1.2.2数轴教案
- 格式:docx
- 大小:30.26 KB
- 文档页数:4
1.2.2数轴(教案,新教材)【教学目标】1.借助生活中的实例理解数轴的概念;2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3.感受数与形是可以相互转化的,渗透数形结合的数学思想.【教学重点】理解数轴的概念,数与形的相互转化.【教学难点】会用数轴上的点表示给定的有理数.【教学过程】一、情境导入情境:医生在给病人测量体温时常使用温度计.这是小学里我们学习了在有刻度的直线上表示出0和正数,借助这个图形直观和分析问题。
我们起来看一个实例:活动一:教师创设问题情况,引入课题问题:在一条东西的马路旁,有一个汽车站牌,汽车站牌东侧3 m和7.5 m处分别有一颗柳树和一根交通标志,汽车站牌西侧3m和4.8 m处分别有一颗槐树和一根电线杆,试画图表示这一情境。
学生活动:小组合作,动手操作画出示意图.教师活动:启发学生“画一直线表示马路,从左向右表示从西向东,直线上取一点O表示汽车站牌”,怎样用数简明表示各处的位置?师生活动:师生共同探究,情境中东、西,左、右都具有相反意义,在画的直线中,O点表示基点,取1个单位长度代表1m长,再用0表示点O,用负数表示点O左边的点,用正数表示点O右边的点。
二、合作探究活动二:认识理解数轴前面讲到的温度计可以看作表示正数、0和负数的直线,它和上面同学们所画的图有什么共同点?学生活动:和其他同学交流,注意交流时要发表自己的见解.师生活动:师生共同总结,具有三个条件:原点,正方向,单位长度.抽象出数轴定义,规定是正半轴,负半轴,原点的直线.活动三:强化对数轴的认识例1.下列图形中是数轴的是()A. B.C. D.学生活动:根据自己的认识判断.师生活动:教师给学生的判断进行评价,并总结要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.活动四:读出数轴上的点所表示的数例2.如图中所示,指出数轴上的A、B、C、D、E、F各点所表示的数.师生活动:师生共同探讨要确定数轴上的点所表示的数的步骤:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.活动五:有理数在数轴上表示问题:基于以上数据,讨论有理数a如何在数轴上表示?学生活动:当a是正数,负数时,讨论如何在数轴找到相应的点表示数a.教师活动:对学生讨论结果进行评价,并强调如何确定数轴上与原点距离是a的点.例3.画出数轴,并用数轴上的点表示下列各数5---3,4,4,0.5,0,,12学生活动:学生画出数轴,并在数轴上表示以上各数.师生活动:教师评价学生的操作,并关注所画数轴是否具备“三要素”.师生共同总结方法:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.活动六:拓展提升,数轴上两点间的距离问题例4.数轴上的点A表示的数是3,那么与点A相距5个单位长度的点表示的数是() A.2 B.±2 C.8D.8或-2学生活动:讨论与点A相距5个单位长度的点表示的数有2个,分别是8或-2.师生活动:评价学生讨论结果,总结如何求两点间的距离问题,解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.三、强化巩固1.学生练习:课本练习题1、3.学生解答,教师评价并给予规范.2. 快递小哥骑车从快递投放点出发,先向东骑行2.5km到达A村,继续向东骑行2km到达B村,然后向西骑行7km到C村,最后回到快递投放点.(1)以快递投放点为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)快递小哥一共骑了多少千米?学生讨论解答,教师规范写出解答过程.四、总结拓展学生小组合作对知识总结:1.什么是数轴,数轴三要素:(1)原点,(2)正方向,(3)单位长度.2.数轴上的点与有理数间的关系:原点表示零;原点右边的点表示正数;原点左边的点表示负数.3.数轴上点数a到原点的距离,两点间的距离的求法.学生小组合作对数学思想方法总结:数形结合,分类等数学思想。
【七年级数学上册】1.2.2《数轴》教案1一. 教材分析《数轴》是七年级数学上册第一章第二节的内容,主要是让学生了解数轴的定义、特点和基本操作。
通过学习数轴,学生能够更好地理解实数的大小关系,提高解决问题的能力。
本节课的内容是学生学习更复杂数学知识的基础,具有重要的意义。
二. 学情分析七年级的学生已经掌握了实数的基本概念,对数学符号有一定的了解。
但他们对数轴的认识还比较模糊,需要通过实例和操作来加深理解。
此外,学生可能对数轴的应用场景感到陌生,需要教师通过实际例子来引导学生。
三. 教学目标1.知识与技能:使学生了解数轴的定义、特点和基本操作,能够运用数轴比较实数的大小。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生数形结合的思维方式。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极参与数学探究的精神。
四. 教学重难点1.数轴的定义和特点。
2.数轴上实数的大小比较。
3.数轴在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入数轴的概念,让学生感受数轴的实际意义。
2.动手操作法:让学生亲自动手画数轴,加深对数轴的理解。
3.讨论法:分组讨论数轴上的问题,培养学生的合作能力。
4.引导发现法:引导学生发现数轴的性质和规律,提高学生的思维能力。
六. 教学准备1.教具:数轴模型、实数卡片、黑板。
2.教学素材:与数轴相关的例题和练习题。
3.教学课件:数轴的图片、动画等。
七. 教学过程1.导入(5分钟)利用生活实例,如火车站在数轴上的位置,引出数轴的概念。
让学生思考:如何在数轴上表示这个实例?2.呈现(10分钟)展示数轴的图片和动画,引导学生观察数轴的定义和特点。
同时,介绍数轴上的基本操作,如正方向、原点、单位长度等。
3.操练(10分钟)让学生分组讨论,互相画出数轴,并比较实数的大小。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示与数轴相关的练习题,让学生独立完成。
教师选取部分题目进行讲解,巩固数轴的知识。
1.2.2 数轴教案 - 2022-2023学年人教版七年级数学上册教案概述本教案适用于2022-2023学年人教版七年级数学上册,通过数轴的教学,帮助学生理解正数、负数及它们在数轴上的位置和大小关系。
教案包括引入新知识、知识讲解、示范演示及练习等环节,旨在提高学生对数轴的理解和应用能力。
教学目标•理解正数、负数的概念及其在数轴上的位置。
•学会利用数轴表示数的大小关系。
•能够将数点的位置和数的大小相匹配,并用符号表示。
教学准备•教师准备:教师版教材、黑板、粉笔、白板笔。
•学生准备:学生书、练习册。
教学过程1. 引入新知识教师利用黑板上画一根数轴,然后让学生站到相应的位置上来。
演示并引导学生自主思考,形成对数轴的初步认识。
2. 知识讲解2.1 正数和负数教师向学生解释正数和负数的概念。
正数表示大于零的数,负数表示小于零的数。
教师可通过实际生活中的例子,如温度计的读数等方式,帮助学生理解正数和负数的含义。
2.2 数轴上的位置及大小关系教师通过讲解数轴上的位置表示和大小关系,向学生展示数轴上各个点的表示方法和对应的数值。
教师强调数轴上正数的位置及表示方法,以及负数的位置及表示方法,并引导学生进行练习。
3. 示范演示教师在数轴上选择几个具体的数点,示范如何利用数轴来判断它们的大小关系。
同时,教师解答学生对于表示方法和大小关系的疑问。
4. 练习4.1 按要求画数轴教师用黑板上示范练习,让学生在练习册上根据要求练习画数轴。
4.2 补全数轴上的数点教师给出一些未标注数点的数轴,让学生根据已标注的数点推断并补全未标注的数点。
4.3 判断正误教师给出一些数轴上已标注的数点,让学生判断正误,并正确书写出符号表示。
5. 总结与反思教师对本节课学习内容进行总结,并引导学生进行思考和反思,加深对数轴的理解。
教学延伸•利用实际生活中的例子,进一步加深学生对正数和负数的理解。
•引导学生练习使用数轴对数的大小进行判断。
教学评价教师通过观察学生的课堂表现、课后作业的完成情况和小组合作等方式,进行教学评价,并及时给予肯定和指导。
1.2.2 数轴- 人教版七年级数学上册说课稿一、教材分析本节课是人教版七年级数学上册的1.2.2节,主要内容是数轴的介绍和运用。
通过本节课的学习,学生将能够理解数轴的概念,并能够使用数轴解决实际问题。
本节课的教学目标如下:1.理解数轴的定义和表示方法;2.掌握在数轴上表示整数;3.能够在数轴上表示有理数;4.能够在数轴上解决实际问题。
二、教学重点和难点本节课的教学重点是让学生掌握数轴的表示方法和运用,以及在数轴上解决实际问题。
教学难点是如何理解数轴上的有理数,并能够准确地在数轴上表示出来。
三、教学准备为了有效地展示本节课的内容,老师需要准备以下教学资源:1.教科书:人教版七年级数学上册;2.一张大型数轴图表,用于教学展示;3.一些实际问题的例子,用于课堂练习和讨论;4.讲台和黑板等教学硬件设备。
四、教学过程1. 导入和引入问题在课堂开始时,老师可以通过一个问题引发学生的兴趣。
例如,老师可以问学生:你们知道如何表示一个数在数轴上吗?2. 数轴的定义和表示方法接下来,老师可以向学生解释数轴的定义和表示方法。
可以通过教科书上的图示,向学生展示数轴的概念和结构,并教他们如何在数轴上表示整数。
3. 数轴上的有理数表示紧接着,老师可以介绍数轴上的有理数表示。
通过教科书上的例题,教导学生如何在数轴上表示有理数,并帮助他们理解有理数的概念。
4. 数轴在实际问题中的应用在学生对数轴表示方法有一定了解之后,老师可以设计一些实际问题,让学生应用数轴解决问题。
例如,老师可以给学生一些温度或距离的问题,让学生通过数轴进行解答。
同时,老师可以组织小组讨论,提高学生的合作能力和问题解决能力。
5. 总结和归纳课堂即将结束之前,老师可以对本节课的内容进行总结和归纳。
可以请学生回答一些问题,巩固他们对数轴的理解,同时也可以帮助老师检查学生的学习情况。
五、板书设计为了方便学生回顾和复习,老师可以在黑板上设计一些关键知识点。
板书内容如下:数轴的定义和表示方法:- 整数的表示方法- 有理数的表示方法数轴上的运用:- 实际问题的解答六、课堂小结通过本节课的学习,学生们已经初步掌握了数轴的概念和表示方法,能够在数轴上表示整数和有理数,并且能够运用数轴解决一些实际问题。
1.2.2 数轴教案2022-2023学年人教版七年级数学上册教学目标通过本课的学习,学生应该能够: 1. 理解数轴的概念及其作用; 2. 掌握在数轴上表示数的方法; 3. 能够将实际问题转化为数轴上的表示; 4. 能够使用数轴进行简单的数学运算; 5. 培养学生的逻辑思维和空间想象能力。
教学重点1.数轴的概念及其作用;2.数轴上的数的表示方法;3.数轴上的数的运算。
教学准备•教师准备:–教师课件;–数轴模型;–计算器。
•学生准备:–课本;–笔记本。
教学过程一、导入新知1.引导学生回忆上一节课学习的内容,复习数的定义和数的表示方法。
2.引出本节课的主题:数轴。
二、概念讲解1.教师通过数轴模型向学生展示数轴的基本结构和表示方法,并解释数轴的作用。
2.引导学生思考:数轴上的点代表什么意思?如何表示正数和负数?三、数轴的表示1.教师通过数轴模型向学生演示数的表示方法,并讲解数轴上数字的排列规律。
2.引导学生进行数的表示练习,例如:在数轴上表示数3、-2、0等。
四、数轴上的运算1.通过实际例子引导学生进行数轴上的加法和减法运算。
2.引导学生进行练习,例如:计算数轴上的两个数之间的距离,或者计算数轴上两个数的和、差等。
五、拓展应用1.给学生提供更复杂的问题,引导他们运用数轴解决实际问题,如:小明从家里出发,沿着数轴上的正方向走了5步,再往反方向走了3步,最后停在了哪个位置?2.鼓励学生思考、探究和解决问题,并展示解题思路和答案。
教学反思本节课通过实物模型和实例讲解,帮助学生更直观地理解数轴的概念,并通过练习和拓展应用加深学生对数轴的认识和运用能力。
在教学过程中,学生的思维活动得到了有效激发,课堂氛围较为活跃。
下一堂课可以结合数轴的运用场景,拓展更多的数轴应用。
人教版七年级数学上册:1.2.2《数轴》教学设计一. 教材分析数轴是中学数学中的重要概念,是实数与数轴上的点一一对应的基础。
人教版七年级数学上册1.2.2《数轴》一节,主要让学生了解数轴的定义、特点及数轴上的基本运算。
通过本节课的学习,学生能理解数轴的概念,会画数轴,能在数轴上表示实数,并进行简单的运算。
二. 学情分析七年级的学生已经学习了有理数,对实数有一定的了解,但数轴的概念和运用对他们来说是一个新的挑战。
学生在学习本节课时,需要将已有的实数知识与数轴相结合,形成直观的数形结合思想。
同时,学生需要通过实践活动,掌握数轴的画法和运用。
三. 教学目标1.知识与技能:理解数轴的定义,掌握数轴的特点,能在数轴上表示实数,并进行简单的运算。
2.过程与方法:通过实践活动,培养学生的数形结合思想,提高学生的动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.数轴的定义和特点。
2.数轴上的基本运算。
五. 教学方法采用问题驱动法、实践活动法和合作学习法。
通过提出问题,引导学生思考;通过实践活动,让学生亲身体验数轴的运用;通过合作学习,培养学生团队合作精神。
六. 教学准备1.教学PPT。
2.数轴图示。
3.练习题。
七. 教学过程1.导入(5分钟)通过提出问题:“什么是数轴?数轴有什么特点?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT展示数轴的定义和特点,让学生直观地理解数轴的概念。
3.操练(10分钟)让学生分组进行实践活动,每组画出一个数轴,并在数轴上表示给定的实数。
通过实践活动,让学生掌握数轴的画法。
4.巩固(10分钟)让学生进行小组讨论,总结数轴上的基本运算,如加法、减法、比较大小等。
通过小组讨论,巩固学生对数轴的理解。
5.拓展(5分钟)出示一些有关数轴的拓展问题,让学生独立解答。
如:“已知数轴上两点A、B,求线段AB的长度。
”通过拓展问题,提高学生的运用能力。
教案首页日否一、情境导入1.回忆小学知识,体会0和正数的直观表示.师生活动:学生观察直尺,回忆小学如何表示0和正数(在一条有刻度的直线上表示).师追问:负数该如何直观表示呢?设计意图:1.通过小学知识引出课题,激发学生求知热情,为后面数轴做铺垫。
2.回忆正数和0的表示过程,自然引出如何表示负数的探究。
二、探究新知【知识点一:数轴的概念及数轴三要素】问题:在一条东西向的马路上,有一个汽车站牌,汽车站牌东侧3m和7.5m处分别有一棵柳树和一根交通标志杆,汽车站牌西侧3m和4.8m处杨树有一棵槐树和一根电线杆,试画图表示这一情境.师生活动1:学生朗读题目,集中学生的注意力,开始思考作图。
设计意图:呈现情境问题,学生读题并思考问题,体现注意的指向性和集中性。
教师引领学生快速进入角色。
问题:对于题目中的问题,我们可以用什么样的图形当作一条东西向的马路?(一条直线)师生活动2:学生自主画图探究,教师巡视,提醒学生可以用简笔画、汉字、大写字母代表柳树等。
师生活动3:学生基本画完,教师开始追问问题追问 1:小组之间对比一下,同学们画出的图形完全一样么?(代表1米的长度会存在不一样的现象,即单位1不同,从而引出单位长度)问题追问 2:在所画的直线上,汽车站牌、柳树、槐树、交通标志杆、电线杆中先标出哪个地点呢?为什么?(汽车站牌为基准点,选择基准点即原点)教师展示情境示意图,做简单的距离说明(点A表示1距离O点1m)问题追问 3:距离汽车站牌3m的是哪个地点呢?(两个不同的3米,东与西,左与右都具有相反的意义,左西右东,体现出规定正方向)教师板书单位1,基准点,具有相反的意义(方向)师生活动4:学生思考如下问题:学生回忆用正数和负数表示相反意义的量。
用0表示汽车站牌,汽车站牌右边为正数,左边为负数。
学生在已有图上标出数字。
教师标出正方向的箭头,如下:设计意图:通过三个追问的问题,引发学生思考,唤醒学生已有的知识储备,归纳出共同特点,为数轴三要素的理解打下了坚实的基础。
七年级数学上册1.2.2 《数轴》教案1一. 教材分析《数轴》是七年级数学上册1.2.2的内容,本节内容是在学生已经掌握了有理数的概念和大小比较方法的基础上进行教学的。
数轴是数学中的一种重要工具,可以直观地表示数的大小和位置关系,对于学生理解数学概念和解决问题有着重要的作用。
本节课的主要内容是数轴的定义、特点以及如何利用数轴表示数和进行大小比较。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对于图形和空间概念有较强的兴趣和好奇心。
但是,由于年龄和认知水平的限制,部分学生可能对于数轴的概念和应用还存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题出发,运用数轴解决问题,提高他们的实践能力。
三. 教学目标1.了解数轴的定义和特点,掌握数轴的基本操作。
2.能够利用数轴表示数和进行大小比较。
3.培养学生的空间想象能力和逻辑思维能力。
4.培养学生运用数轴解决问题的能力。
四. 教学重难点1.数轴的定义和特点。
2.利用数轴表示数和进行大小比较。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题出发,探索数轴的定义和特点。
2.利用多媒体辅助教学,展示数轴的图形和实例,增强学生的空间想象力。
3.采用小组合作学习的方式,让学生在讨论和交流中掌握数轴的基本操作和应用。
4.通过练习和总结,巩固学生对数轴的理解和应用。
六. 教学准备1.多媒体教学设备。
2.数轴图示和实例。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,如“小明家和小华家的距离是多少?”引导学生思考如何用数学工具表示和解决问题。
2.呈现(10分钟)利用多媒体展示数轴的图形和实例,引导学生观察和思考数轴的特点和作用。
3.操练(10分钟)让学生分组讨论,尝试利用数轴表示数和进行大小比较。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生进行一些数轴相关的练习题,巩固对数轴的理解和应用。
人教版七年级数学上册1.2.2《数轴》教学设计一. 教材分析《数轴》是人教版七年级数学上册第一章第二节的一部分,主要内容包括数轴的定义、特点、表示方法以及数轴上的基本运算。
这部分内容是学生学习数学的基础,对于培养学生的数学思维和解决实际问题的能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,但对于数轴这一概念可能较为抽象,需要通过具体实例和操作来理解和掌握。
同时,学生对于坐标系和图形的认识有所欠缺,需要在教学过程中进行引导和培养。
三. 教学目标1.了解数轴的定义和特点,掌握数轴上的表示方法。
2.能够运用数轴解决实际问题,提高解决问题的能力。
3.培养学生的数学思维和坐标系观念,提高学生的数学素养。
四. 教学重难点1.数轴的定义和特点2.数轴上的表示方法3.运用数轴解决实际问题五. 教学方法1.实例教学:通过具体实例引入数轴的概念,使学生更容易理解和接受。
2.操作教学:通过实际操作,让学生体验数轴的特点和运用方法。
3.问题解决:设计实际问题,引导学生运用数轴进行解决,提高学生的解决问题的能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,包括数轴的定义、特点、表示方法以及实际问题的解决。
2.教学实例:准备一些实际问题,用于引导学生运用数轴进行解决。
3.教学工具:准备数轴的模型或者图片,方便学生进行观察和操作。
七. 教学过程1.导入(5分钟)通过一个实际问题引入数轴的概念,例如:“小明从家出发,向正北方向走了5公里,然后向正西方向走了3公里,请问小明现在在哪里?”让学生思考并尝试解答,引发学生对数轴的兴趣。
2.呈现(10分钟)通过PPT展示数轴的定义和特点,以及数轴上的表示方法。
同时,结合实例进行解释,让学生理解和掌握数轴的基本概念。
3.操练(10分钟)让学生进行实际操作,例如在数轴上表示不同的数,或者根据数轴上的点来确定物体的位置等。
通过操作,让学生更加熟悉数轴的特点和运用方法。
人教版义务教育课程标准教科书七年级上册1.2.2 数轴一、教材分析1、地位作用:这一课时学习的数轴概念是中学数学中数形结合的起点,数形结合是帮助学生理解数学、学好数学的重要思想方法。
从现在开始,在教学与学习中注重数形结合是数学教学与学习的重要指导思想,本章后面的有理数的有关性质和运算都是结合数轴进行的,由此可见这一课时学生学好数轴概念的重要性。
数轴是用“长度”度量各类量的抽象,日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了基础。
本节是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数, 并会比较有理数的大小, 借助数轴理解互为相反数两数的几何意义。
正确理解有理数与数轴上点的对应关系。
另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。
通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础.2. 学情分析学生小学里已经学习过在“射线”上用点来表示数和读出或写出“射线”上的点所表示的数,对数与点的这种对应关系有了初步的认识和理解,上一节又学习了有理数的概念,为数轴概念的建立和进一步学习数轴上的点与有理数的对应关系积累的必要的学习经验,具备了“表示”的基本技能和基本方法。
3、教学目标:①通过与温度计的类比认识数轴, 会用数轴上的点表示有理数。
②了解数轴上的点与有理数的关系;会利用数轴比较有理数的大小。
4、教学重、难点教学重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数, 并会比较有理数的大小.教学难点:理解有理数与数轴上点的对应关系二、教学准备:多媒体课件、导学案。
三、教学过程。
七年级数学上册1.2.2 《数轴》教学设计2一. 教材分析《数轴》是七年级数学上册1.2.2的内容,数轴是数学中的一个重要概念,是实数与数轴上的点一一对应的基础知识。
通过数轴,可以直观地表示出数的大小、距离、相反数等概念。
本节课的内容为数轴的定义、表示方法以及数轴上的基本运算。
二. 学情分析学生在七年级之前已经学习了有理数的概念,对正负数、加减法、乘除法等运算有一定的掌握。
但是,对于数轴这个概念,学生可能比较陌生,需要通过具体的实例和操作来理解和掌握。
三. 教学目标1.知识与技能:理解数轴的定义,掌握数轴上的表示方法,能够进行数轴上的基本运算。
2.过程与方法:通过实例和操作,培养学生的观察能力、思考能力和动手能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.数轴的定义和表示方法。
2.数轴上的基本运算。
五. 教学方法采用“问题驱动”的教学方法,通过实例和操作,引导学生主动思考和探索,培养学生的观察能力、思考能力和动手能力。
同时,采用小组合作的学习方式,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.教学PPT:包含数轴的定义、表示方法以及数轴上的基本运算的例子。
2.数轴教具:用于引导学生进行实际操作。
3.练习题:用于巩固所学内容。
七. 教学过程1.导入(5分钟)通过一个实际问题引入数轴的概念:小明从家出发,向正北方向走了3公里,然后又向正西方向走了2公里,请问小明现在在哪里?2.呈现(10分钟)呈现数轴的定义和表示方法,通过PPT和教具,解释数轴上的点与实数的一一对应关系。
3.操练(10分钟)学生分组进行数轴的操作,包括在数轴上表示给定的数,计算数轴上两点之间的距离等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成练习题,教师选取部分题目进行讲解和讨论。
5.拓展(5分钟)引导学生思考数轴在实际生活中的应用,例如计算两地之间的距离、确定物体的位置等。
《1.2.2数轴》教学设计设计思想:从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。
教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。
直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。
一、教法分析:针对初一学生的年龄特点和心理特征,以及他们的知识水平,根据教学目标,本节课采用探究发现式教学法和参与式教学法为主,利用多媒体引导学生始终参与到学习活动的全过程中,处于主动学习的状态。
二、学法指点这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程。
在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解视察、类比、分析数形结合等数学思想。
三、教学程序(一)从数学与生活的关系入手、引入新课数学起源于生活,也服务于我们的生活,从远古时代的结绳记事开始,数便产生了,并且一直忠心耿耿,兢兢业业的记录着也刻画着我们的生活,可以说我们的生活离不开数。
比如:一只小小的温度计,就是用数字刻画温度的……50-10℃℃℃问题:1 刻度是否均匀?2 数字排列有什么规律?3 要具体标注一些什么样的数?当温度计横过来时,三个问题会产生什么变化?问题:1 刻度是否依然均匀?2 数字排列规律有何变化 ?(从左到右,由小变大)3 要具体标注的数是否有变化 ?(没有,依然是正数,负数,还有0)想一想:1)0不是正数吗?是负数吗?2)比0大的数是_____,比0小的数是_____,有最大的正数吗?有最小的负数吗?3)有理数的数量是_______。
能否发明一种工具像温度计一样,把我们学过的数有序的呈现出来?设计思想:通过生活实例,和一系列的问题引导,水到渠成的过渡到数轴这一中心课题。
第一章有理数1.2 有理数1.2.2 数轴教学目标:1. 识记数轴的三要素并会画数轴.2. 能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,会用数轴比较有理数的大小.3. 会用数形结合的思想理解在特定的条件下数与形是可以相互转化的.重点:数轴的概念,在数轴上表示数.难点:正确的画出数轴,有理数和数轴上的点的对应关系.一、知识链接1.回忆正负数的意义并回答以下问题:在一条东西向的马路旁,有一个汽车站牌,汽车站牌东 3 m 和7.5 m 处分别有一棵柳树和一根交通标志杆,汽车站牌西侧3 m 和 4.8 m 处分别有一棵槐树和一根电线杆,试画图表示这一情境.一、要点探究知识点1:数轴的画法及概念合作探究探究一怎样用数简明地表示这些树、标志杆、电线杆与汽车站牌的相对位置关系(方向、距离)?合作探究你能联想到生活中的哪些用直线上的点表示数的工具,请举例说明.它们有什么共同特点?像这样,规定了原点、正方向和单位长度的直线叫作数轴.数轴的画法:1.在直线上任取一点表示数0,这个点叫做原点.2.通常规定直线上从原点向右(或上) 为正方向,从原点向左(或下) 为负方向.3.选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,···;从原点向左,用类似方法依次表示-1,-2,-3,···.4.原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.1.(松北区校级月考改编)关于数轴的图示,画法正确的是()总结:原点、正方向、单位长度一个也不能少.归纳总结:画数轴注意事项:(1)原点、单位长度和正方向三要素缺一不可;(2)直线是水平的;(3)正方向用箭头表示,一般取从左到右;取单位长度应结合实际需要,但要做到刻度均匀.合作探究探究二为了进一步研究马路情境图(数轴),仿照A 点信息填写表格.数轴上的点表示数:一般地,设 a 是一个正数,则数轴上表示数 a 的点在数轴的___半轴上,与原点的距离是___个单位长度;表示数 -a 的点在数轴的___半轴上,与原点的距离是___个单位长度.数轴上与原点的距离是 a 个单位长度的点,简称为数轴上与原点的距离是 a 的点.例1 画出数轴,并在数轴上表示下列各数: 3,-4,4,0.5,0, −52 ,-1.例2 根据下面给出的数轴,解答下列问题:(1) 请你根据图中 A 、B 两点的位置,分别写出它们所表示的有理数,以及 A 、B 两点距离几个单位长度?(2) 从点 A 出发,沿着数轴正方向移动 2 个单位长度达点 C ,在数轴上请画出点 C ,并写出它所表示的数.1. 画出数轴,并用数轴上的点表示下列各数 ( )1.在数轴上,原点及原点右边的点表示的数是( )A. 正数B. 负数C. 非正数D. 非负数2.在数轴上表示-3 的点与表示4 的点之间的距离是( )A. 7B. -7C. 1D. -13. 画出数轴并表示下列有理数:能力提升:4.在数轴上,一只蚂蚁从原点出发,它先向右爬了4 个单位长度到达点A,再向右爬了2 个单位长度到达点B,然后又向左爬了10 个单位长度到达点C.(1) 将A,B,C 三点所表示的数在下图中的数轴上表示出来;(2) 根据点C 在数轴上的位置,点C 可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度所到达的点?(3) 如果移动点A,B,C 中的两个点,使得三个点重合,你有几种移动方法?请分别求出移动的长度之和.拓展:数轴上有两个固定点A、B,有一动点C,请问点C在什么位置时,动点C到两定点距离之和最小?参考答案自主学习一、新课导入合作探究一、要点探究知识点1:数轴的画法及概念合作探究知识要点:数轴上的点表示数:正a负a【典例精析】解:如下图所示.总结:原点左边的数是负数←→原点右边的数是正数解:(1) 点A 表示3;点B 表示-1.5;点A、点B 距离 4.5 个单位长度.(2)如上图所示,C 点表示5.1. 解:如下图所示:2.C二、课堂小结当堂检测1.D2.A3.解:如下图所示:4.(1)解:如图所示.(2)可以看作蚂蚁从原点向左平移4 个单位长度达到.(3)。
年级七科目数学任课教师张辉银授课时间9.16课题 1.2.2数轴授课类型一、教材分析数轴这课教学安排是数形结合的教学法。
正所谓:数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休.二、学情分析在已经对有理数学习的基础上,利用图形来进一步对有理数进行理解和加深,但学生第一次利结合用图形来体会“用点表示数”时,必须要理解点与数“一一对应”相对困难。
三、教学目标四、教学重点难点重点数轴三要素,体会用数轴上的点表示数的合理性难点数形结合”思想的理解五、教学过程设计一,问题导入1,出示温度计,让学生观察上面的数据2,在一条东西向的马路上,有一个汽车站牌,汽车站牌往东3米和7.5米处分别有一棵柳树和一棵杨树,汽车站牌往西3米和4.8米处分别有一棵槐树和一根电线杆,试画图表示这一情境。
师生共同解决①马路可以用什么几何图形代表?②站牌起什么作用?③你是怎么确定问题中各物体的位置的?(方向、与站牌的距离)我设计的意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是第一次比较正式的接触抽象的“数形结合”思想!3,问题2中“东”与“西”、“左”与“右‘都具有相反意义,我们知道有理数中的正数、负数都表示两种具相反意义的量,那么如何用数表示这些树、电线杆、汽车站牌的相对位置呢?师生共同解决:①0表示什么?②数的符号的实际意义是什么?③在一条直线上,A、B的距离等于B、C的距离,点B用劲表示,编号:7---1.2.2(4)点C 用7.5表示吗?为什么?④上述方法表示了这些树、电线杆与汽车的相对位置关系。
你能再举个例子吗? 我的设计意图:继续以“三要素”为定向,将点用数表示,实现第二次对“数形结合”的抽象概念的理解!4,回顾温度计,数字0表示什么?0以上的数字、0以下的数字各表示什么? 我的设计意图:借助生活中的常用工具,说明数学知识在实际生活中的应用,为定义数轴作好铺垫!二,新课教学1,师生共同明确:规定了原点、正方向、单位长度的一条直线叫数轴2,学生与老师一起作图,共同思考:①“原点”如何表示?起什么作用?②如何理解“选取适当的长度作为单位长度”?③在数轴上的点直观看什么特点?我的设计意图:让学生明确概念,并让他们作图过程中加深“数形结合”的数学思想!三,知识反馈1,教科书第9页练习1,22,补充问题:①在数轴上,表示+2的点在原点的 侧,距原点 个单位长度;表示-7的点在原点的 侧,距原点 个单位长度;两点之间的距离为 个单位长度?②画出数轴并表示下列各数+3,0,25,-3,-1.25 我的设计意图:①巩固学生才学的数轴概念,进一步了解所有的有理数都可以用数轴上的点来表示,②巩固学生的作图能力四,小结师生共同回顾:①本节课学习了哪些内容?②数轴“三要素”各指什么?在作图中要注意如何表示?③生活中存在数轴和地方有哪些?六、练习及检测题 P9 练习:1 2 3题七、作业设计P14 习题1.2 第2、3、11(1)(2)题。
1.2.2 数轴教材分析本节内容主要是数轴的概念,是在前面学习了正数、负数的概念和意义,及有理数的概念和分类的基础上学习的.数轴是初中数学学习和研究的重要工具,它主要应用于有理数的大小比较、相反数、绝对值概念的理解,有理数运算法则的推导及不等式的求解.本节内容有着承上启下的作用,既承接了小学阶段所学的用有刻度的直线表示0和正数,及初中有理数的知识,又为接下来相反数、绝对值、有理数的大小比较等内容的学习作铺垫.同时,数轴也是以后学习二维的平面直角坐标系的根底.数轴是数形结合思想的产物,是继正数、负数、有理数概念之后学习的一个新的概念.引进数轴后,可以用数轴上的点直观地表示有理数.其中体现出的数形结合思想,是学生进入初中数学学习后较早接触的数学思想方法之一.同时,数轴又能将数的分类直观地表示出来,体现了分类思想.本节教材从画图表示汽车站牌及其他物体的位置这一实例出发,结合标有刻度的温度计表示温度高低,找寻共同点,引出数轴的画法和概念,并用数轴上的点表示数,初步向学生渗透数形结合的数学思想,以使学生学会借助图形来直观地表示很多与有理数有关的问题.本节内容在教学过程中,应注重发展学生的抽象能力、几何直观、模型观念.数轴是初中阶段数与形结合应用的起点,强调应用意识和创新意识的培养;要结合生活实例,让学生感受数学与生活的紧密联系;要注重学生的情感体验,让他们在轻松愉快的氛围中学习数学.学情分析七年级学生刚刚学习了有理数中的正数、负数,对正数、负数的概念理解并不深刻.同时,学生第一次遇到用“形”表示“数”的问题,困难在于理解其中蕴含的思想,在教学时可以借鉴引入负数时的经验,以及学生的生活经验,借助情境使学生获得体验后再进行模仿式举例.本节内容中,学生对数轴概念和数轴的三要素不易理解,画数轴时容易出现丢三落四的现象,教学中教师应给予简单明白、深入浅出的分析.七年级学生好动、注意力易分散,在教学中教师应抓住学生这一特点,一方面运用直观生动的形象,激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学习的主动性.教学建议教学时,可以根据本节内容特点,先利用生活中的实例或情境,引导学生感受在直线上表示有理数的合理性,直入主题.再通过由特殊到一般的问题引导,鼓励学生动手操作、画图实践、交流思考、表达评价,最终生成数轴的概念,发现数轴的三要素.通过启发、引导学生进行探索,让学生感受到数轴在生活中的实际应用;利用温度计等直观教具,加深学生对数轴的理解;通过设计不同难度的问题和练习,让每个学生都能在原有基础上得到提升.此外,教学中建议重视多元化评价,促进教一学一评一体化.以活动任务群或问题串相结合的方式引导学生多角度思考解决问题,总结经验,层层深入.布置有创意的数学活动,充分发展学生的数学思维,体现课堂的开放性和高效性.通过课堂教学活动,使学生在学习过程中充分发展抽象能力、几何直观、模型观念,培养应用意识和创新意识.教学目标1.理解数轴的概念,知道数轴的三要素,会画数轴;能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.通过动手实践感知数轴概念生成的过程,初步体会数形结合的思想方法,发展抽象能力、几何直观、模型观念,培养应用意识和创新意识.3.在数轴的学习过程中,认识事物之间的联系,感受数学与生活的联系.重点难点重点数轴的概念和画法,体会数轴的三要素.难点教学设计教学准备课件、直尺等.导入1.2.2 数轴.如果把数用我们学过的图形元素-“点”来表示,那么在线段、射线、直线哪种图形上表示有理数比较合理呢?为什么?学情预设:学生基本能表达出在直线上表示有理数比较合理.【设计意图】通过对前面所学内容的简单回顾,让学生初步体会面对数域的扩充需要考虑的问题.同时将数与形联系起来,为本节课的学习打下基础.高效课堂活动一:操作展示,交流评价,归纳总结,生成概念问题1:你能根据你的理解在一条直线上表示出-3,-2,-1,0,1,2,3这几个数吗?师生活动:要求学生小组讨论后展示成果,并解释这样画的道理和需要关注的地方,同学之间互相交流评价.学生根据自己的想法在直线上表示预设好的几个数.在画图的过程中,感受数“0”的位置、正数和负数表示的方向及相邻两个数之间的距离这几个必备条件的重要性.在表述过程中与同学交流,互相评价,不断修改提炼关键要素.【设计题图】通过动手画图,感知在一条直线上表示负数、0、正数时需要关注的几个条件,为下面进一步提出用直线上的点表示有理数并归纳总结出数轴的概念及数轴的三要素打下基础.问题2:能否用一条直线上的点来表示有理数呢?表示时需要注意哪些方面?学情预设:学生通过画图发现,在直线上要有一个表示数0的点(即原点),要规定一个正方向,还要有刻线,相邻刻线等距日意义相同(即单位长度).从而生成数轴的概念;在数学中,可以用一条直线上的点表示数,它满足以下三个条件:(1)在直线上任取一个点表示数0,这个点叫作原点:(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1、2、3,···;从原点向左,用类似方法依次表示-1,-2.-3,···.像这样,规定了原点、正方向和单位长度的直线叫作数轴.教师强调数轴的三要素:原点、正方向和单位长度.教师指出:原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.【设计意图】引导学生通过小组讨论、合作交流、及时评价,集众人智慧归纳总结出数轴的概念及三要素,实现教-学一评一体化.问题3:你知道生活中有哪些与数轴有关的事物?学情预设:学生回答生活中见到的和数轴有关的事物,比如温度计、直尺等.【双计意图】将数学模型与生活中的实物进行联系,让学生感受到数学与现实生活联系密切.活动二:理解概念,辨析概念,应用概念,深化概念问题1:观察下面图形,哪些是数轴,哪些不是?为什么?学情预设:学生能准确判别以上图形是否为数轴,作出辨析的同时再次说出数轴的三要素.活动:画一个数轴,同桌两人相互检查.【设计意图】让学生对数轴进行识别和判断.强调对于数轴的每一个细节都要注意,确保数轴是准确和完整的,加深学生对数轴三要素的认识,通过动手画数轴,让学生熟练掌握数轴的画法.问题2:思考一下,有理数是否都可以用数轴上的点表示出来?学情预设:学生讨论发现,有理数都可以用数轴上的点表示出来.追问1:设a是一个正数,则在数轴上表示数a和-a的点在数轴的什么位置?与原点的距离是多少个单位长度?学情预设:一般地,设a是一个正数,则数轴上表示数a的点在数轴的正半轴上,与原点的距离是a个单位长度;表示数-a的点在数轴的负半轴上,与原点的距离是a个单位长度.教师指出:数轴上与原点的距离是a个单位长度的点,简称为数轴上与原点的距离是a的点.追问2:数轴上的每个点都对应一个有理数吗?有理数能填满整个数轴吗?学情预设:学生讨论发现,数轴上的点不一定对应有理数,可能对应无限不循环小数.所以,有理数填不满整个数轴.【设针题圈】回到最初引入数轴的初衷,思考如何在数轴上表示数.通过对有理数在数轴上的表示方法的研究,得出有理数与数轴上点的对应关系.例1如图,数轴上A,B,C,D各点分别表示什么数?师生活动:教师提出问题,让学生自己解决问题.解:数轴上点A表示数-3,点B表示数-1,点C表示数0,点D表示数2,教师指出:本题就是点(形)→数.【设计意图】通过找数轴上的点表示的数,实现从形到数的转化,巩固数轴上的点与数的对应关系.例2画出数轴,并用数轴上的点表示下列各数:−52,−1.5,23,2,3.5.思考:用数轴上的点表示一个有理数时,应注意什么?学情预设:先画数轴,要完整、适当;再找位置,即定左右、定距离;最后描点、标数,要画实心圆点,在数轴上方标记.师生活动:教师提出思考问题,引导学生分析解决问题应注意的事项.然后让学生自己画图,指名板演,集体核对结果.解:如图所示.教师指出:本题就是数→点(形).教学提示:在整个过程中要关注数轴的完整性和所标点的位置的正确性,确保将所要标出的点一个不落地标在数轴上,实现从数到形的转化.【设计意图】通过在数轴上找有理数对应点的位置,实现从数到形的转化,进一步巩固理解数轴上的点与数的对应关系.课堂评价数学游戏:全班同学分成6组,以小组为单位进行活动.小组讨论后,根据本节课所学知识试着命制习题,其他组抢答.进行两轮,抢答正确题量最多的小组胜出,给予集体奖励.【设计意图】利用审辩式教学方式,结合小组合作讨论,让学生在不断提出问题和解决问题的过程中加深对本节课所学知识的理解和应用.同时,在数学游戏中培养学生的应用意识和创新意识.课堂总结1.请叙述数轴的概念以及数轴的三要素.2.数轴有什么作用?3.通过本节课的学习,你有哪些数学思想方法和能力素养上的收获?你还有什么疑问?【设计宽图】通过回顾本节课学习的主要内容,增强学生对本节课所学知识的理解,使学生体会数学思想方法和核心素养在数学学习中的重要性.作业设计基础性作业:教材练习第1,2题.提高性作业:教材练习第3,4题.实践性作业:使用卡纸、指针等材料制作数字表盘,手工完成一个数轴手表.本课评价评价指标具体要点得分(0~10分)学生互评小组互评教师评价参与意识有主动探索的欲望能力发展掌握数轴相关知识点实践成果能用数轴上的点表示有理数总结展示清晰流利汇报教学特色1.数形结合,直入主题负数的引入让学生体会数域的第一次扩充.本教学案例设计课始就提出问题,探究如果把数用我们学过的图形元素-“点”来表示,在哪种图形上表示有理数比较合理,从而引导学生感受在直线上表示有理数的合理性,直入主题.2.以生为本,教一学一评一体化本教学案例设计通过由特殊到一般的问题引导,鼓励学生动手操作、画图实践、交流思考、表达评价,最终生成数轴的概念,发现数轴的三要素.同时,课堂中给出了多元化评价,充分体现以生为本,实现了教一学一评一体化.3.问题导向,层层深入本教学案例设计以活动和问题串相结合的方式引导学生多角度思考、解决问题,总结经验,从而理解概念,辨析概念,应用概念,深化概念.4.审辩教学,高效课堂本教学案例设计通过让学生发现并介绍生活中与数轴有关的事物,运用所学的新知随机提出问题并合作解决问题等数学活动,充分发展学生的数学思维.因问而审,以审启思,因思生辩,以辩促辨,体现了课堂的开放性和高效性.5.提升素养本教学案例设计通过课堂教学活动的设置,使学生在学习过程中充分发展抽象能力、几何直观、模型观念,培养应用意识和创新意识.。
1.2.2数轴教案
一、教学内容分析
人教版七年级(上册)第一章有理数1.2有理数1.2.2数轴。
这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。
同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。
日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。
通过问题情境类比得到数轴的概念,是这节课的主要学习方法。
同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。
二、学情分析
(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;(2)学生学习本节课的知识障碍。
学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;
(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。
三、设计思想
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。
教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。
直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。
例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。
四、教学目标
(一)知识与技能
1、掌握数轴的三要素,能正确画出数轴。
2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。
(二)过程与方法
1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意
识。
2、对学生渗透数形结合的思想方法。
(三)情感、态度与价值观
1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。
2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
五、教学重点及难点
1、重点:正确掌握数轴画法和用数轴上的点表示有理数。
2、难点:有理数和数轴上的点的对应关系。
六、教学建议
1、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。
数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。
另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。
通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。
2、知识结构
有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:
定义规定了原点、正方向、单位长度的直线叫数轴
三要素原点正方向单位长度
应用数形结合
七、学法引导
1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。
2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。
八、课时安排
1课时
九、教具学具准备
电脑、投影仪、三角板
十、师生互动活动设计
讲授新课
(出示投影1)
问题1:三个温度计.其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.
师:三个温度计所表示的温度是多少?
生:2℃,-5℃,0℃.
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作) 师:我们能否用类似的图形表示有理数呢?
师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题).
师:与温度计类似,我们也可以在一条直线上画出刻度,标上读
数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左
为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度
单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,
依次表示为-1,-2,-3,…
师问:我们能不能用这条直线表示任何有理数?(可列举几个数)
让学生观察画好的直线,思考以下问题:
(出示投影2)
(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示-1的点在什么位置?
(4)原点向右0.5个单位长度的A 点表示什么数?
(5)原点向左1.5个单位长度的B 点表示什么数?
根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后 归纳出数轴的定义.
师:在此基础上,给出数轴的定义,即规定了原点、正方向和单
位长度的直线叫做数轴.
进而提问学生:在数轴上,已知一点P 表示数-5,如果数轴上的原点不 选在原来位置,而改选在另一位置,那么P 对应的数是否还是-5?如果单位 长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度 ,缺一不可.
【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.
师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习
尝试反馈,巩固练习
(出示投影3).画出数轴并表示下列有理数:
1、1.5,-2.2,-2.5,29,3
2 ,0. 2.写出数轴上点A,B,C,D,E 所表示的数:
请大家回答下列问题:
(出示投影4)
(1)有人说一条直线是一条数轴,对不对?为什么?
(2)下列所画数轴对不对?如果不对,指出错在哪里?
【教法说明】此组练习的目的是巩固数轴的概念.
十一、小结
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.
十二、课后练习
十三、教学反思
1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。