等腰三角形的判定定理
- 格式:docx
- 大小:36.73 KB
- 文档页数:1
等腰三角形知识点总结等腰三角形是指有两条边相等的三角形。
在几何学中,等腰三角形具有很多特性和性质,下面将对等腰三角形的定义、性质以及相关的定理进行总结。
一、定义和性质等腰三角形的定义:拥有两条边相等的三角形被称为等腰三角形。
等腰三角形的性质:1. 两个底角(底边所对的两个角)是相等的。
2. 两条腰(与底边相等的两条边)相等。
3. 顶角(顶点所对的角)等于180度减去底角的一半。
二、等腰三角形的角度性质1. 顶角等于底角的两倍:在等腰三角形中,顶角是底角的两倍。
也就是说,当一个底角为x度时,顶角就是2x度。
2. 底角相等:在等腰三角形中,两个底角是相等的。
如果一个底角为x度,另一个底角也是x度。
3. 顶角对应的边相等:在等腰三角形中,顶角对应的两条边是相等的。
如果一个顶角对应的边长为a,另一个顶角对应的边长也是a。
三、等腰三角形的边长性质1. 两条腰相等:在等腰三角形中,两条腰是相等的。
如果一条腰的长度为a,另一条腰的长度也是a。
2. 底边对应的高相等:在等腰三角形中,底边对应的高是相等的。
如果一条底边的高为h1,另一条底边的高也是h1。
3. 高的长度:在等腰三角形中,可以通过勾股定理来计算高的长度。
如果底边的长度为b,腰的长度为a,则高的长度等于根号下(a^2 -b^2/4)。
四、等腰三角形的判定条件等腰三角形的判定条件:如果三角形的两边边长相等或两个角度相等,则该三角形为等腰三角形。
五、等腰三角形的定理1. 等腰三角形的高与底边垂直:在等腰三角形中,高线与底边垂直。
2. 角平分线等于高线:在等腰三角形中,底边上的角平分线等于高线。
3. 底边上的角平分线相等:在等腰三角形中,底边上的两条角平分线是相等的。
总结:等腰三角形是几何学中重要的概念,在很多问题中都有应用。
通过对等腰三角形的定义、性质以及相关的定理进行了解和掌握,可以帮助我们解决等腰三角形相关的问题,并在数学和几何学中运用到其他各种应用中。
等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等,两条腰上的中线相等,两条腰上的高相等。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方。
9.等腰三角形中腰大于高。
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)。
等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.三线合一逆定理:顶角的平分线,底边上的中分线,底边上的高,其中任意两个重合的三角形是等腰三角形。
教学内容(一)知识梳理知识点1:等腰三角形的性质定理1:等腰三角形的两个底角相等(简称“等边对等角”)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)知识点2:等腰三角形性质定理2:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)∵AB=AC ∵AB=AC ∵AB=AC∠1=∠2 AD⊥BC BD=DC∴AD⊥BC,BD=DC ∴∠1=∠2 ∴∠1=∠2,BD=DC AD⊥BC知识3:等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。
在△ABD和△ACD中∴△ABD≌△ACD (AAS)∴AB=AC【典型例题分析】例1. 如图,已知P、Q是△ABC边BC上两点,且BP=PQ=AP=AQ=QC,求∠BAC的度数。
解:∵AP=PQ=AQ(已知)∴△APQ是等边三角形(等边三角形的定义)∴∠APQ=∠AQP=∠PAQ=60°(等边三角形的性质)∵AP=BP(已知)∴∠PBA=∠PAB(等边对等角)又∠APQ=∠PAB+∠PBA=60°∴∠PBA=∠PAB=30°同理∠QAC=30°∴∠BAC=∠PAB+∠PAQ+∠QAC=30°+60°+30°=120°例2. 已知:如图,在△ABC中,∠B=∠C,D、E、F分别为AB,BC,AC上的点,且BD=CE,∠DEF=∠B。
求证:△DEF是等腰三角形。
证明:∵∠B+∠BDE+∠BED=180°(三角形内角和定理)∠BED+∠DEF+∠FEC=180°(平角性质)∠B=∠DEF(已知)∴∠BDE=∠FEC(等角的补角相等)在△BED和△CFE中,∠BDE=∠FEC中(已证),BD=CE (已知),∠B=∠C (已知)∴△BED≌△CFE (ASA),∴DE=EF (全等三角形对应边相等)∴△DEF是等腰三角形(等腰三角形定义)例3. 已知:如图,AC和BD相交于点O,AB∥CD,OA=OB,求证:OC=OD证明:∵AB∥CD (已知)∴∠A=∠C,∠B=∠D (两直线平行,内错角相等)∵OA=OB (已知)∴∠A=∠B (等边对等角)∴∠C=∠D (等量代换)∴OC=OD (等角对等边)例4. 如图,在四边形ABDC中,AB=2AC,∠1=∠2,DA=DB,试判断DC与AC的位置关系,并证明你的结论。
等腰三角形的性质与判定【知识梳理】1.等腰三角形的概念:有 相等的三角形,叫做等腰三角形, 叫做腰,另一条边叫做 .两腰所夹的角叫做 ,底边与腰所夹的角叫做 .2.等腰三角形性质定理:(1)等腰三角形的两个 相等,也能够说成 .. (3)等腰三角形是 图形.3.等腰三角形的判定:(1)有 相等的三角形是等腰三角形. (2)假如一个三角形有两个角相等,那么这两个角 也相等.简写成 .【例题讲解】例1等腰三角形ABC 中,AB =AC ,一腰上的中线BD •将这个等腰三角形周长分成15和6两局部,求这个三角形的腰长及底边长.例2如图,在△ABC 中,AB =AC ,∠ABD =∠ACD .求证:△DBC 是等腰三角形.例3 如图,AB =AE ,BC =ED , ∠B =∠E .求证:∠C =∠D .例4如图,AB =AC ,BD ⊥AC 于D . 求证:∠BAC =2∠DBC .例5 相关等腰三角形的基本图形.(1)如图3,若OD 平分∠AOB ,DE ∥OB交OA 于E .求证:EO =ED .提问:这个结论的逆命题是否准确?(2)如图 3,若 OD 平分∠AOB , EO =ED ,求证: DE ∥OB . (3)如图 3,若 DE ∥OB 交OA 于E , EO =ED ,求证: OD 平分∠AOB .总结:图3是相关等腰三角形的一个很常用的基本图形.以上三个小题说明:在图3中,“角平分线.平行线.等腰三角形”这三者中,若有两条成立,则第三条必成立.熟悉这个结论,对解决包含该图形的较复杂的题目是很有协助的.相关的题组练习.(1)如图4,AD ∥BC , BD 平分∠ABC .求证: AB =AD .(2)已知:如图5(a ),AB =AC ,BD 平分∠ABC ,CD 平分∠ACB .问:①图中有几个等腰三角形?②如图5(b ),若过D 作EF ∥BC 交AB 于E ,交AC 于F ,图中又增加了几个等腰三角形? (3)如图5(c ),若将第(2)题中的△ABC 改为不等边三角形,其它条件不变,情况会如何?还可证出哪些线段的和差关系?(4)对第(3)题中“两内角平分线”可作怎样的推广?相对应的线段和差关系如何?推广①当过△ABC 的一个内角和一个外角平分线的交点作这两角的公共边的平行线时,如图5(d ).推广②当过△ABC 的两个外角平分线上一点作这两个角的公共边的平行线时,如图5(e ).(5)如图6,若BD ,CD 分别平分∠ABC 和∠ACB ,过D 作DE ∥AB 交BC 于E ,作DF ∥AC 交BC 于F .求证:BC 的长等于△DEF 的周长.【课后巩固】1.在△ABC 中,AB =AC ,若∠B =56º,则DCBAED CBADCB A 3334∠C =__________.2. 若等腰三角形的一个角是50°,则这个等腰三角形的底角为_____________.3. 若等腰三角形的两边长分别为x cm 和(2x-6)cm ,且周长为17cm ,则第三边的长为________.4. 如图,在△ABC 中,AB =AC ,AD ⊥BC 于D ,BE ⊥AC 于E ,若∠CAD =25°,则∠ABE = ,若BC =6,则CD = .5.△ABC 中,AB =AC ,∠ABC =36°,D .E 是BC 上的点,∠BAD =∠DAE =∠EAC ,则图中等腰三角形有______个6.等腰三角形一腰上的高与底边夹角为20°,则其顶角的大小为___________. 7.如图,∠ABC =50°,∠ACB =80°,延长CB 到D ,使BD =AB ,延长BC 到E ,使CE =CA ,连接AD .AE ,则∠DAE =_______.EDCB A8.如下列图,△MNP 中,∠P =60°,MN =NP ,MQ ⊥PN ,垂足为Q ,延长MN 至G ,取NG =NQ ,若△MNP 的周长为12,MQ =a ,则△MGQ 周长是 .9.△ABC 中,∠C =∠B ,D .E 分别是AB .AC上的点,•AE =•2cm ,•且DE •∥BC ,•则AD =______10.如图,∠AOB 是一个钢架且∠AOB =10°,为了使钢架更加牢固,需在内部添加一些钢管EF ,FG ,GH ,…,添加的钢管长度都与OE 相等,则最多能添加这样的钢管______根.11.如图△ABC 中,AB =AC ,AD 、BE 是△ABC 的高,它们相交于H ,且AE=BE . 求证:AH =2BD . 12.△ABC 为非等腰三角形,分别以AB 、AC 为 向△ABC 外作等腰直角三角形ABD 和等腰直角三角 形ACE ,且∠DAB =∠EAC =90°. 求证:(1)BE =CD ;(2)BE ⊥CD .13.如图,点D 、E 在ABC ∆的边BC 上,AB AC =,AD AE =. 求证:BD CE = 14.如图,AB AC =,30BAD ∠=,且AD AE =.求EDC ∠的度数.15.如图,ABC ∆中,90ACB ∠=,CD BA ⊥于D ,AE 平分BAC ∠交CD 于F ,交BC 于E ,求证:CEF ∆是等腰三角形.16.Rt ABC ∆中,AB AC =,90BAC ∠=,O 为 AB 中点,若点M .N 分别在线段AB .AC 上移 动,且在移动过程中保持AN BM =,试判断 OMN ∆的形状,并证明你的结论.17.已知:如图,△ABC 中,D 在AB 上,E 在AC 延长线上,且BD =CE ,DE 交BC 于M ,MD =ME ,求证:△ABC 是等腰三角形.18.已知一个等腰三角形,从它的一个顶点出发引一条直线将它分成两个等腰三角形,这样的等腰三角形有几种情况?画出图形并写出原等腰三角形各角度数. E D C B AP QM N G 35E M DCB A36。
等腰三角形的判定定理(基础)【学习目标】1. 理解等腰三角形的判定方法及其证明过程.2. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.3.了解命题与逆命题、定理与逆定理、互逆定理以及它们之间的关系.4.线段垂直平分线定理的逆定理及其运用.【要点梳理】要点一、等腰三角形的判定定理1.等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边.2.等边三角形的判定定理三个角相等的三角形是等边三角形.有一个角是60°的等腰三角形是等边三角形.要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)等边三角形是中考中常考的知识点,需要记住一下数据:边长为a的等边三角形2.要点二、命题与逆命题,定理与逆定理在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.每个命题都有它的逆命题,但每个真命题的逆命题不一定是真命题.如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的逆定理,这两个定理叫做互逆定理.要点诠释:每一个定理不一定都有逆定理,如果它存在逆定理,那么它一定是正确的.要点三、线段垂直平分线定理的逆定理到线段两端距离相等的点在线段的垂直平分线上.已知:AB是一条线段,P是一点,且PA=PB.求证:点P在线段AB的垂直平分线上.证明 (1)当点P在线段AB上时,结论显然成立.(2)当点P不在线段AB上时,作PC⊥AB于点O.PA=PB,PO⊥AB,∵ OA=OB,∴PC是AB的垂直平分线.∴点P在线段AB的垂直平分线上.【典型例题】类型一、等腰三角形的判定定理1、数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).(1)已知:如图①,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小乔发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出两个不同类型且具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(说明:要求画出的两个三角形不相似,且不是等腰三角形.)(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.【思路点拨】(1)根据等边对等角,及角平分线定义,易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,可得AD=BD=CB,∴△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.【答案与解析】∴AD=BD,BD=BC,∴△ABD与△BDC都是等腰三角形.(2)解:如下图所示:(3)解:如图所示:(4)解:特征一:2倍内角关系,如图①.0°<α<45°,其中,α≠30°,α≠特征二:3倍内角关系,如图②.0°<α<45°,其中,α≠30°,α≠36度.【总结升华】本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论.举一反三【变式】如图,在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.(1)上述四个条件中,哪两个可以判定△ABC是等腰三角形?(2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形.【答案】解:(1)①③,①④,②③和②④;(2)以①④为条件,理由:∵OB=OC,∴∠OBC=∠OCB.又∵∠DBO=∠ECO,∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.2、如图,在△ABC 中,点E 在AB 上,点D 在BC 上,BD=BE ,∠BAD=∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.【思路点拨】要判断△AFC 的形状,可通过判断角的关系来得出结论,那么就要看∠FAC 和∠FCA 的关系.因为∠BAD=∠BCE ,因此我们只比较∠BAC 和∠BCA 的关系即可.根据题中的条件:BD=BE ,∠BAD=∠BCE ,△BDA 和△BEC 又有一个公共角,因此两三角形全等,那么AB=AC ,于是∠BAC=∠BCA ,由此便可推导出∠FAC=∠FCA ,那么三角形AFC 应该是个等腰三角形.【答案与解析】解:△AFC 是等腰三角形.理由如下:在△BAD 与△BCE 中,B B BAD BCEBD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩(公共角) ∴△BAD ≌△BCE (AAS ),∴BA=BC ,∠BAC=∠BCA ,∴∠BAC-∠BAD=∠BCA-∠BCE ,即∠FAC=∠FCA .∴AF=CF ,∴△AFC 是等腰三角形.【总结升华】本题考查了全等三角形的判定与性质及等腰三角形的判定等知识点,利用全等三角形来得出角相等是本题解题的关键.3、(2016•常州)如图,已知△ABC 中,AB=AC ,BD 、CE 是高,BD 与CE 相交于点O(1)求证:OB=OC ;(2)若∠ABC=50°,求∠BOC 的度数.【思路点拨】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB ,然后利用高线的定义得到∠ECB=∠DBC ,从而得证;(2)首先求出∠A 的度数,进而求出∠BOC 的度数.【答案与解析】(1)证明:∵AB=AC ,∴∠ABC=∠ACB ,∵BD、CE是△ABC的两条高线,∴∠BDC=∠CEB=90°,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠AEC+∠A +∠ADB+∠EOD=360°即90°+80°+90°+∠EOD=360°∴∠EOD=100°∴∠BOC=∠EOD=100°【总结升华】本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.举一反三【变式】如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:(1)∠B=∠C;(2)△ABC是等腰三角形.【答案】证明:(1)∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴∠B=∠C;(2)由(1)可得∠B=∠C,∴△ABC为等腰三角形.类型二、命题与逆命题,定理与逆定理4、小明在证明“等腰三角形底边上的高线、底边上的中线和顶角的平分线互相重合”这一命题时,画出图形,写出“已知”、“求证”(如图1).(1)请你帮助小明完成证明过程.(2)请你作出判断:小明写出的“已知”、“求证”是否完整?在横线上填“是”或“否”._________(3)做完(1)后,小明模仿老师上课时的方法,又提出了如下几个问题:如:①若将题中“AD⊥BC”与“AD平分∠ABC”的位置交换,得到的是否仍是真命题?②若将题中“AD⊥BC”与“BD=CD”的位置交换,得到的是否仍是真命题?请你作出判断,在下列横线上填写“是”或“否”:①__________ ②_________.并对②的判断作出证明.(若是则写出证明过程;若不是则举出一个反例).(图1) 【思路点拨】(1)由AD ⊥BC 得到∠ADB=∠ADC=90°,然后根据AB=AC,得到∠B=∠C,得到△ADB ≌△ADC ,则∠BAD=∠CAD ,BD=CD ,即AD 平分∠BAC ;(2)小明写出的“已知”、“求证”是完整的;(3)若将题中“AD ⊥BC ”与“AD 平分∠ABC ”的位置交换或将题中“AD ⊥BC ”与“BD=CD ”的位置交换,得到的结论仍是真命题,利用三角形全等的判定与性质进行证明.【答案与解析】(1)证明:∵AD ⊥BC ,∴∠ADB=∠ADC=90°,∵AB=AC, ∴∠B=∠C.在△ADB 和△ADC 中B C ADB ADC 90AB AC ∠=∠⎧⎪∠=∠=︒⎨⎪⎩=,∴△ADB ≌△ADC (AAS ),∴∠BAD=∠CAD ,BD=CD ,∴AD 平分∠BAC ;(2)是;(3)①若将题中“AD ⊥BC ”与“AD 平分∠ABC ”的位置交换,得到的仍是真命题;【总结升华】本题考查了命题:判断一件事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题.也考查了三角形全等的判定与性质.举一反三【变式】请写出“全等三角形的对应角相等”的逆命题,判断此逆命题的真假性,并给出证明.【答案】解:命题“全等三角形的对应角相等”的题设是“全等三角形”,结论是“对应角相等”,故其逆命题是对应角相等的三角形是全等三角形,是假命题,举例证明:如图DE∥BC,∠ADE=∠B,∠AED=∠C,∠A=∠A,但△ADE△ABC不全等.要点三、线段垂直平分线定理的逆定理5、在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.【思路点拨】根据线段的垂直平分线性质求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根据线段垂直平分线性质推出即可.【答案与解析】证明:∵AD是高,∴AD⊥BC,又∵BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又∵AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.【总结升华】本题考查了线段的垂直平分线的应用,解此题的关键是熟练地运用性质进行推理,培养了学生分析问题和解决问题的能力.。
等腰三角形性质定理和判定定理
定义:有两边相等的三角形是等腰三角形
等腰三角形的性质:
等腰三角形的两个底角相等.(简写成“等边对等角”)
等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”)
等腰三角形的两底角的平分线相等.(两条腰上的中线相等,两条腰上的高相等)
等腰三角形的底边上到两条腰的距离相等
等腰三角形的一腰上的高与底边的夹角等于顶角的一半
等腰三角形的判定:
有两条腰相等的三角形是等腰三角形
1.三角形的任何两边的和一定大于第三边,由此亦可证明得三角形的任意两边的差一定小于第三边.
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一.
4.;等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)等腰三角形的判定1有两条边相等的三角形是等腰三角形
2有两个角相等的三角形是等腰三角形(简称:等角对等边)3顶角的平分线,底边上的中线,底边上的高的重合的三角形是等腰三角形(4所有的等边三角形为等腰三角形)。
等腰三角形的相关要点总结1.等腰三角形的判定定理(等角对等边)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).例如:如图14-3-11,△ABC中,若∠B=∠C,则AB=AC证明:过点A作AD平分∠BAC,交BC于点D,则∠BAD=∠CAD.在△ABD和△ACD中,∴△ABD≌△ACD(AAS).∴AB=AC因此,这一结论可直接利用.【说明】(1)在使用“等边对等角”或“等角对等边”时,一定要注意是在同一个三角形中才有这一对应关系,不在同一三角形中的边、角没有这一对应关系.(2)有了这一结论,为今后证明线段相等又添了一种重要的解题途径.例如:如图14-3-12,△ABC中,AB=AC,BD、CE相交于O点.且BE=CD求证:OB=OC.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).在△BCE和△CBD中⎪⎩⎪⎨⎧∠∠,=,=,=CBBCDCBEBCCDBE∴△BCE≌△CBD(SAS).∴∠BCE=∠CBD,即∠OBC=∠BCO∴OB=OC(等角对等边).【说明】证两条线段相等,若这两条线段在同一个三角形中,可利用等腰三角形的判定定理来证明.2.等边三角形(equilateral triangle)(1)定义:三条边都相等的三角形,叫等边三角形.如图14-3-14,△ABC 中,AB=BC=CA,则△ABC为等边三角形.(2)性质:①等边三角形的三个内角都相等,并且每一个角都等于60°.如图14-3-14中,若△ABC为等边三角形,则∠A=∠B=∠C=60°.②除此之外,还具有等腰三角形的一切性质,如三线合一,轴对称等.(3)判定:①三个角都相等的三角形是等边三角形.②有一个角是60°的等腰三角形是等边三角形.下面证明以上两条判定.判定①:如图14-3-15,已知△ABC中,∠A=∠B=∠C求证:△ABC是等边三角形.证明:∵ ∠B =∠C ,∴ AB =AC又∵ ∠A =∠B ∴ AC =BC∴ AB =AC =BC ,∴ △ABC 是等边三角形.判定②:如图14-3-15,已知△ABC 中,AB =AC ,∠B =60°.求证:△ABC 是等边三角形.证明:∵ AB =AC ,∴ ∠B =∠C .又∵ ∠B =60°,∴ ∠B =∠C =60°.又∵ ∠A +∠B +∠C =180°,∴ ∠A =180°-(∠B +∠C )=60°.∴ ∠A =∠B =∠C ,∴ AB =BC =AC .∴ △ABC 为等边三角形.(4)应用:例如:如图14-3-16,△ABC 为等边三角形,D 、E 为直线BC 上的两点,且BD =BC =CE ,求∠DAE 的度数.分析:要求∠DAE 的度数,需分开求,先求∠BAC ,再求∠DAB 和∠CAE ,由△ABC 为等边三角形知∠BAC =60°,又∵ BD =BC ,而BC =BA ,则BD =BA ,∴ △ABD 为等腰三角形,∴ ∠D =∠DAB =21∠ABC =30°.同理可知,∠CAE =30°.解:∵ △ABC 为等边三角形,∴ AB =BC =AC ,∠BAC =∠ABC =∠ACB =60°.又∵BD=BC,∴BD=BC=AB.∴∠DAB=∠D,又∵∠ABC=∠D+∠DAB,∴∠ABC=2∠DAB=60°,∴∠DAB=30°.同理,∠CAE=30°.∴∠DAE=∠DAB+∠BAC+∠CAE=30°+60°+30°=120°.【说明】本题中用到了等边三角形的性质.再如:如图14-3-17,已知△ABC为等边三角形,D、E、F分别为△ABC三边上的点,且BD=CE=AF,直线AD、BE、CF两两相交于点R、Q、P.求证:△PQR是等边三角形.分析:本题既用到了等边三角形的性质,又用到了其判定.要证△PQR为等边三角形,证三边相等难度较大,可考虑证其三角相等.也可先证∠PQR=60°,而∠PQR=∠ACQ+∠QAC,又因为∠ACQ+∠BCF=60°,只需证∠BCF=∠DAC,由此可联想证△BCF与△CAD全等.证明:∵△ABC为等边三角形,∴∠BAC=∠ABC=∠BCA=60°,AB=BC=CA.又∵BD=CE=AF,∴BF=DC=AE在△ABE和△BCF和△CAD中,⎪⎩⎪⎨⎧∠∠∠,==,==,==CDBFAEDCAFBCBAECABCAB∴△ABE≌△BCF≌△CAD(SAS).∴∠ABE=∠BCF=∠CAD.∵∠ACQ+∠BCF=60°,∴∠ACQ+∠CAQ=60°.∴∠AQF=∠ACQ+∠CAQ=60°,即∠PQR=60°.同理,∠RPQ=∠PRQ=60°.∴△PQR为等边三角形.【说明】(1)此题证明思路比较清晰,只是步骤书写较繁,书写应认真;(2)在证明过程中用到了三个三角形全等的连等形式,可仿照两个三角形全等的方式使用.3.证明线段相等的方法到目前为止,学过的证明线段相等的方法,有以下几种:(1)全等三角形的对应边相等(在两个三角形中).(2)等角对等边(在一个三角形中).(3)轴对称的性质(在某条直线的两侧).(4)角平分线的性质(在角的平分线上的两条线段).(5)中点的概念(在一条直线上).(6)利用第三条等量线段.(7)作辅助线、创造条件.例如:如图14-3-20,点D、E在BC上,AB=AC,AD=AE.求证:BD=CE.分析:因BD与CE在一条直线上,且又在两个三角形中,可考虑证两个三角形全等或用中点的概念进行证明,也可用轴对称的性质进行证明.证法一:用全等三角形∵AB=AC,∴∠B=∠C又∵AD=AE,∴∠ADF=∠AEF.又∵∠ADF=∠B+∠BAD,∠AEF=∠C+∠CAE,∴∠BAD=∠CAE在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS).∴BD=CE.证法二:用中线如图14-3-20,过A点作AF⊥BC于F.∵AB=AC,AF⊥BC,∴BF=CF(三线合一).又∵AD=AE,AF⊥DE,∴DF=EF(三线合一).∴BF-DF=CF-EF,∴BD=CE.证法三:用轴对称过A作BC边上的垂线,垂足为F.∵AB=AC,AF⊥BC,∴△ABC关于直线AF对称,∴BF=CF.同理,DF=EF.∴BF-DF=CF-EF.即BD=CE.【说明】从以上的证明可以看出,一个结论有多种证明途径和证明方法.4.证明角相等的方法到目前为止,学过的证明角相等的方法,有以下几种:(1)角平分线的定义及性质.(2)全等三角形的对应角相等(在两个三角形中).(3)等边对等角(在一个三角形中).(4)轴对称的性质.(5)找第三等量角(如∠A=∠C,∠B=∠C,则∠A=∠B).(6)作辅助线,创造条件.例如:如图14-3-21,△ABC中,AB=AC,∠1=∠2.求证:∠BAD=∠CAD.分析:要证∠BAD=∠CAD,因两角在两个三角形中,可考虑选用全等三角形和角平分线,以及轴对称进行证明.证法一:用全等三角形∵∠1=∠2,∴DB=DC在△ABD和△ACD中,AB=AC,DB=DC,AD=AD,∴∠ABD≌△ACD(SSS).∴∠BAD=∠CAD.证法二:用轴对称∵∠1=∠2,∴DB=DC∴点D在BC的垂直平分线上.又∵AB=AC,∴A点也在BC的垂直平分线上.∴△ABD与△ACD关于直线AD对称.∴∠BAD=∠CAD(轴对称的性质).证法三:用角平分线∵∠1=∠2,∴DB=DC.又∵AB=AC,∴点A、D都在BC的垂直平分线上.∴AD也为∠BAC的平分线(三线合一).∴∠BAD=∠CAD.例如:如图14-3-22,△ABC中,AD平分∠BAC,AD的垂直平分线交AD 于E,交BC的延长线于F.求证:∠B=∠CAF.分析:要证∠B=∠CAF,根据全等三角形和等腰三角形已不可能,角平分线也用不上,可考虑用第三等量角.证明:∵EF垂直平分AD,∴F A=FD.∴∠1=∠3+∠4.又∵∠ADC为△ABD的外角,∴∠1=∠B+∠2.∴∠B+∠2=∠3+∠4.又∵∠2=∠3,∴∠B=∠4.即∠B=∠CAF.5.得到等腰三角形的方法(1)如图14-3-27,一直线平行于等腰三角形底边,与两腰(或两腰的延长线)相交所得的三角形是等腰三角形.如图中,△ADE是等腰三角形.(2)把一张对边平行的纸,像图14-3-28那样折叠,重合部分是一个等腰三角形.如图中,△FBD是等腰三角形.(3)等腰三角形两底角的平分线的交点与底边两端点组成等腰三角形.(4)等腰三角形两腰上的高的交点与底边两端点构成等腰三角形.(5)等腰三角形两腰上的中线的交点与底边两端点构成等腰三角形.(6)36°角为顶角的等腰三角形,底角的平分线把原等腰三角形分成两个等腰三角形.(7)90°角为顶角的等腰直角三角形,顶角的平分线把原三角形分成两个等腰直角三角形.。
等腰三角形的判定定理
等腰三角形的判定定理
等腰三角形是在平面几何形状中的一种比较复杂的几何图形,它的两条边都相等,而另一条边较长。
等腰三角形的判定定理是用来测试给定的三条边是否能构成一个等腰三角形的一个有用的定理。
此定理内容如下:若三边分别为a, b, c,则必须满足:
a =
b 或
c = b或 a = c
(a + b) > c or (b + c) > a or (c + a) > b
为了理解这个定理,让我们来看一个实际的例子。
假设我们有三条边,它们的长度是3 , 4 和5,那么我们可以将它们分别赋值给 a, b 和 c,我们会发现它们并不满足上面提到的定理,因为 a (3)不等于 b (4)也不等于 c(5),而且 a + b (3 + 4)也不大于 c(5),因此这三条边不能构成等腰三角形。
等腰三角形的判定定理可以帮助我们快速确定给定三条边能否构成等腰三角形,它也可以用于测试一个数学问题中是否存在等腰三角形的可能性,比如求解三边长度及一个角度。
同时,等腰三角形的判定定理也为我们提供了更多的有用信息,它可以让我们深入地探究等腰三角形的一些特性,并帮助我们更好地理解在平面几何中等腰三角形的位置。