电机学课后 思考题 习题 答案
- 格式:wps
- 大小:1.82 MB
- 文档页数:35
第13章 思考题与习题参考答案13.1 试述三相同步发电机理想并列的条件? 为什么要满足这些条件?答:三相同步发电机理想并列的条件是:(1)发电机的端电压gU 与电网电压c U 大小相等,相位相同,即c g U U =;(2)发电机的频率g f 与电网频率c f 相等;(3)发电机的相序与电网相序相同。
如果cg U U ≠,则存在电压差c U U U -=∆,当并列合闸瞬间,在U ∆作用下,发电机中将产生冲击电流。
严重时,冲击电流可达额定电流的5~8倍。
如果c g f f ≠,则电压相量g U 与c U 的旋转角速度不同,因此相量gU 与c U 便有相对运动,两相量的相角差将在0~360之间变化,电压差U ∆在(0~2)g U 之间变化。
频率相差越大,U ∆变化越激烈,投入并列操作越困难,即使投入电网,也不易牵入同步。
交变的U ∆将在发电机和电网之间引起很大的电流,在转轴上产生周期性交变的电磁转矩,使发电机振荡。
如果发电机的相序与电网相序不同而投入并列,则相当于在发电机端点上加上一组负序电压,gU 和c U 之间始终有120相位差,电压差U ∆恒等于gU 3,它将产生巨大的冲击电流和冲击转矩,使发电机受到严重破坏。
13.2 同步发电机的功角在时间和空间上各具有什么含义?答:功角δ既是时间相量空载电动势0E 与电机端电压U 之间的时间相位差角,又是空间相量主磁场0Φ 与合成磁场UΦ 之间的空间夹角。
13.3 与无穷大电网并联运行的同步发电机,如何调节有功功率?调节有功功率对无功功率是否产生影响?如何调节无功功率?调节无功功率对有功功率是否产生影响?为什么?答:与无穷大电网并联的同步发电机,通过调节原动机的输入功率(增大或减小输入力矩)来调节有功功率,调节有功功率会对无功功率产生影响;通过调节发电机励磁电流来调节无功功率,调节无功功率对有功功率不产生影响,因为在输入功率不调节时,输出功率不会变化,这是能量守衡的体现。
第一篇思考题1-3直流电机电枢绕组只要一个线圈即可运行,为什么要用许多线圈串联组成?线圈越多越好吗?答:单个线圈的电动势、电磁转矩纹波太大,多个线圈串联可以对电动势、电磁转矩起平滑作用。
但也不是越多越好。
因为多到一定程度后,纹波已经很小,无必要再增加,另外空间也限制进一步紧夹。
1-6直流发电机中产生电磁转矩吗?直流电动机中产生感应电动势吗?答:都会。
1-9在换向器上,电枢正常应当放在什么位置上?为什么?物理中性线和几何中性线是一回事吗?答:正常放在几何中性线上。
因为空载时,换向器在几何中性线上的导体处的磁场为零,利于换向。
物理中性线和几何中性线不是一回事。
几何中性线是固定的,而物理中性线是指磁场为零的位置,是跟电枢反应有关的。
1-13直流电机的电磁功率是电功率还是机械功率?还称什么功率?答:电磁功率是发电机中转换成电功率的机械功率(但不是全部机械功率,是电动机中转换成机械功率的电功率(但不是全部的电功率,因此又称转换功率。
1-16一台复励直流发电机,在恒速条件下,分别将它作他励、并励、积复励时,比较电压调整率的大小。
为什么励磁方式不同时,电压调整率也不同?答:电压调整率是指在固定转速、固定励磁电阻下,端电压从空载到额定负载的变化百分比。
积复励的电压调整率<他励的<并励的。
不同励磁方式下,电枢电流(电枢反应、电枢电阻压降等对励磁磁场的影响不同,所以电压调整率也不同。
1-17正在运行的并励直流电动机为什么不能断开励磁回路?断开励磁回路后,磁通、电动势、电枢电流和转速将如何变化?起动时,励磁回路断了线,会有什么后果?答:运行中,励磁断开的话,靠一点点剩磁工作,若为轻载,则将飞车;若为重载,则电枢电流、电阻压降大增,将可能烧坏电机(若负载转矩低于此时电机能输出的最大转矩,则将继续运转,并可能烧坏;若负载转矩高于此时电机能输出的最大转矩,则直接停机,电枢处于短路状态,最后可能烧坏。
断开励磁后,磁通减为剩磁,电枢电流大增,电动势有较大幅减小(因电枢电阻压降大增;转速则要看负载情况:轻载转速上升飞车,重载则可能继续运行或停车、并可能烧毁。
2-1直流电机的主磁路包括哪几部分?如何从电机的结构尺寸确定各段磁路的长度和截面积?五部分:磁轭、磁极、气隙、电枢齿槽、电枢铁心。
2-2何谓主磁通?何谓漏磁通?漏磁通大小与哪些因素有关?主磁通:通过气隙同时与主极和电枢绕组交链的磁通,参与机电能量转换。
漏磁通:只与励磁绕组交链而不与电枢绕组交链的磁通,不参与机电能量转换。
漏磁通与电流频率、磁极结构、励磁绕组匝数、漏磁路磁阻等有关。
2-3直流电机的空载磁场在空间是如何分布的?为什么要把它化为等效的矩形波?为什么说直流电机的空气隙磁场是恒定磁场?磁极下B均匀,磁极间几何中心线处B=0;直流电机空载时气隙磁通密度分布波形为一个空间位置不变的平顶波;空气隙磁场由直流励磁电流产生,不随时间变化,是恒定磁场。
2-8为什么直轴电枢反应会产生直轴去磁作用?直轴电枢反应会不会产生增磁作用?由于磁路饱和,后极尖磁通量增加的数量小于前极尖磁通量减少的数量,总体磁通量减少。
当电刷在发电机中顺着电枢旋转方向偏离,直轴电枢反应是去磁的,反之则是助磁的。
电动机相反。
2-12一台四极电机原为单波绕组,如改绕成单叠绕组,并保持元件数、导体数、每个元件匝数、每槽并列圈边数不变,问该电机的额定容量要不要改变?其他额定值要不要改变?单波2p=4,p=2,a=1 单叠2a=2p=4,a=p=2额定容量Pem=E·Ia E=C E∅n C E=pN/60a E减小到1/2 Ia=2a·ia增大到2倍额定容量不变3-1如果没有磁饱和现象,直流发电机是否能自励?试作图说明。
如果没有磁路饱和现象,并励直流发电机不能自励。
因为如果没有磁路饱和现象,则电机的空载特性是一条直线,它样,它与励磁回路的伏安特性(也是一条直线)会有两种情况出现:①完全重合,使电机的端电压处于不稳定状态,无法运行;②不重合,即没有交点,无法实现自励建压。
3-2直流发电机的电压平衡方程式、转矩平衡方程式以及功率平衡方程式各符合力学和电学哪些规律?KVL、力矩平衡、能量守恒3-3为什么直流发电机的电枢绕组元件中的电流是交流的,而电磁转矩的方向却是恒定的?电磁转矩方向总是与电枢转向相反。
2-1直流电机的主磁路包括哪几部分?如何从电机的结构尺寸确定各段磁路的长度和截面积?五部分:磁轭、磁极、气隙、电枢齿槽、电枢铁心。
2-2何谓主磁通?何谓漏磁通?漏磁通大小与哪些因素有关?主磁通:通过气隙同时与主极和电枢绕组交链的磁通,参与机电能量转换。
漏磁通:只与励磁绕组交链而不与电枢绕组交链的磁通,不参与机电能量转换。
漏磁通与电流频率、磁极结构、励磁绕组匝数、漏磁路磁阻等有关。
2-3直流电机的空载磁场在空间是如何分布的?为什么要把它化为等效的矩形波?为什么说直流电机的空气隙磁场是恒定磁场?磁极下B均匀,磁极间几何中心线处B=0;直流电机空载时气隙磁通密度分布波形为一个空间位置不变的平顶波;空气隙磁场由直流励磁电流产生,不随时间变化,是恒定磁场。
2-8为什么直轴电枢反应会产生直轴去磁作用?直轴电枢反应会不会产生增磁作用?由于磁路饱和,后极尖磁通量增加的数量小于前极尖磁通量减少的数量,总体磁通量减少。
当电刷在发电机中顺着电枢旋转方向偏离,直轴电枢反应是去磁的,反之则是助磁的。
电动机相反。
2-12一台四极电机原为单波绕组,如改绕成单叠绕组,并保持元件数、导体数、每个元件匝数、每槽并列圈边数不变,问该电机的额定容量要不要改变?其他额定值要不要改变?单波2p=4,p=2,a=1 单叠2a=2p=4,a=p=2额定容量Pem=E·Ia E=C E∅n C E=pN/60a E减小到1/2 Ia=2a·ia增大到2倍额定容量不变3-1如果没有磁饱和现象,直流发电机是否能自励?试作图说明。
如果没有磁路饱和现象,并励直流发电机不能自励。
因为如果没有磁路饱和现象,则电机的空载特性是一条直线,它样,它与励磁回路的伏安特性(也是一条直线)会有两种情况出现:①完全重合,使电机的端电压处于不稳定状态,无法运行;②不重合,即没有交点,无法实现自励建压。
3-2直流发电机的电压平衡方程式、转矩平衡方程式以及功率平衡方程式各符合力学和电学哪些规律?KVL、力矩平衡、能量守恒3-3为什么直流发电机的电枢绕组元件中的电流是交流的,而电磁转矩的方向却是恒定的?电磁转矩方向总是与电枢转向相反。
第12章 思考题与习题参考答案12.1 试比较同步发电机带三相对称负载时电枢磁动势和励磁磁动势的性质,它们的大小、位置和转速各由哪些因素决定?答:电枢磁动势和励磁磁动势的比较见下表:12.2 同步发电机电枢反应性质主要取决于什么? 若发电机的同步电抗标么值0.1*=s X ,则在下列情况下电枢反应各起什么作用?(1)带电阻负载;(2)带电容负载8.0*=c X , (3)带电感负载7.0*=L X 。
答:电枢反应的性质取决于负载电流I 与励磁电动势0E 的相位关系,或者说取决于负载的性质。
(1)带电阻负载时,由于同步电抗的存在,负载性质呈阻感性,故电枢反应起交磁和直轴去磁作用;(2)带电容负载8.0=*s X 时,由于它小于同步电抗(0.1*=s X ),总电抗仍为感抗,电枢电阻很小,因此电枢反应基本为直轴去磁作用;(3)带电感负载7.0=*L X 时,总电抗为更大的感抗,电枢反应主要为直轴去磁作用。
12.3 电枢反应电抗对应什么磁通?它的物理意义是什么? 同步电抗对应什么磁通?它的物理意义是什么?答:电枢反应电抗对应电枢反应磁通,这个磁通是由电枢磁动势产生的主磁通,它穿过气隙经转子铁心构成闭合回路,它反映了电枢反应磁通的大小;同步电抗对应电枢磁动势产生的总磁通(即电枢反应磁通和定子漏磁通之和),它是表征电枢反应磁场和电枢漏磁场对电枢电路作用的一个综合参数。
同步电抗的大小直接影响同步发电机的电压变化率和运行稳定性,也影响同步发电机短路电流的大小。
12.4 什么是双反应理论?为什么分析凸极同步电机时要用双反应理论?答:由于凸极同步电机的气隙不均匀,直轴处气隙小,磁阻小,交轴处气隙大,磁阻大,同样的电枢磁动势作用在不同位置时,遇到的磁阻不同,产生的电枢反应磁通不同,对应的电枢反应电抗也不同,即电枢磁动势(电枢电流)与电枢反应磁通(电枢电动势)之间不是单值函数关系,因此分析凸极同步电机时,要采用双反应理论。
第8章三相交流绕组感应电动势及磁动势思考题与习题参考答案8.1 有一台交流电机,Z =36,2p =4,试绘出单层等元件U 相绕组展开图。
解: 94362===p Z τ 334362=⨯==pm Z q8.2 有一台交流电机,Z =36,2p =4,y =7,试绘出U 相双层叠绕组展开图。
解: 94362===p Z τ 334362=⨯==pm Z q8.3 试述短距系数和分布系数的物理意义。
若采用长距绕组,即τ>y ,短距系数是否会大于1,为什么?答:短矩系数是短矩线圈电动势与整矩线圈电动势之比,因为整矩线圈电动势等于两线圈边电动势的代数和,而短矩线圈电动势等于两线圈边电动势的相量和,所以短矩系数小于1。
分布系数是q 个分布线圈的合成电动势与q 个集中线圈的合成电动势之比,因为分布线圈的合成电动势等于q 个线圈电动势的相量和,而集中线圈的合成电动势等于q 个线圈电动势的代数和,所以分布系数数小于1。
即使采用长矩绕组,短矩系数仍然小于1。
因为长距线圈电动势仍然等于两线圈边电动势的相量和,它一定小于两线圈边电动势的代数和。
8.4 一台三相交流电机接于电网,每相感应电动势的有效值E 1=350V ,定子绕组的每相串联匝数N =312,基波绕组系数k w 1=0.96,求每极磁通1Φ。
解:根据11144.4Φ=W fNk E 可知 00526.096.03125044.435044.4111=⨯⨯⨯==ΦW fNk E Wb 8.5 一台三相交流电机, f N =50H Z ,2p =4,Z =36,定子为双层叠绕组,并联支路数a =1,τ97=y ,每个线圈匝数N c = 20,每极气隙磁通1Φ=7.5×10-3Wb ,求每相绕组基波感应电动势的大小。
解: 20363602360=⨯=⨯=Z p α 334362=⨯==pm Z q 94.070sin )9097sin()90sin(1==⨯=⨯= τyk y 96.010sin 330sin 220sin 32203sin 2sin 2sin 1==⨯== ααq q k q 9.096.094.01=⨯=W k 240120342=⨯⨯==a pqN N c V fNk E W 360105.79.02405044.444.43111=⨯⨯⨯⨯⨯=Φ=-8.6 有一台三相同步发电机,2极,转速为3000r/min ,定子槽数Z=60,每相串联匝数N =20,每极气隙磁通1Φ=1.505Wb ,求:(1)定子绕组基波感应电动势的频率;(2)若采用整距绕组,则基波绕组系数和相电动势为多少?(3)如要消除5次谐波电动势,则线圈节距y 应选多大,此时的基波电动势为多大?解:(1)Hz pn f 50603000160=⨯== (2)302602===p Z τ 6603601360=⨯=⨯=Z p α 1032602=⨯==pm Z q 因为采用整距绕组,故 11=y k 95537.03sin 1030sin 26sin 102610sin 2sin 2sin 11==⨯=== ααq q k k q w V fNk E W 6384505.195537.0205044.444.4111=⨯⨯⨯⨯=Φ=(3)取τ54=y 951.072sin )9054sin()90sin(1==⨯=⨯= τy k y V fNk E W 16.6071505.1951.095537.0205044.444.4111=⨯⨯⨯⨯⨯=Φ=8.7 为什么说交流绕组产生的磁动势既是时间的函数,又是空间的函数?答:单相绕组产生的磁动势沿空间(气隙圆周)按余弦规律分布,所以是空间的函数,其幅值大小又随时间按正弦规律变化,所以又是时间的函数。
电机学习题解答解析第⼀篇变压器⼀、思考题(⼀)、变压器原理部分1、变压器能否⽤来变换直流电压?不能。
磁通不变,感应电动势为零,111R U I =,1R 很⼩,1I 很⼤,烧毁变压器。
2、在求变压器的电压⽐时,为什么⼀般都⽤空载时⾼、低压绕组电压之⽐来计算?电压⽐应为绕组电动势之⽐,绕组电动势的分离、计算和测量⽐较困难。
空载时22202E U U U N ===,11011Z I E U N +-=,10I 很⼩,⼀次侧阻抗压降很⼩,11E U N ≈,所以NN U U E E k 2121≈=,变压器⼀、⼆侧电压可以⽅便地测量,也可以通过铭牌获得。
3、为什么说变压器⼀、⼆绕组电流与匝数成正⽐,只是在满载和接近满载时才成⽴?空载时为什么不成⽴?012211I N I N I N =+,0I 和满载和接近满载时的1I 、2I 相⽐很⼩,02211≈+I N I N ,所以kN N I I 11221=≈。
空载时,02=I ,⽐例关系不成⽴。
4、阻抗变换公式是在忽略什么因素的情况下得到的?在忽略1Z 、2Z 和0I 的情况下得到的。
从⼀侧看L e Z k I U k kI kU I U Z 22222211====(21kU U =,忽略了1Z 、2Z 。
kI I 21=,忽略了0I )。
(⼆)、变压器结构部分1、额定电压为V 230/10000的变压器,是否可以将低压绕组接在V 380的交流电源上⼯作?不允许。
(1)此时,V U 3802=,V U 7.16521230100003801=?=,⼀、⼆侧电压都超过额定值1.65倍,可能造成绝缘被击穿,变压器内部短路,烧毁变压器。
(2)m fN UΦ=2244.4,磁通超过额定值1.65倍,磁损耗过⼤,烧毁变压器。
2、变压器长期运⾏时,实际⼯作电流是否可以⼤于、等于或⼩于额定电流?等于或⼩于额定电流。
铜耗和电流平⽅成正⽐,⼤于额定电流时,铜耗多⼤,发热烧毁变压器。
第14章 思考题与习题参考答案14.1 同步发电机不对称运行对电机有哪些影响?主要是什么原因造成的?答:(1)引起转子表面发热。
这是由于负序电流所产生的反向旋转磁场以二倍同步转速截切转子,在励磁绕组、阻尼绕组、转子铁心表面及转子的其它金属结构部件中均会感应出倍频电流,因此在励磁绕组、阻尼绕组中将产生额外铜损耗,转子铁心中感应涡流引起附加损耗。
(2)引起发电机振动。
由于负序旋转磁场以二倍同步转速与转子磁场相互作用,产生倍频的交变电磁转矩,这种转矩作用在定子、转子铁心和机座上,使其产生Hz 100的振动。
可以看出,这些不良影响主要是负序磁场产生的,为了减小负序磁场的影响,常用的方法是在发电机转子上装设阻尼绕组以削弱负序磁场的作用,从而提高发电机承受不对称负载的能力。
14.2 为什么变压器中-+=X X ? 而同步电机中-+>X X ?答:由于变压器是静止电器,正序电流建立的正序磁场与负序电流建立的负序磁场所对应的磁路是完全相同的,所以-+=X X 。
而在同步电机中,正序电流建立的正序磁场是正转旋转磁场,它与转子无相对运动,因此正序电抗就是发电机的同步电抗,它相当于异步电机的励磁电抗;而负序磁场是反转旋转磁场,它以二倍同步速切割转子上的所有绕组(励磁绕组、阻尼绕组等),在转子绕组中感应出二倍基频的电动势和电流,这相当于一台异步电机运行于转差率2=s 的制动状态。
根据异步电动机的磁动势平衡关系,转子主磁通对定子负序磁场起削弱作用,因此负序电抗就小于励磁电抗,所以在同步电机中-+>X X 。
14.3 试分析发电机失磁运行时,转子励磁绕组中感应电流产生的磁场是什么性质的?它与定子旋转磁场相互作用产生的转矩是交变的还是恒定的?答:发电机失磁运行时,转子转速n 略大于定子磁场转速n 1 ,同步发电机转入异步发电运行状态,其转差率0<s ,此时定子旋转磁场在励磁绕组中感应出频率为12sf f =的交变电动势和交变电流,由于转子励磁绕组为单相绕组,因此励磁绕组将产生一个以2f 频率交变的脉动磁场。
第一章直流电机思考题参考答案1.略2.因为电枢铁心中的磁通是随着电枢旋转而在改变,为减小它的铁心损耗,采用电工钢片叠成。
磁轭中的磁通为恒定的非交变磁通,不会引起涡流和磁滞损耗。
所以毋需用电工钢片可用工艺简单的方式,由铸钢或钢板制成。
3.在直流电动机中,换向器可保证每个主磁极下电枢导体中的电流方向与转子旋转无关,始终保持一个方向,这样电动机才有恒定的电磁转矩。
4.无头无尾成环状闭合的绕组称为闭合绕组。
相反,绕组有头有尾有缺口不成环状闭合的为开启式绕组。
简单看来如直流电机用开启式绕组则工作时有一半电枢绕组中没有电流流通。
除电机材料未充分利用外,还可能引起开口处发生火花等故障。
5. a.电刷可以引出的电势最大;b.电刷引出电势为0;c.电刷电势的大小介于a、b两种情况之间;d.设该电机有极对数为p,则电刷电势是一具有p个周期变化的交变电势;e.其时电势为频率为(Hz)的交流电势;f.情况与e相同;g.电刷电势仍为直流电势。
6.默画后对照图1-20。
7.电枢绕组每根导体的电势和电磁转矩与分布曲线成正比。
如分布极不均匀,如图1-20b所示,某点大到某值时,可能导致切割该磁通的导体的感应电势相应过大,而损坏该导体出的绝缘,而使电机发生故障。
对转矩则无甚关系。
8.式(1-12)(1-18)是当电刷位置处于与交轴导体相接触的位置导出的,如电刷位置不满足这个前提,所得结果将产生误差。
9.不能,虽能补偿电枢反应,但电枢槽中合成电流为零,电机不能正常工作了。
10.没有磁饱和现象自励将不能得最终的稳定电压。
必须小于临界值,否则只能建立微小的电势。
11.因为并励发电机短路时,加在励磁绕组的电势被短路,只有剩余磁通产生的电枢电势被短路,短路电流不会很大。
串励机因为由电枢电流励磁,大的短路电流增大励磁电流、电枢电势,短路电流将十分巨大。
12.必须同时改变电枢转向和电枢电刷与励磁线圈的连接。
13.改变励磁电流或电枢电流方向均可改变其转向。
电机学刘颖慧思考题答案1. 变压器的主要功能是: [单选题] *改变电流等级改变电压等级(正确答案)改变阻抗等级2. 为什么电机的铁心一般用硅钢片叠压而成? [单选题] *好看减少损耗(正确答案)增加损耗3. 磁通密度B的单位是: [单选题] *NA/mT(正确答案)Wb4. 运动导体切割磁力线产生的电动势方向应该用 [单选题] *右手定则(正确答案)左手定则5. 同步电机属于: [单选题] *直流电机交流电机(正确答案)6. 变压器一次线圈若接在直流电源上,二次线圈会有稳定直流电压吗? [单选题] *有没有(正确答案)7. 变压器二次额定电压U2N是指变压器一次侧加额定电压,二次侧______。
[单选题] *空载时的端电压(正确答案)满载时的端电压额定电压8. 判断:根据,可知变压器主磁通的大小主要取决于电网电压、频率和匝数,与负载情况基本无关 [单选题] *正确(正确答案)错误9. 判断:根据磁动势平衡方程可知,若变压器副边所接负载发生变化时,将会引起原边输入电流的改变。
[单选题] *正确(正确答案)错误10. 变压器等效电路中的Xm是对应于___________的电抗,Rm是表示________的等效电阻。
[单选题] *主磁路磁导,一次侧绕组主磁路磁导,铁耗(正确答案)漏磁路磁导,一次侧绕组漏磁路磁导,铁耗11. 二次绕组向一次绕组折算有如下规律:单位为V的物理量,其折算值等于实际值_____;单位为A的物理量,其折算值等于实际值____;单位为Ω的物理量,其折算值等于实际值_____。
[单选题] *乘以k;乘以k²;除以k乘以k;除以k ;乘以k²(正确答案)除以k ; 乘以k²;乘以k乘以k²; 除以k ;乘以k12. 如果将额定电压为220/36V的变压器接入220V的直流电源,则将发生什么现象? [单选题] *输出36V的直流电压输出36V电压,原绕组过热输出电压低于36V没有电压输出,原绕组过热而烧毁(正确答案)13. 由变压器的空载试验可得________。
第6章 思考题与习题参考答案6.1 三绕组变压器的绕组排列应遵循哪些原则?它们是如何排列的?不同排列方式对变压器的漏电抗参数有何影响?答:三个绕组的排列位子既要考虑绝缘方便,又要考虑功率的传递方向。
从绝缘角度考虑,高压绕组不宜靠近铁心,总是放在最外层。
从功率传递方向考虑,相互间传递功率较多的绕组应靠得近一些。
升压变压器是把低压功率传递到高压和中压电网,因此低压绕组放在中间层,中压绕组放在内层;降压变压器是把高压电网的功率传递到中压和低压电网,因此中压绕组放在中间层,低压绕组放在内层。
无论如何排列,对应于中间层绕组的等效漏电抗最小。
6.2 三绕组变压器的额定容量是如何定义的,三个绕组的容量有哪几种配合方式?实际运行时三个绕组传输的功率关系如何?答:在三绕组变压器中,三个绕组的容量可能相等,也可能不等,把最大的绕组容量定义为三绕组变压器的额定容量。
三绕组额定容量有三种配合:1:1:1;5.0:1:1;1:5.0:1。
实际运行时,一个绕组的输入功率等于其他两个绕组输出功率之和,或者两个绕组的输入功率之和等于一个绕组的输出功率。
6.3 三绕组变压器中的漏磁通与双绕组变压器中的漏磁通有何不同?答:在双绕组变压器中,漏磁通是指只交链自身绕组的磁通;而在三绕组变压器中,漏磁通包括只交链自身绕组的磁通(自漏磁通)和只交链两个绕组的磁通(互漏磁通)两部分。
6.4 三绕组变压器的短路阻抗参数是如何测定的?答:三绕组变压器的短路参数通过三次短路试验测得:第一次短路试验:绕组1加电,绕组2短路,绕组3开路,可测得折算到绕组1的参数:2112R R R s '+= 2112X X X s '+= 第二次短路试验:绕组1加电,绕组3短路,绕组2开路,可测得折算到绕组1的参数:3113R R R s '+= 3113X X X s '+= 第三次短路试验:绕组2加电,绕组3短路,绕组1开路,可测得折算到绕组2的参数,再乘以212k 可得到折算到绕组1的参数: 3223R R R s'+'=' 3223X X X s '+'=' 联立求解可得: )(212313121s s s R R R R '-+= )(212313121s s s X X X X '-+=)(211323122s s s R R R R -'+=' )(211323122s s s X X X X -'+=' )(211223133s s s R R R R -'+=' )(211223133s s s X X X X -'+=' 6.5 一台三绕组变压器作降压变压器运行,中、低压绕组均带负载,当中压绕组输出电流增大时,试分析低压绕组端电压将如何变化?答:由三绕组变压器的等效电路可以看出,当中压绕组输出电流增大时,高压绕组电流随之增大,高压绕组漏阻抗压降将增大,导致励磁电动势降低,因此低压绕组的端电压将下降。
第12章同步发电机的基本理论思考题与习题参考答案12.1 试比较同步发电机带三相对称负载时电枢磁动势和励磁磁动势的性质,它们的大小、位置和转速各由哪些因素决定?答:电枢磁动势和励磁磁动势的比较见下表:12.2 同步发电机电枢反应性质主要取决于什么? 若发电机的同步电抗标么值0.1*=s X ,则在下列情况下电枢反应各起什么作用?(1)带电阻负载;(2)带电容负载8.0*=c X , (3)带电感负载7.0*=L X 。
答:电枢反应的性质取决于负载电流I 与励磁电动势0E 的相位关系,或者说取决于负载的性质。
(1)带电阻负载时,由于同步电抗的存在,负载性质呈阻感性,故电枢反应起交磁和直轴去磁作用;(2)带电容负载8.0=*s X 时,由于它小于同步电抗(0.1*=s X ),总电抗仍为感抗,电枢电阻很小,因此电枢反应基本为直轴去磁作用;(3)带电感负载7.0=*L X 时,总电抗为更大的感抗,电枢反应主要为直轴去磁作用。
12.3 电枢反应电抗对应什么磁通?它的物理意义是什么? 同步电抗对应什么磁通?它的物理意义是什么?答:电枢反应电抗对应电枢反应磁通,这个磁通是由电枢磁动势产生的主磁通,它穿过气隙经转子铁心构成闭合回路,它反映了电枢反应磁通的大小;同步电抗对应电枢磁动势产生的总磁通(即电枢反应磁通和定子漏磁通之和),它是表征电枢反应磁场和电枢漏磁场对电枢电路作用的一个综合参数。
同步电抗的大小直接影响同步发电机的电压变化率和运行稳定性,也影响同步发电机短路电流的大小。
12.4 什么是双反应理论?为什么分析凸极同步电机时要用双反应理论?答:由于凸极同步电机的气隙不均匀,直轴处气隙小,磁阻小,交轴处气隙大,磁阻大,同样的电枢磁动势作用在不同位置时,遇到的磁阻不同,产生的电枢反应磁通不同,对应的电枢反应电抗也不同,即电枢磁动势(电枢电流)与电枢反应磁通(电枢电动势)之间不是单值函数关系,因此分析凸极同步电机时,要采用双反应理论。
第一篇 变压器一、思考题(一)、变压器原理部分1、变压器能否用来变换直流电压? 不能。
磁通不变,感应电动势为零,111R U I =,1R 很小,1I 很大,烧毁变压器。
2、在求变压器的电压比时,为什么一般都用空载时高、低压绕组电压之比来计算?电压比应为绕组电动势之比,绕组电动势的分离、计算和测量比较困难。
空载时22202E U U U N ===,11011Z I E U N +-=,10I 很小,一次侧阻抗压降很小,11E U N ≈,所以NN U U E E k 2121≈=,变压器一、二侧电压可以方便地测量,也可以通过铭牌获得。
3、为什么说变压器一、二绕组电流与匝数成正比,只是在满载和接近满载时才成立?空载时为什么不成立?012211I N I N I N =+,0I 和满载和接近满载时的1I 、2I 相比很小,02211≈+I N I N ,所以kN N I I 11221=≈。
空载时,02=I ,比例关系不成立。
4、阻抗变换公式是在忽略什么因素的情况下得到的?在忽略1Z 、2Z 和0I 的情况下得到的。
从一侧看L e Z k I U k kI kU I U Z 22222211====(21kU U =,忽略了1Z 、2Z 。
kI I 21=,忽略了0I )。
(二)、变压器结构部分1、额定电压为V 230/10000的变压器,是否可以将低压绕组接在V 380的交流电源上工作?不允许。
(1)此时,V U 3802=,V U 7.16521230100003801=⨯=,一、二侧电压都超过额定值1.65倍,可能造成绝缘被击穿,变压器内部短路,烧毁变压器。
(2)m fN U Φ=2244.4,磁通超过额定值1.65倍,磁损耗过大,烧毁变压器。
2、变压器长期运行时,实际工作电流是否可以大于、等于或小于额定电流?等于或小于额定电流。
铜耗和电流平方成正比,大于额定电流时,铜耗多大,发热烧毁变压器。
电机学第三版课后习题答案变压器1-1从物理意义上说明变压器为什么能变压,而不能变频率答:变压器原副绕组套在同一个铁芯上, 原边接上电源后,流过激磁电流I 0, 产生励磁磁动势F 0, 在铁芯中产生交变主磁通ф0, 其频率与电源电压的频率相同, 根据电磁感应定律,原副边因交链该磁通而分别产生同频率的感应电动势 e 1和e 2, 且有 dtd Ne 011φ-=,dtd Ne 022φ-=, 显然,由于原副边匝数不等, 即N 1≠N 2,原副边的感应电动势也就不等, 即e 1≠e 2, 而绕组的电压近似等于绕组电动势,即U 1≈E 1, U 2≈E 2,故原副边电压不等,即U 1≠U 2, 但频率相等。
1-2 变压器一次线圈若接在直流电源上,二次线圈会有稳定直流电压吗答:不会。
因为接直流电源,稳定的直流电流在铁心中产生恒定不变的磁通,其变化率为零,不会在绕组中产生感应电动势。
1-3变压器的空载电流的性质和作用如何答:作用:变压器空载电流的绝大部分用来供励磁,即产生主磁通,另有很小一部分用来供给变压器铁心损耗,前者属无功性质,称为空载电流的无功分量,后者属有功性质,称为空载电流的有功分量。
性质:由于变压器空载电流的无功分量总是远远大于有功分量,故空载电流属感性无功性质,它使电网的功率因数降低,输送有功功率减小。
1-4一台220/110伏的变压器,变比221==N N k ,能否一次线圈用2匝,二次线圈用1匝,为什么答:不能。
由m fN E U Φ=≈11144.4可知,由于匝数太少,主磁通m Φ将剧增,磁密m B 过大,磁路过于饱和,磁导率μ降低,磁阻m R 增大。
于是,根据磁路欧姆定律m m R N I Φ=10可知, 产生该磁通的激磁电流0I 必将大增。
再由3.12f B p m Fe ∝可知,磁密m B 过大, 导致铁耗Fe p 大增, 铜损耗120r I 也显著增大,变压器发热严重,可能损坏变压器。
电机学思考题答案【篇一:电机学第五版课后答案_(汤蕴璆)】>1-1 磁路的磁阻如何计算?磁阻的单位是什么?答:磁路的磁阻与磁路的几何形状(长度、面积)和材料的1-2 铁心中的磁滞损耗和涡流损耗是怎样产生的,它们各与哪些因素有关?答:磁滞损耗:铁磁材料置于交变磁场中,被反复交变磁化,n磁畴间相互摩擦引起的损耗。
经验公式ph?chfbmv。
与铁磁材料的磁滞损耗系数、磁场交变的频率、铁心的体积及磁化强度有关;涡流损耗:交变的磁场产生交变的电场,在铁心中形成环流2(涡流),通过电阻产生的损耗。
经验公式ph?cfef1.3bmg。
与材料的铁心损耗系数、频率、磁通及铁心重量有关。
1-3 图示铁心线圈,已知线圈的匝数n=1000,铁心厚度为0.025m (铁心由0.35mm的dr320硅钢片叠成),叠片系数(即截面中铁的面积与总面积之比)为0.93,不计漏磁,试计算:(1) 中间心柱的磁通为7.5?10wb,不计铁心的磁位降时所需?4的直流励磁电流;(2) 考虑铁心磁位降时,产生同样的磁通量时所需的励磁电流。
解:?磁路左右对称?可以从中间轴线分开,只考虑右半磁路的情况:铁心、气隙截面a?a??0.025?1.25?10?2?0.93m2?2.9?10?4m2(考虑边缘效应时,通长在气隙截面边长上加一个气隙的长度;气隙截面可以不乘系数)气隙长度l?铁?2??5?10?4m 心长度铁心、气隙中的磁感应强度(1) 不计铁心中的磁位降:磁势fi?f??h??l??1.0?106?5?10?4a?500a(2) 考虑铁心中的磁位降:铁心磁位降ffe?h?l?700?12.45?10?2a?87.15afi?f??ffe?500a?87.15a?587.15a1-4 图示铁心线圈,线圈a为100匝,通入电流1.5a,线圈b为50匝,通入电流1a,铁心截面积均匀,求pq两点间的磁位降。
解:由题意可知,材料的磁阻与长度成正比,设pq段的磁1-5 图示铸钢铁心,尺寸为左边线圈通入电流产生磁动势1500a。
《电机学》课后习题答案华中科技大学辜承林主编第1章导论1.1 电机和变压器的磁路常采用什么材料制成?这些材料各有哪些主要特性?解:磁路:硅钢片。
特点:导磁率高。
电路:紫铜线。
特点:导电性能好,电阻损耗小.电机:热轧硅钢片,永磁材料铁氧体稀土钴钕铁硼变压器:冷轧硅钢片。
1.2 磁滞损耗和涡流损耗是什么原因引起的?它们的大小与哪些因素有关?解:磁滞损耗:铁磁材料在交变磁场作用下反复磁化,磁畴会不停转动,相互间产生摩擦,消耗能量,产生功率损耗。
与磁场交变频率f,磁通密度B,材料,体积,厚度有关。
涡流损耗:由电磁感应定律,硅钢片中有围绕磁通呈涡旋状的感应电动势和电流产生叫涡流,涡流在其流通路径上的等效电阻中产生的损耗叫涡流损耗。
与。
磁场交变频率f,磁通密度,材料,体积,厚度有关1.3 变压器电动势、运动电动势产生的原因有什么不同?其大小与哪些因素有关? 解:变压器电势:磁通随时间变化而在线圈中产生的感应电动势 4.44m EfN φ=。
运动电势:线圈与磁场间的相对运动而产生的e T 与磁密B ,运动速度v ,导体长度l ,匝数N 有关。
1.6自感系数的大小与哪些因素有关?有两个匝数相等的线圈,一个绕在闭合铁心上,一个绕在木质材料上,哪一个自感系数大?哪一个自感系数是常数?哪一个自感系数是变数,随什么原因变化?解:自感电势:由于电流本身随时间变化而在线圈内感应的电势叫自感电势。
d Le dtLψ=-对空心线圈:L Li ψ= 所以die L L dt=-自感:2LL N N m m iiiLNi N φψ===∧=∧ Am lμ∧=所以,L 的大小与匝数平方、磁导率µ、磁路截面积A 、磁路平均长度l 有关。
闭合铁心µ>>µ0,所以闭合铁心的自感系数远大于木质材料。
因为µ0是常数,所以木质材料的自感系数是常数,铁心材料的自感系数是随磁通密度而变化。
1.7 在图1.30中,若一次绕组外加正弦电压u 1、绕组电阻R 1、电流i 1时,问 (1)绕组内为什么会感应出电动势?(2)标出磁通、一次绕组的自感电动势、二次绕组的互感电动势的正方向; (3)写出一次侧电压平衡方程式;(4)当电流i 1增加或减小时,分别标出两侧绕组的感应电动势的实际方向。