科口罩,已知这家药店出售A ,B ,C 三种医用外科口罩,甲、乙购买A ,B ,C 三种医用口罩的概率分别如下:购买A 种医用外科口罩购买B 种医用外科口罩购买C 种医用外科口罩甲0.20.4乙0.30.3则甲、乙购买的是同一种医用外科口罩的概率为()A .0.44B .0.40C .0.36D .0.32答案D解析由表可知,甲购买A 种医用外科口罩的概率为0.4,乙购买B 种医用外科口罩的概率为0.4,所以甲、乙购买的是同一种医用外科口罩的概率为P =0.4×0.3+0.2×0.4+0.4×0.3=0.32.故选D.3.(人教A 必修第二册10.2例2改编)甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为()A .0.12B .0.42C .0.46D .0.88答案D解析设“甲被录取”记为事件A ,“乙被录取”记为事件B ,则两人至少有一人被录取的概率P =1-P (A -B -)=1-[1-P (A )][1-P (B )]=1-0.4×0.3=0.88.故选D.4.(多选)某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()A .P (B |A )=13B .P (B |A )=38C .P (A |B )=34D .P (A |B )=35答案BC解析由题意知P (A )=415,P (B )=215,P (AB )=110,∴P (B |A )=P (AB )P (A )=110415=38,P (A |B )=P (AB )P (B )=34.故选BC.5.(人教A 必修第二册习题10.1T 16改编)从1~100共100个正整数中,任取一数,已知取出的这个数不大于50,则此数是2或3的倍数的概率为________.答案3350解析设事件C 为“取出的数不大于50”,事件A 为“取出的数是2的倍数”,事件B 为“取出的数是3的倍数”.则P (C )=12,且所求概率为P (A ∪B |C )=P (A |C )+P (B |C )-P (AB |C )=P (AC )P (C )+P (BC )P (C )-P (ABC )P (C )=2+16100-3350.多角度探究突破角度事件独立性的判定例1(2021·新高考Ⅰ卷)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则() A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立答案B解析设甲、乙、丙、丁事件发生的概率分别为P(A),P(B),P(C),P(D),则P(A)=P(B)=16,P(C)=56×6=536,P(D)=66×6=16.对于A,甲、丙同时发生的概率P(AC)=0≠P(A)P(C);对于B,甲、丁同时发生的概率P(AD)=16×6=1 36=P(A)P(D);对于C,乙、丙同时发生的概率P(BC)=16×6=136≠P(B)P(C);对于D,丙、丁同时发生的概率P(CD)=0≠P(C)P(D).若两事件X,Y相互独立,则P(XY)=P(X)P(Y),因此B正确.故选B.角度相互独立事件的概率例2(2023·河北省级联考)甲、乙、丙三人进行网球比赛,约定赛制如下:累计负两场被淘汰;比赛前抽签决定首先比赛的两个人,另一个人当裁判,没有平局;每场比赛结束时,负的一方在下一场当裁判;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获得冠军,比赛结束.已知在每场比赛中,双方获胜的概率都为12,各局比赛的结果相互独立,经抽签,第一场比赛甲当裁判.(1)求前三场比赛结束后,丙被淘汰的概率;(2)求只需四场比赛就决出冠军的概率.解(1)设事件A为“甲胜乙”,则P(A)=12,P(A-)=1-12=12,设事件B为“甲胜丙”,则P(B)=12,P(B-)=1-12=12,设事件C为“乙胜丙”,则P(C)=12,P(C-)=1-12=12,前三场比赛结束后,丙被淘汰可用事件C A-C∪CAB来表示,所以前三场比赛结束后,丙被淘汰的概率为P1=P(C A-C)+P(CAB)=12×12×12+12×12×12=14.(2)若最终的冠军为甲,则只需四场比赛就决出冠军可用事件CABA∪C-BAB 来表示,P(CABA∪C-BAB)=P(CABA)+P(C-BAB)=P(C)P(A)P(B)P(A)+P(C-)P(B)P(A)P(B)=1 2×12×12×12+12×12×12×12=18.若最终的冠军为乙,则只需四场比赛就决出冠军可用事件C A-C A-来表示,P(C A-C A-)=P(C)P(A-)P(C)P(A-)=12×12×12×12=116.若最终的冠军为丙,则只需四场比赛就决出冠军可用事件C-B-C-B-来表示,P(C-B-C-B-)=P(C-)P(B-)P(C-)P(B-)=12×12×12×12=116.所以只需四场比赛就决出冠军的概率为P2=18+116+116=14.1.两个事件相互独立的判断方法(1)定义法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)充要条件法:事件A,B相互独立的充要条件是P(AB)=P(A)P(B).2.求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.1.(2023·益阳期末)在一个质地均匀的正八面体中,八个面分别标有数字1到8,任意抛掷一次这个正八面体,观察它与地面接触的面上的数字.记事件A=“与地面接触的数字为奇数”,事件B=“与地面接触的数字不大于4”,事件C=“与地面接触的数字为1或5或7或8”.(1)判断事件A,B是否独立并证明;(2)证明事件A,B,C满足P(ABC)=P(A)·P(B)P(C),但不满足A,B,C两两独立.解(1)由已知,得样本空间为Ω={1,2,3,4,5,6,7,8},所以A={1,3,5,7},B={1,2,3,4},C={1,5,7,8},A∩B={1,3},B∩C={1},A∩C={1,5,7},A∩B∩C={1},因为P(A)=12,P(B)=12,P(AB)=14=P(A)P(B),所以事件A,B相互独立.(2)证明:因为P(A)=P(B)=P(C)=12,P(ABC)=18,P(BC)=18,P(AC)=38,所以P(ABC)=P(A)P(B)P(C),但是P(BC)≠P(B)P(C),且P(AC)≠P(A)P(C),所以事件A,B,C满足P(ABC)=P(A)P(B)P(C),但不满足A,B,C两两独立.2.(2024·黄冈模拟)为了普及垃圾分类知识,某校举行了垃圾分类知识考试,试卷中只有两道题目,已知甲同学答对每题的概率都为p,乙同学答对每题的概率都为q(p>q),且在考试中每人各题答题结果互不影响.已知每题甲、乙两人同时答对的概率为12,恰有一人答对的概率为512.(1)求p和q的值;(2)求甲、乙两人共答对3道题的概率.解(1)设事件A:“甲同学答对第一题”,事件B:“乙同学答对第一题”,则P(A)=p,P(B)=q.设事件C:“甲、乙两人均答对第一题”,事件D:“甲、乙两人恰有一人答对第一题”,则C=A∩B,D=(A∩B-)∪(A-∩B).∵甲、乙两人答题互不影响,且每人各题答题结果互不影响,∴A与B相互独立,A∩B-与A-∩B互斥,∴P(C)=P(A∩B)=P(A)P(B)=pq,P(D)=P(A∩B-)+P(A-∩B)=P(A)[1-P(B)]+[1-P(A)]P(B).由题意,得pq=12,p(1-q)+q(1-p)=512,解得p=34,q=23或p=23,q=34.∵p>q,∴p=34,q=23.(2)设事件A i:“甲同学答对了i道题”,事件B i:“乙同学答对了i道题”,i=0,1,2.由题意,得P(A1)=14×34+34×14=38,P(A2)=34×34=916,P(B1)=23×13+13×23=49,P(B2)=23×23=49.设事件E:“甲、乙两人共答对3道题”,则E=(A1∩B2)∪(A2∩B1),∴P(E)=P(A1∩B2)+P(A2∩B1)=38×49+916×49=512,∴甲、乙两人共答对3道题的概率为512.考向二条件概率例3(1)(2023·贵州师大附中模拟)某市卫健委为调查研究某种流行病患者的年龄分布情况,随机调查了大量该病患者,年龄分布如图.已知该市此种流行病的患病率为0.1%,该市年龄位于区间[40,60)的人口占总人口的28%.若从该市居民中任选一人,此人年龄位于区间[40,60),则此人患这种流行病的概率为(以样本数据中患者的年龄位于各区间的频率作为患者年龄位于该区间的概率)()A .0.28B .0.00054C.713500D.2714000答案D解析设“该居民年龄位于区间[40,60)”为事件A ,“该居民患这种流行病”为事件B ,由题意知,P (A )=0.28,P (B )=0.001,P (A |B )=0.54.因为P (A |B )=P (AB )P (B ),所以P (AB )=P (A |B )P (B )=0.54×0.001=0.00054,所以P (B |A )=P (AB )P (A )=0.000540.28=2714000.故选D.(2)在100件产品中有95件合格品,5件不合格品,现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次取到不合格品的概率为________.答案499解析解法一(应用条件概率公式求解):设事件A 为“第一次取到不合格品”,事件B 为“第二次取到不合格品”,则所求的概率为P (B |A ),因为P (AB )=A 25A 2100=1495,P (A )=C 15C 1100=120,所以P (B |A )=P (AB )P (A )=1495120=499.解法二(缩小样本空间求解):第一次取到不合格品后,也就是在第二次取之前,还有99件产品,其中有4件不合格品,因此第二次取到不合格品的概率为499.(3)在一个袋子中装有10个球,设有1个红球,2个黄球,3个黑球,4个白球,从中依次摸2个球,求在第一个球是红球的条件下,第二个球是黄球或黑球的概率.解设“摸出第一个球是红球”为事件A ,“摸出第二个球是黄球”为事件B ,“摸出第二个球是黑球”为事件C .则P(A)=110,P(AB)=1×210×9=145,P(AC)=1×310×9=130.所以P(B|A)=P(AB)P(A)=145÷110=29,P(C|A)=P(AC)P(A)=130÷110=13.所以P(B∪C|A)=P(B|A)+P(C|A)=29+13=59.所以所求概率为59.条件概率的三种求法定义法先求P(A)和P(AB),再由P(B|A)=P(AB)P(A)求P(B|A)样本点法借助古典概型概率公式,先求事件A包含的样本点数n(A),再求事件AB所包含的样本点数n(AB),得P(B|A)=n(AB)n(A)缩样法缩小样本空间的方法,就是去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解,它能化繁为简1.(2023·全国甲卷)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为()A.0.8B.0.4C.0.2D.0.1答案A解析报名两个俱乐部的人数为50+60-70=40,记“某人报足球俱乐部”为事件A,“某人报乒乓球俱乐部”为事件B,则P(A)=5070=57,P(AB)=4070=47,所以P(B|A)=P(AB)P(A)=4757=0.8.故选A.2.质监部门对某种建筑构件的抗压能力进行检测,对此建筑构件实施两次击打,若没有受损,则认为该构件通过质检.若第一次击打后该构件没有受损的概率为0.85,当第一次没有受损时第二次在实施击打也没有受损的概率为0.80,则该构件通过质检的概率为()A.0.4B.0.16C.0.68D.0.17答案C解析设A i表示第i次击打后该构件没有受损,i=1,2,则由已知可得P(A1)=0.85,P(A2|A1)=0.80,因此由乘法公式可得P(A1A2)=P(A1)P(A2|A1)=0.85×0.80=0.68,即该构件通过质检的概率为0.68.故选C.3.52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为________;已知第一次抽到的是A,则第二次抽到A的概率为________.答案12211 17解析由题意,设第一次抽到A的事件为B,第二次抽到A的事件为C,则P(B)=452=113,P(BC)=452×351=1221,∴P(C|B)=P(BC)P(B)=1221113=117.例4(2023·韶关模拟)作为一种益智游戏,中国象棋具有悠久的历史,中国象棋的背后,体现的是博大精深的中华文化.为了推广中国象棋,某地举办了一次地区性的中国象棋比赛,小明作为选手参加.除小明以外的其他参赛选手中,50%是一类棋手,25%是二类棋手,其余的是三类棋手.小明与一、二、三类棋手比赛获胜的概率分别是0.3,0.4和0.5.(1)从参赛选手中随机选取一位棋手与小明比赛,求小明获胜的概率;(2)如果小明获胜,求与小明比赛的棋手为一类棋手的概率.解(1)设事件A i=“小明与i(i=1,2,3)类棋手相遇”,根据题意P(A1)=0.5,P(A2)=0.25,P(A3)=0.25,记事件B=“小明获胜”,则有P(B|A1)=0.3,P(B|A2)=0.4,P(B|A3)=0.5,由全概率公式得,小明在比赛中获胜的概率为P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=0.5×0.3+0.25×0.4+0.25×0.5=0.375,所以小明获胜的概率为0.375.(2)小明获胜时,与小明比赛的棋手为一类棋手的概率为P(A1|B)=P(A1B)P(B)=P(A1)P(B|A1)P(B)=0.5×0.30.375=0.4.“化整为零”求多事件的全概率问题(1)如图,P(B)=错误!(A i)P(B|A i).(2)已知事件B的发生有各种可能的情形A i(i=1,2,…,n),事件B发生的可能性,就是各种可能情形A i发生的可能性与已知在A i发生的条件下事件B发生的可能性的乘积之和.(2023·南平高级中学期中)某学校为了迎接党的二十大召开,增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱中有5个选择题和3个填空题,乙箱中有4个选择题和3个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.(1)如果第一支部从乙箱中抽取了2个题目,求第二题抽到的是填空题的概率;(2)若第二支部从甲箱中抽取了2个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.已知第三支部从乙箱中取出的这个题目是选择题,求第二支部从甲箱中取出的是2个选择题的概率.解(1)设事件A i表示“第i次从乙箱中取到填空题”,i=1,2,P(A1)=37,P(A2|A1)=26=13,P(A2|A-1)=36=12.由全概率公式得,第2次抽到填空题的概率为P (A 2)=P (A 1)P (A 2|A 1)+P (A -1)P (A 2|A -1)=37×26+47×36=37.(2)设事件A 为“第三支部从乙箱中取出1个选择题”,事件B 1为“第二支部从甲箱中取出2个题都是选择题”,事件B 2为“第二支部从甲箱中取出1个选择题1个填空题”,事件B 3为“第二支部从甲箱中取出2个题都是填空题”,则B 1,B 2,B 3彼此互斥,且B 1∪B 2∪B 3=Ω,P (B 1)=C 25C 28=514,P (B 2)=C 15C 13C 28=1528,P (B 3)=C 23C 28=328,P (A |B 1)=69,P (A |B 2)=59,P (A |B 3)=49,P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A |B 3)=514×69+1528×59+328×49=712.所求概率即是A 发生的条件下B 1发生的概率P (B 1|A )=P (B 1A )P (A )=P (B 1)P (A |B 1)P (A )=514×69712=2049.课时作业一、单项选择题1.从应届高中生中选拔飞行员,已知这批学生体型合格的概率为13,视力合格的概率为16,其他几项标准合格的概率为15,从中任选一名学生,则该生各项均合格的概率为(假设各项标准互不影响)()A.49B.190C.45D.59答案B解析该生各项均合格的概率为13×16×15=190.2.某机场某时降雨的概率为15,在降雨的情况下飞机准点的概率为110,则某时降雨且飞机准点的概率为()A.1 2B.1 4C.1 25D.1 50答案D解析记事件A=“飞机准点”,事件B=“某时降雨”.根据题意,P(B)=15,在降雨的情况下飞机准点的概率为P(A|B)=110,所以某时降雨且飞机准点的概率为P(AB)=P(B)P(A|B)=15×110=150.故选D.3.(2023·武汉三模)已知P(B)=0.4,P(B|A)=0.8,P(B|A-)=0.3,则P(A)=()A.3 4B.3 8C.1 3D.1 5答案D解析P(B)=P(AB∪A-B)=P(A)P(B|A)+P(A-)P(B|A-),即0.4=0.8P(A)+0.3[1-P(A)],解得P(A)=0.2=15.故选D.4.(2024·南京模拟)现有甲、乙、丙、丁四位同学到夫子庙、总统府、中山陵、南京博物馆4处景点旅游,每人只去一处景点,设事件A为“4个人去的景点各不相同”,事件B为“只有甲去了中山陵”,则P(A|B)=()A.3 128B.27 256C.1 128D.2 9答案D解析甲、乙、丙、丁四位同学到夫子庙、总统府、中山陵、南京博物馆4处景点旅游,共有44=256(种)不同的方案,事件A“4个人去的景点各不相同”的方案有A44=24(种),事件B“只有甲去了中山陵”的方案有33=27(种),事件AB同时发生的方案有A33=6(种),P(AB)=6256=3128,P(B)=27256,所以P(A|B)=P(AB)P(B)=6 27=29.故选D.5.(2023·昆明模拟)已知事件A,B,C满足A,B是互斥事件,且P(A∪B|C)=1 2,P(BC)=112,P(C)=14,则P(A|C)=()A.16B.112C.14D.13答案A解析由题意,得P(B|C)=P(BC)P(C)=13,由A,B是互斥事件知,P(A∪B|C)=P(A|C)+P(B|C),所以P(A|C)=P(A∪B|C)-P(B|C)=12-13=16.故选A.6.(2023·深圳模拟)在A,B,C三个地区爆发了流感,这三个地区分别有6%,5%,4%的人患了流感,假设这三个地区的人口数之比为5∶6∶9,现从这三个地区中任意选取一人,则此人是流感患者的概率为()A.0.032B.0.048C.0.05D.0.15答案B解析设事件D为“此人是流感患者”,事件A1,A2,A3分别表示此人来自A,B,C三个地区,由已知可得P(A1)=55+6+9=0.25,P(A2)=65+6+9=0.3,P(A3)=95+6+9=0.45,P (D |A 1)=0.06,P (D |A 2)=0.05,P (D |A 3)=0.04,由全概率公式,得P (D )=P (A 1)P (D |A 1)+P (A 2)P (D |A 2)+P (A 3)P (D |A 3)=0.25×0.06+0.3×0.05+0.45×0.04=0.048.故选B.7.(2023·锦州二模)如图,用K ,A 1,A 2三类不同的元件连接成一个系统,当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作,已知K ,A 1,A 2正常工作的概率依次是12,23,23,在系统正常工作的前提下,只有K 和A 1正常工作的概率是()A.49B.34C.14D.19答案C解析设事件A 为“系统正常工作”,事件B 为“只有K 和A 1正常工作”,因为并联元件A 1,A 2能正常工作的概率为1=89,所以P (A )=12×89=49,又因为P (AB )=P (B )=12×23×=19,所以P (B |A )=P (AB )P (A )=14.故选C.8.某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.假设这名射手射击5次,则有3次连续击中目标,另外2次未击中目标的概率为()A.89B.7381C.881D.19答案C解析因为该射手每次射击击中目标的概率是23,所以每次射击未击中目标的概率为13,设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“该射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A -4A -5)+P (A -1A 2A 3A 4A -5)+P (A -1A -2A 3A 4A 5)+13×13+=881.故选C.二、多项选择题9.有一道数学难题,学生甲解出的概率为12,学生乙解出的概率为13,学生丙解出的概率为14.若甲、乙、丙三人独立去解答此题,则()A .恰有一人解出的概率为1124B .没有人能解出的概率为124C .至多一人解出的概率为1724D .至少两人解出的概率为2324答案AC解析对于A ,恰有一人解出的概率为12××13×××14=1124,A 正确;对于B ,没有人能解出的概率为=14,B 错误;对于C ,由A ,B 知,至多一人解出的概率为1124+14=1724,C 正确;对于D ,至少两人解出与至多一人解出是对立事件,所以至少两人解出的概率为1-1724=724,D 错误.故选AC.10.(2024·镇江开学考试)一质地均匀的正四面体四个表面上分别标有数字1,2,3,4,抛掷该正四面体两次,记事件A 为“第二次向下的数字为奇数”,事件B为“两次向下的数字之积为偶数”,则下列说法正确的是()A.事件A与事件B是对立事件B.P(AB)=14C.P(A|B)=13D.事件A与事件B不相互独立答案BCD解析因为抛掷该正四面体两次的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种,其中事件A有(1,1),(1,3),(2,1),(2,3),(3,1),(3,3),(4,1),(4,3),共8种,事件B有(1,2),(1,4),(2,1),(2,2),(2,3),(2,4),(3,2),(3,4),(4,1),(4,2),(4,3),(4,4),共12种,事件AB有(2,1),(2,3),(4,1),(4,3),共4种,所以A与B可同时发生,则事件A与事件B不是对立事件,故A错误;P(AB)=416=14,故B正确;P(B)=12 16=34,则P(A|B)=P(AB)P(B)=1434=13,故C正确;因为P(A)=816=12,则P(AB)≠P(A)P(B),所以A,B不相互独立,故D正确.故选BCD.11.(2023·湖北直辖县级单位统考模拟)有3台车床加工同一型号的零件,第1台加工的次品率为5%,第2,3台加工的次品率均为3%,加工出来的零件混放在一起,第1,2,3台车床加工的零件数分别占总数的15%,25%,60%.随机取一个零件,记A=“零件为次品”,B i=“零件为第i台车床加工的”(i=1,2,3),下列结论正确的是()A.P(A)=0.03B.C.P(B1|A)=P(B2|A)D.P(B1|A)+P(B2|A)=P(B3|A)答案BC解析对于A ,因为P (A )=0.05×0.15+0.03×0.25+0.03×0.60=0.033,故A 错误;对于B ,(B i )=0.15+0.25+0.60=1,故B 正确;对于C ,因为P (B 1|A )=P (B 1)P (A |B 1)P (A )=0.15×0.050.033=522,P (B 2|A )=P (B 2)P (A |B 2)P (A )=0.25×0.030.033=522,所以P (B 1|A )=P (B 2|A ),故C 正确;对于D ,由C 项分析可得P (B 1|A )+P (B 2|A )=511,又因为P (B 3|A )=P (B 3)P (A |B 3)P (A )=0.60×0.030.033=611,故D 错误.故选BC.三、填空题12.(2023·合肥一模)接种流感疫苗能有效降低流行感冒的感染率,某学校25的学生接种了流感疫苗,已知在流感高发时期,未接种疫苗的感染率为14,而接种了疫苗的感染率为110.现有一名学生确诊了流感,则该名学生未接种疫苗的概率为________.答案1519解析设事件A =“感染流行感冒”,事件B =“未接种疫苗”,则P (A )=35×14+25×110=19100,P (AB )=35×14=320,故P (B |A )=P (AB )P (A )=1519.13.(2023·东莞三模)在孟德尔豌豆试验中,子二代的基因型为DD ,Dd ,dd ,其中D 为显性基因,d 为隐性基因,且这三种基因型的比为1∶2∶1,如果在子二代中任意选取两株豌豆进行杂交实验,那么子三代中基因型为dd 的概率是________.答案14解析由题意,子二代作杂交试验的基因配型有6种可能,分别设为A i (i =1,2,3,4,5,6),设事件B 为“子三代的基因型为dd ”,则事件A 1A 2A 3A 4A 5A 6配型DD ×DD DD ×Dd Dd ×Dd Dd ×dd DD ×dd dd ×dd P (A i )11614141418116P (B |A i )14121由全概率公式得P (B )=∑6i =1P (A i )P (B |A i )=14×14+14×12+116×1=14.14.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.答案0.18解析甲队以4∶1获胜,甲队在第5场(主场)获胜,前4场中有一场输.若在主场输一场,则概率为2×0.6×0.4×0.5×0.5×0.6;若在客场输一场,则概率为2×0.6×0.6×0.5×0.5×0.6.∴甲队以4∶1获胜的概率P =2×0.6×0.5×0.5×0.6×(0.6+0.4)=0.18.四、解答题15.(2023·聊城期末)某学校在元宵节前夕举行“灯谜竞猜”活动,活动分一、二两关,分别竞猜5道、20道灯谜.现有甲、乙两位选手独立参加竞猜,在第一关中,甲、乙都猜对了4道,在第二关中,甲、乙分别猜对12道、15道.假设猜对每道灯谜都是等可能的.(1)从第一关的5道灯谜中任选2道,求甲都猜对的概率;(2)从第二关的20道灯谜中任选一道,求甲、乙两人恰有一个人猜对的概率.解(1)设事件A =“任选2道灯谜,甲都猜对”,用1,2,3,4,5表示第一关的5道灯谜,其中1,2,3,4表示甲猜对的4道,则样本空间为Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)},A ={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},所以n (Ω)=10,n (A )=6,根据古典概型的计算公式,得P (A )=n (A )n (Ω)=35.(2)设事件B =“任选一道灯谜,甲猜对”,事件C =“任选一道灯谜,乙猜对”,事件D =“任选一道灯谜,甲、乙两人恰有一个人猜对”,根据题意可得,P (B )=1220,P (B -)=820,P (C )=1520,P (C -)=520.因为D =B -C ∪B C -,且B -C ,B C -互斥,又甲、乙两位选手独立参加竞猜,所以B ,C 相互独立,从而B -,C ,B ,C -也相互独立.所以P (D )=P (B -C ∪B C -)=P (B -C )+P (B C -)=P (B -)P (C )+P (B )P (C -)=820×1520+1220×520=920.即甲、乙两人恰有一个人猜对的概率为920.16.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响.(1)求甲、乙两球都落入盒子的概率;(2)求甲、乙两球至少有一个落入盒子的概率.解(1)因为两球是否落入盒子互不影响,所以甲、乙两球都落入盒子的概率为12×13=16.(2)=13,所以甲、乙两球至少有一个落入盒子的概率为1-13=23.17.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.解(1)记事件S:甲连胜四场,则P(S)=116.(2)记事件A为甲输,事件B为乙输,事件C为丙输,则四局内结束比赛的概率为P′=P(ABAB)+P(ACAC)+P(BCBC)+P(BABA)==14,所以需要进行第五场比赛的概率为P=1-P′=34.(3)记事件M为甲最终获胜,记事件N为丙最终获胜.则甲最终获胜的样本点包括BCBC,ABCBC,ACBCB,BABCC,BACBC,BCACB,BCABC,BCBAC,所以甲最终获胜的概率为P(M)+=932.由对称性可知,乙最终获胜的概率和甲最终获胜的概率相等,所以丙最终获胜的概率为P(N)=1-2×932=7 16.18.已知某电器市场由甲、乙、丙三家企业占有,其中甲厂产品的市场占有率为40%,乙厂产品的市场占有率为36%,丙厂产品的市场占有率为24%,甲、乙、丙三厂产品的合格率分别为45,23,34.(1)现从三家企业的产品中各取一件抽检,求这三件产品中恰有两件合格的概率;(2)现从市场中随机购买一台电器,求买到的是合格品的概率.解(1)记甲、乙、丙三家企业的一件产品,产品合格分别为事件B1,B2,B3,则三个事件相互独立,恰有两件产品合格为事件D,则D=B1B2B-3+B1B-2B3+B-1B2B3,P(D)=P(B1B2B-3)+P(B1B-2B3)+P(B-1B2B3)=45×23×14+45×13×34+15×23×34=1330.故从三家企业的产品中各取一件抽检,则这三件产品中恰有两件合格的概率是1330.(2)记事件B为购买的电器合格,记随机买一件产品,买到的产品为甲、乙、丙三个品牌分别为事件A1,A2,A3,P(A1)=25,P(A2)=925,P(A3)=625,P(B|A1)=45,P(B|A2)=23,P(B|A3)=34,P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=25×45+925×23+625×34=3750.故从市场中随机购买一台电器,买到的是合格品的概率为3750.19.(2023·南京、盐城一模)人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型:有完全相同的甲、乙两个袋子,袋子里有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球,乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率;②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案:方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.解设试验一次,“取到甲袋”为事件A1,“取到乙袋”为事件A2,“试验结果为红球”为事件B1,“试验结果为白球”为事件B2.(1)P(B1)=P(A1)P(B1|A1)+P(A2)P(B1|A2)=12×910+12×210=1120.所以首次试验结束的概率为1120.(2)①因为B1,B2是对立事件,P(B2)=1-P(B1)=920所以P(A1|B2)=P(A1B2)P(B2)=P(B2|A1)P(A1)P(B2)=110×12920=19,所以选到的袋子为甲袋的概率为19.②由①,得P(A2|B2)=1-P(A1|B2)=1-19=8 9,所以方案一取到红球的概率为P1=P(A1|B2)P(B1|A1)+P(A2|B2)P(B1|A2)=19×910+89×210=518,方案二取到红球的概率为P2=P(A2|B2)P(B1|A1)+P(A1|B2)P(B1|A2)=89×9 10+1 9×210=3745,因为3745>518,所以方案二取到红球的概率更大.即选择方案二,第二次试验结束的概率更大.。
计算概率密度函数概率密度函数是概率论和统计学中非常重要的概念,用于描述随机变量的概率分布。
它是一个函数,可以用来描述随机变量在某个取值上的概率密度。
在本篇文章中,我们将介绍概率密度函数的计算方法及其应用。
一、概率密度函数的定义概率密度函数是一个非负函数,用来描述随机变量在某个取值上的概率密度。
对于连续型随机变量,概率密度函数f(x)满足以下两个条件:1. f(x) ≥ 0,对于所有的x;2. 在整个定义域上的积分等于1,即∫f(x)dx = 1。
二、概率密度函数的计算方法对于给定的随机变量X,我们可以使用不同的方法来计算其概率密度函数。
以下是几种常见的计算方法:1. 直接计算法:对于简单的随机变量,可以直接计算其概率密度函数。
通过分析随机变量的取值范围和分布特征,确定概率密度函数的表达式,并验证其满足概率密度函数的定义。
2. 变量变换法:对于复杂的随机变量,可以通过变量变换来计算其概率密度函数。
通过引入新的变量,将原随机变量的概率密度函数转化为新变量的概率密度函数,然后根据新变量的概率密度函数计算原随机变量的概率密度函数。
3. 数值计算法:对于无法通过解析方法计算的随机变量,可以使用数值计算方法来近似计算其概率密度函数。
常见的数值计算方法包括蒙特卡洛法、数值积分法等。
三、概率密度函数的应用概率密度函数在概率论和统计学中有广泛的应用。
以下是几个常见的应用场景:1. 概率计算:通过概率密度函数,我们可以计算随机变量落在某个区间内的概率。
例如,对于正态分布随机变量X,我们可以使用概率密度函数计算P(a ≤ X ≤ b)的值。
2. 期望计算:通过概率密度函数,我们可以计算随机变量的期望。
期望是对随机变量取值的加权平均值,可以用来描述随机变量的中心位置。
对于连续型随机变量X,其期望可以通过积分计算。
3. 随机模拟:通过概率密度函数,我们可以生成符合某种分布的随机变量。
通过生成大量的随机变量样本,可以用来进行随机模拟和实验。