简述场效应管的主要参数
- 格式:doc
- 大小:10.83 KB
- 文档页数:2
简述场效应管的主要参数场效应管是一种常用的半导体器件,它在电子设备中起着重要的作用。
它的主要参数包括导通电阻、截止电压、增益、最大电流和漏极电流等。
导通电阻是场效应管的一个重要参数。
它指的是当场效应管导通时,漏极和源极之间的电阻。
一般来说,导通电阻越小,场效应管的导通能力越强,效果也越好。
导通电阻的大小直接影响着场效应管的开关速度和功耗。
截止电压是另一个重要的参数。
它指的是场效应管在没有输入信号时,漏极和源极之间的电压。
当输入信号小于截止电压时,场效应管处于截止状态,不导电。
而当输入信号大于截止电压时,场效应管进入导通状态。
截止电压的大小取决于场效应管的工作方式,不同类型的场效应管有不同的截止电压。
增益是指场效应管的输入和输出之间的电流或电压增加的比例。
它是衡量场效应管放大能力的重要参数。
增益越大,场效应管的放大能力越强。
不同类型的场效应管有不同的增益特性,可以根据需要选择合适的场效应管。
最大电流是场效应管能够承受的最大电流值。
超过最大电流值,场效应管将会被损坏。
因此,在设计电路时,需要根据实际需求选择合适的场效应管,以确保电流不会超过其最大电流。
漏极电流是场效应管在截止状态下的漏极电流值。
漏极电流越小,场效应管的截止状态越好,功耗也越低。
因此,漏极电流是衡量场效应管性能的重要指标之一。
场效应管的主要参数包括导通电阻、截止电压、增益、最大电流和漏极电流等。
这些参数直接影响着场效应管的工作性能和应用范围。
在选择场效应管时,需要综合考虑这些参数,以满足实际需求。
同时,合理设计电路,确保场效应管在正常工作范围内,以提高电子设备的性能和可靠性。
场效应管的参数说明
场效应管的参数很多,包括直流参数、交流参数和极限参数,但一般使用时关注以下主要参数:
1、IDSS—饱和漏源电流。
是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流。
2、UP—夹断电压。
是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。
3、UT—开启电压。
是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。
4、gM—跨导。
是表示栅源电压UGS—对漏极电流ID的控制能力,即漏极电流ID 变化量与栅源电压UGS变化量的比值。
gM是衡量场效应管放大能力的重要参数。
5、BUDS—漏源击穿电压。
是指栅源电压UGS一定时,场效应管正常工作所能承受的漏源电压。
这是一项极限参数,加在场效应管上的工作电压必须小于BUDS。
6、PDSM—耗散功率。
也是一项极限参数,是指场效应管性能不变坏时所允许的漏源耗散功率。
使用时,场效应管实际功耗应小于PDSM并留有一定余量。
7、IDSM—漏源电流。
是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的电流。
场效应管的工作电流不应超过IDSM;
1。
场效应管的主要参数意义及其测试方法场效应管(Field Effect Transistor,FET)是一种三端器件,常用于放大、开关和稳压等电路中。
场效应管的主要参数包括漏极-源极电流(IDSS)、漏极-源极截止电压(VGS(Off))、漏极电阻(RDS(On))和跨导(Transconductance),其测试方法主要包括IDSS测试、VGS截止测试、RDS测试和跨导测试。
1.漏极-源极电流(IDSS):IDSS是指在给定源极-栅极电压下,场效应管的漏极电流。
它反映了场效应管的导通能力,通常单位为毫安(mA)。
IDSS测试方法为:将场效应管的源极和栅极短接,连接好漏极回路,将源极-漏极电压保持为0V,测量漏极电流。
2. 漏极-源极截止电压(VGS(Off)):VGS(Off)是指在给定漏极电流下,场效应管的截止电压。
它反映了场效应管在关闭状态下的电压阈值,通常单位为伏特(V)。
VGS(Off)测试方法为:将场效应管的源极和栅极短接,连接好漏极回路,并将漏极电流维持在预定值,测量栅极-源极电压。
3.漏极电阻(RDS(On)):RDS(On)是指在给定栅极-源极电压下,场效应管的漏极电阻。
它反映了场效应管的导通状态下的电阻情况,通常单位为欧姆(Ω)。
RDS测试方法为:将场效应管的源极和栅极短接,连接好漏极回路,并将栅极-源极电压维持在预定值,测量漏极电阻。
4. 跨导(Transconductance):跨导是指在给定栅极-源极电压下,场效应管的斜率。
它反映了场效应管的输入导通能力,通常单位为毫安/伏特(mA/V)。
跨导测试方法为:将场效应管的源极和漏极短接,连接好栅极回路,并将栅极-源极电压维持在预定值,测量漏极电流对应的变化。
场效应管系列参数场效应管是一种被广泛应用于电子设备中的半导体器件,具有很多重要的参数。
本文将详细介绍场效应管的系列参数,包括栅极电压(Vgs)、漏极电流(Id)、漏极电压(Vd)、传导电阻(Rds)、增益(Gm)、饱和电流(Idss)、漏极电流温度系数(Idss Temp Coefficient)、漏极电流失调(Drain Current Mismatch)等参数。
1. 栅极电压(Vgs):栅极电压是控制场效应管工作的重要参数,它决定了栅极与漏极之间的电场强度。
通过调节栅极电压,可以改变漏极电流的大小。
2.漏极电流(Id):漏极电流是场效应管主要的输出电流,它决定了场效应管能够输出的电流大小。
漏极电流的大小与栅极电压及其他工作条件相关。
3.漏极电压(Vd):漏极电压是场效应管工作时的主要参考电压,它决定了场效应管的工作状态。
通常情况下,漏极电压要保持在一定的范围内,过高或过低都可能导致失效。
4. 传导电阻(Rds):传导电阻是场效应管导通状态时产生的电阻,它会对电路的功率损耗产生影响。
传导电阻的大小与场效应管的结构和工艺有关,一般来说,传导电阻越小,导通时的功率损耗越小。
5.增益(Gm):增益是场效应管的重要参数之一,它表示了场效应管输出电流与输入电压之间的关系。
增益的大小与场效应管的工作状态有关,一般来说,增益越大,表示场效应管具有更好的放大能力。
6. 饱和电流(Idss):饱和电流是场效应管在栅极电压为零时的最大漏极电流。
它是指场效应管工作在饱和区时,漏极电流的最大可接受值。
饱和电流的大小与场效应管的类型和工作状态有关。
7.漏极电流温度系数:漏极电流温度系数表示了场效应管漏极电流随温度变化的情况。
漏极电流温度系数的大小与场效应管的材料和结构有关,一般来说,漏极电流温度系数越小,表示场效应管对温度的变化越不敏感。
8.漏极电流失调:漏极电流失调是指多个场效应管在相同工作条件下漏极电流的差异。
由于制造工艺和器件本身的不完美性,不同场效应管之间的漏极电流会存在一定的差异。
场效应管的主要参数场效应管是一种晶体管,也称为FET(Field Effect Transistor)。
与双极晶体管(BJT)相比,场效应管具有许多优点,例如高输入阻抗,低噪声,以及高分辨率输入电压等。
主要参数:1. 阈值电压(Vth):阈值电压是场效应管工作的一个关键参数。
它表示当输入电压小于该值时,场效应管处于截止区,不导电。
当输入电压大于阈值电压时,场效应管进入饱和区或线性区,开始导通。
2. 饱和电流(Idsat):饱和电流是指当场效应管工作在饱和区时,通过漏极-源极的电流。
饱和电流取决于场效应管的尺寸和工作电压。
3. 负漏极导纳(Yfs):负漏极导纳是指场效应管的输入导纳,也称为转导。
它表示单位漏极-源极电压变化时,漏极-源极电流的变化量。
负漏极导纳可以决定输出电流与输入电压的比例关系。
4. 输入电阻(Rin):输入电阻是指场效应管的输入端电压与输入端电流之间的比值。
由于场效应管的输入电流很小,因此输入电阻较高,可以使得场效应管适用于高阻抗输入的电路。
5. 输出电导(Gds):输出电导是指场效应管的输出导纳,也称为转导。
它表示单位漏极-源极电压变化时,漏极-源极电流的变化量。
输出电导可以决定输出电流与漏极-源极电压的比例关系。
6.噪声系数(NF):噪声系数表示场效应管引入的噪声对输入信号的影响程度。
一般来说,噪声系数越低,性能越好。
7. 压控电阻(rDS(on)):压控电阻表示当场效应管处于线性区时,漏极-源极电阻的大小。
压控电阻越小,漏极-源极电压对漏极-源极电流的影响就越小。
压控电阻与输入电压有关,可以在一定范围内调节。
8.带宽(BW):带宽是指场效应管工作的频率范围。
带宽可以决定场效应管在不同频率下工作的能力。
9.温度稳定性:温度稳定性是指场效应管在不同温度下的性能变化。
温度稳定性越好,场效应管在不同温度下的性能变化越小。
总结:。
场效应管的主要参数场效应管(Field Effect Transistor,简称FET)是一种常用的电子器件,常被用于放大、开关和调节电流等应用中。
它具有许多重要的参数,这些参数对于理解和设计电路至关重要。
本文将介绍场效应管的一些主要参数,并解释它们的作用和特点。
1. 漏极截止电压(VDS(off)):漏极截止电压是指当场效应管关闭时,漏极和源极之间的电压。
当VDS(off)为正值时,漏极电压高于源极电压,此时场效应管处于关闭状态。
VDS(off)的值取决于场效应管的工作状态和特性。
这个参数对于确定场效应管的工作状态和电路的稳定性非常重要。
2. 饱和漏极电压(VDS(sat)):饱和漏极电压是指当场效应管完全开启时,漏极和源极之间的最小电压。
在饱和区,场效应管的导通状态稳定,电流可以通过管子流动。
VDS(sat)的值取决于场效应管的特性和工作状态。
这个参数对于确定场效应管的工作范围和电路的性能至关重要。
3. 置零漏极电压(VDS(off) zero):置零漏极电压是指当场效应管完全关闭时,漏极和源极之间的电压。
当VDS(off) zero为正值时,漏极电压高于源极电压,此时场效应管处于完全关闭状态。
VDS(off) zero的值取决于场效应管的工作状态和特性。
这个参数对于确定场效应管的截止状态和电路的稳定性非常重要。
4. 阈值电压(Vth):阈值电压是指当场效应管开始导通时,栅极和源极之间的电压。
在阈值电压以上,场效应管开始导通,电流可以通过管子流动。
Vth的值取决于场效应管的类型和制造工艺。
这个参数对于确定场效应管的导通状态和电路的性能至关重要。
5. 压缩因子(K):压缩因子是指栅极电压变化与漏极电流变化之间的比率。
K的值取决于场效应管的类型和特性。
较大的K值意味着场效应管具有较好的放大能力和线性特性。
这个参数对于确定场效应管的放大能力和电路的线性度至关重要。
6. 输入电容(Ciss):输入电容是指场效应管的栅极和源极之间的电容。
场效应管参数大全场效应管(Field Effect Transistor)是一种三端电子器件,由源极(Source)、栅极(Gate)和漏极(Drain)组成。
在场效应管中,栅极控制电流的流动,输出电流由源极到漏极流动。
场效应管广泛应用于电子设备和集成电路中,是数字和模拟电路中最重要的组成元件之一、下面是场效应管的一些重要参数:1. 阈值电压(Threshold Voltage):场效应管的阈值电压(Vth)是指在栅极电压低于该值时,管子处于截止(OFF)状态,没有漏极电流流过。
阈值电压是场效应管的重要特性之一,对于管子的工作状态和电路设计都有重要影响。
2. 最大漏极电流(Maximum Drain Current):最大漏极电流(Idmax)是指在给定的栅极-漏极电压下,场效应管可以承受的最大漏极电流。
超过最大漏极电流的电流将损坏管子。
3. 转导电导(Transconductance):转导电导(gm)是指单位栅极-漏极电压变化时,漏极电流的变化量。
转导电导是场效应管的重要参数,也用来衡量管子的增益和灵敏度。
4. 漏极电压(Drain-Source Voltage):漏极电压(Vds)是指场效应管的漏极与源极之间的电压差。
漏极电压对场效应管的工作状态和性能有重要影响。
5. 饱和电流(Saturation Current):饱和电流(Idsat)是指在给定的栅极电压下,场效应管的漏极电流达到饱和状态时的电流值。
6. 耗散功率(Power Dissipation):耗散功率是指场效应管在工作中消耗的功率。
场效应管的耗散功率深受设计要求和环境温度的影响。
7. 开启时间和关闭时间(Turn-On and Turn-Off Time):开启时间是指场效应管由截止状态转变为导通状态所需的时间,关闭时间是指从导通状态转变为截止状态所需的时间。
8. 输入和输出电容(Input/Output Capacitance):输入和输出电容是指场效应管输入和输出端之间的电容。
场效应管的特点、参数及使用注意事项
1.场效应管的特点
场效应管是电压掌握型器件,它不向信号源索取电流,有很高的输入电阻,而且噪声小、热稳定性好,因此宜于做低噪声放大器,特殊是低功耗的特点使得在集成电路中大量采纳。
2.场效应管的主要参数
夹断电压U P :指当U DS 值肯定时,结型场效应管和耗尽型MOS 管的I D 减小到接近零时U GS 的值称为夹断电压。
开启电压U T :指当U DS 值肯定时,增加型MOS管开头消失I D 时的U GS 值称为开启电压。
跨导g m :指U DS 肯定时,漏极电流变化量Δ I D 与栅-源极电压变化量Δ U GS 之比。
最大耗散功率P CM :指管子正常工作条件下不能超过的最大可承受功率。
3.使用留意事项
(1)场效应管的栅极切不行悬空。
由于场效应管的输入电阻特别高,栅极上感应出的电荷不易泄放而产生高压,从而发生击穿损坏管子。
(2)存放时,应将绝缘栅型场效应管的三个极相互短路,以免受外电场作用而损坏管子,结型场效应管则可开路保存。
(3)焊接时,应先将场效应管的三个电极短路,并按源极、漏极、
栅极的先后挨次焊接。
烙铁要良好接地,并在焊接时切断电源。
(4)绝缘栅型场效应管不能用万用表检查质量好坏,结型场效应管则可以。
简述场效应管的主要参数场效应管(Field Effect Transistor,简称FET)是一种重要的电子器件,具有许多主要参数。
本文将对场效应管的主要参数进行简要描述。
1. 漏极电流(ID):漏极电流是场效应管的重要参数之一。
它表示通过漏极的电流大小。
漏极电流的大小与栅极电压(VG)和漏极电压(VD)有关。
漏极电流的大小决定了场效应管的工作状态和性能。
2. 转导(Transconductance,简称gm):转导是场效应管的另一个重要参数。
它表示漏极电流变化与栅极电压变化之间的关系。
转导越大,代表场效应管的放大能力越强。
3. 阈值电压(Threshold Voltage,简称Vth):阈值电压是指栅极电压与漏极电流之间的电压差。
在阈值电压以下,场效应管基本上处于截止状态,无法正常工作。
4. 饱和电流(Saturation Current,简称IS):饱和电流是指场效应管工作在饱和区时的漏极电流。
饱和电流的大小与栅极电压和漏极电压之间的关系有关。
5. 最大耗散功率(Maximum Power Dissipation,简称Pdmax):最大耗散功率是指场效应管能够承受的最大功率。
超过最大耗散功率,场效应管可能会因过热而损坏。
6. 输入电容(Input Capacitance,简称Ciss):输入电容是指场效应管的输入端(栅极)与输出端(漏极)之间的电容。
输入电容的大小会影响场效应管的输入阻抗和频率响应。
7. 输出电容(Output Capacitance,简称Coss):输出电容是指场效应管的输出端(漏极)与地之间的电容。
输出电容的大小会影响场效应管的输出阻抗和频率响应。
8. 反馈电容(Feedback Capacitance,简称Crss):反馈电容是指场效应管的输出端(漏极)与输入端(栅极)之间的电容。
反馈电容的大小会影响场效应管的稳定性和频率响应。
9. 输出导纳(Output Admittance,简称Yos):输出导纳是指场效应管的输出端(漏极)对输入端(栅极)的导纳。
场效应管的参数场效应管(也称为MOSFET)是一种常用的半导体元件,具有高速开关和放大功能。
它是现代电子设备中最重要的元件之一,被广泛应用于各种应用领域,如数字电路、放大器、功率控制器等。
场效应管的参数描述了其性能特点和工作状态,对于设计和选择电路具有重要意义。
以下是常见的场效应管参数的详细介绍。
1. 漏极-源极饱和电压(Vds):漏极-源极饱和电压是指场效应管工作时,漏极电压和源极电压之间的最大允许值。
超过这个电压将导致场效应管处于饱和状态并损坏。
2. 阈值电压(Vth):阈值电压是指当栅极电压超过一定值时,场效应管开始导通的电压。
它决定了场效应管的开关特性和工作状态。
3. 输出电导(gds):输出电导是指场效应管的漏极-源极电流与漏极-源极电压之间的关系。
它反映了场效应管的开关速度和驱动能力,输出电导越大表示场效应管能够提供更大的输出电流。
4. 输入电容(Ciss):输入电容是指场效应管的栅极-源极电容。
它表示了场效应管输入端的电荷存储和响应能力。
输入电容越大,场效应管对输入信号的响应速度越慢。
5. 输出电容(Coss):输出电容是指场效应管的漏极-源极电容。
它表示了场效应管输出端的电荷存储和响应能力。
输出电容越大,场效应管的开关速度越慢。
6. 反馈电容(Crss):反馈电容是指场效应管的栅极-漏极电容。
它表示了场效应管内部反馈电荷的存储和响应能力。
反馈电容越大,场效应管的增益稳定性越好。
7. 直流电流增益(ID):直流电流增益是指场效应管在工作点处的漏极电流与栅极电流之间的比值。
它反映了场效应管的放大能力和驱动能力。
8. 开通电压(Vgs):开通电压是指当栅极电压超过一定值时,场效应管完全导通的电压。
它与阈值电压的差值决定了场效应管的工作状态和开关特性。
以上是场效应管常见的重要参数,它们对于电路设计和选择具有重要意义。
了解和熟悉这些参数将有助于合理应用场效应管,实现电路的高性能和稳定工作。
场效应管的主要参数Idss —饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流.Up —夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压.Ut —开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压.gM —跨导.是表示栅源电压UGS —对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数.BVDS —漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS.PDSM —最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量.IDSM —最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSMCds---漏-源电容Cdu---漏-衬底电容Cgd---栅-漏电容Cgs---漏-源电容Ciss---栅短路共源输入电容Coss---栅短路共源输出电容Crss---栅短路共源反向传输电容D---占空比(占空系数,外电路参数)di/dt---电流上升率(外电路参数)dv/dt---电压上升率(外电路参数)ID---漏极电流(直流)IDM---漏极脉冲电流ID(on)---通态漏极电流IDQ---静态漏极电流(射频功率管)IDS---漏源电流IDSM---最大漏源电流IDSS---栅-源短路时,漏极电流IDS(sat)---沟道饱和电流(漏源饱和电流)IG---栅极电流(直流)IGF---正向栅电流IGR---反向栅电流IGDO---源极开路时,截止栅电流IGSO---漏极开路时,截止栅电流IGM---栅极脉冲电流IGP---栅极峰值电流IF---二极管正向电流IGSS---漏极短路时截止栅电流IDSS1---对管第一管漏源饱和电流IDSS2---对管第二管漏源饱和电流Iu---衬底电流Ipr---电流脉冲峰值(外电路参数)gfs---正向跨导Gp---功率增益Gps---共源极中和高频功率增益GpG---共栅极中和高频功率增益GPD---共漏极中和高频功率增益ggd---栅漏电导gds---漏源电导K---失调电压温度系数Ku---传输系数L---负载电感(外电路参数)LD---漏极电感Ls---源极电感rDS---漏源电阻rDS(on)---漏源通态电阻rDS(of)---漏源断态电阻rGD---栅漏电阻rGS---栅源电阻Rg---栅极外接电阻(外电路参数)RL---负载电阻(外电路参数)R(th)jc---结壳热阻R(th)ja---结环热阻PD---漏极耗散功率PDM---漏极最大允许耗散功率PIN--输入功率POUT---输出功率PPK---脉冲功率峰值(外电路参数)to(on)---开通延迟时间td(off)---关断延迟时间ti---上升时间ton---开通时间toff---关断时间tf---下降时间trr---反向恢复时间Tj---结温Tjm---最大允许结温Ta---环境温度Tc---管壳温度Tstg---贮成温度VDS---漏源电压(直流)VGS---栅源电压(直流)VGSF--正向栅源电压(直流)VGSR---反向栅源电压(直流)VDD---漏极(直流)电源电压(外电路参数)VGG---栅极(直流)电源电压(外电路参数)Vss---源极(直流)电源电压(外电路参数)VGS(th)---开启电压或阀电压V(BR)DSS---漏源击穿电压V(BR)GSS---漏源短路时栅源击穿电压VDS(on)---漏源通态电压VDS(sat)---漏源饱和电压VGD---栅漏电压(直流)Vsu---源衬底电压(直流)VDu---漏衬底电压(直流)VGu---栅衬底电压(直流)Zo---驱动源内阻η---漏极效率(射频功率管)Vn---噪声电压aID---漏极电流温度系数ards---漏源电阻温度系数[编辑本段]4.结型场效应管的管脚识别:判定栅极G:将万用表拨至R×1k档,用万用表的负极任意接一电极,另一只表笔依次去接触其余的两个极,测其电阻.若两次测得的电阻值近似相等,则负表笔所接触的为栅极,另外两电极为漏极和源极.漏极和源极互换,若两次测出的电阻都很大,则为N沟道;若两次测得的阻值都很小,则为P沟道.判定源极S、漏极D:在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S 极与D极.用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是S极,红表笔接D极.。
简述场效应管的主要参数场效应管是一种常用的电子元器件,广泛应用于各个领域中。
它具有许多重要的参数,这些参数对于了解场效应管的性能和应用非常重要。
本文将简要介绍场效应管的主要参数。
第一个主要参数是漏极电流(ID)。
漏极电流是指场效应管的漏极电流,它是决定场效应管工作状态的重要因素之一。
漏极电流的大小取决于栅极电压和漏极电压,通过调整栅极电压和漏极电压可以控制漏极电流的大小。
第二个主要参数是栅极电压(VG)。
栅极电压是指场效应管的栅极电压,它是控制场效应管工作状态的关键参数之一。
通过调整栅极电压,可以控制场效应管的导通和截止状态,从而实现对电流的控制。
第三个主要参数是漏极电压(VD)。
漏极电压是指场效应管的漏极电压,它是决定场效应管工作状态的重要因素之一。
漏极电压的大小取决于栅极电压和漏极电流,通过调整栅极电压和漏极电流可以控制漏极电压的大小。
第四个主要参数是增益(μ)。
增益是指场效应管的电流放大倍数,它是评估场效应管性能的重要指标之一。
增益的大小取决于场效应管的结构和工作状态,通过调整栅极电压和漏极电流可以控制增益的大小。
第五个主要参数是阈值电压(VT)。
阈值电压是指场效应管的栅极电压达到一定值时,场效应管开始导通的电压。
阈值电压的大小取决于场效应管的材料和结构,通过调整栅极电压可以控制阈值电压的大小。
第六个主要参数是导通电阻(Ron)。
导通电阻是指场效应管在导通状态下的电阻,它是评估场效应管导通能力的重要指标之一。
导通电阻的大小取决于场效应管的结构和材料,通过调整栅极电压和漏极电流可以控制导通电阻的大小。
第七个主要参数是截止电阻(Roff)。
截止电阻是指场效应管在截止状态下的电阻,它是评估场效应管截止能力的重要指标之一。
截止电阻的大小取决于场效应管的结构和材料,通过调整栅极电压和漏极电流可以控制截止电阻的大小。
场效应管的主要参数包括漏极电流、栅极电压、漏极电压、增益、阈值电压、导通电阻和截止电阻。
场效应管的主要参数Idss —饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流.Up —夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压.Ut —开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压.gM —跨导.是表示栅源电压UGS —对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数.BVDS —漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS.PDSM —最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量.IDSM —最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSMCds---漏-源电容Cdu---漏-衬底电容Cgd---栅-漏电容Cgs---漏-源电容Ciss---栅短路共源输入电容Coss---栅短路共源输出电容Crss---栅短路共源反向传输电容D---占空比(占空系数,外电路参数)di/dt---电流上升率(外电路参数)dv/dt---电压上升率(外电路参数)ID---漏极电流(直流)IDM---漏极脉冲电流ID(on)---通态漏极电流IDQ---静态漏极电流(射频功率管)IDS---漏源电流IDSM---最大漏源电流IDSS---栅-源短路时,漏极电流IDS(sat)---沟道饱和电流(漏源饱和电流)IG---栅极电流(直流)IGF---正向栅电流IGR---反向栅电流IGDO---源极开路时,截止栅电流IGSO---漏极开路时,截止栅电流IGM---栅极脉冲电流IGP---栅极峰值电流IF---二极管正向电流IGSS---漏极短路时截止栅电流IDSS1---对管第一管漏源饱和电流IDSS2---对管第二管漏源饱和电流Iu---衬底电流Ipr---电流脉冲峰值(外电路参数)gfs---正向跨导Gp---功率增益Gps---共源极中和高频功率增益GpG---共栅极中和高频功率增益GPD---共漏极中和高频功率增益ggd---栅漏电导gds---漏源电导K---失调电压温度系数Ku---传输系数L---负载电感(外电路参数)LD---漏极电感Ls---源极电感rDS---漏源电阻rDS(on)---漏源通态电阻rDS(of)---漏源断态电阻rGD---栅漏电阻rGS---栅源电阻Rg---栅极外接电阻(外电路参数)RL---负载电阻(外电路参数)R(th)jc---结壳热阻R(th)ja---结环热阻PD---漏极耗散功率PDM---漏极最大允许耗散功率PIN--输入功率POUT---输出功率PPK---脉冲功率峰值(外电路参数)to(on)---开通延迟时间td(off)---关断延迟时间ti---上升时间ton---开通时间toff---关断时间tf---下降时间trr---反向恢复时间Tj---结温Tjm---最大允许结温T a---环境温度Tc---管壳温度Tstg---贮成温度VDS---漏源电压(直流)VGS---栅源电压(直流)VGSF--正向栅源电压(直流)VGSR---反向栅源电压(直流)VDD---漏极(直流)电源电压(外电路参数)VGG---栅极(直流)电源电压(外电路参数)Vss---源极(直流)电源电压(外电路参数)VGS(th)---开启电压或阀电压V(BR)DSS---漏源击穿电压V(BR)GSS---漏源短路时栅源击穿电压VDS(on)---漏源通态电压VDS(sat)---漏源饱和电压VGD---栅漏电压(直流)Vsu---源衬底电压(直流)VDu---漏衬底电压(直流)VGu---栅衬底电压(直流)Zo---驱动源内阻η---漏极效率(射频功率管)Vn---噪声电压aID---漏极电流温度系数ards---漏源电阻温度系数结型场效应管的管脚识别:判定栅极G:将万用表拨至R×1k档,用万用表的负极任意接一电极,另一只表笔依次去接触其余的两个极,测其电阻.若两次测得的电阻值近似相等,则负表笔所接触的为栅极,另外两电极为漏极和源极.漏极和源极互换,若两次测出的电阻都很大,则为N沟道;若两次测得的阻值都很小,则为P沟道.判定源极S、漏极D:在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极.用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是S极,红表笔接D极.。
场效应管的主要参数场效应管(Field-Effect Transistor,FET)是一种三极电子器件,广泛应用于放大和开关电路中。
场效应管主要有三个主要参数:转移特性、输入特性和输出特性。
下面将详细讨论这三个参数。
1. 转移特性:转移特性描述了场效应管的输入-输出关系,即输出电流与输入电压之间的关系。
转移特性通常由三种不同的参数表示:互导(Transconductance,gm)、输出电导(Output Conductance,go)和截止电流(Cut-Off Current,IDSS)。
- 互导(Transconductance,gm):互导是场效应管的输入电压变化引起的输出电流变化的比率。
它是转移特性曲线的斜率。
互导数值越高,代表场效应管有更好的放大能力。
- 输出电导(Output Conductance,go):输出电导表示场效应管的漏极电流与漏极电压之间的关系。
输出电导数值越小,代表场效应管具有更好的开关特性。
- 截止电流(Cut-Off Current,IDSS):截止电流是场效应管的栅极-源极电压为零时的漏极电流。
截止电流的数值越小,代表场效应管具有更好的截止特性。
2.输入特性:输入特性描述了场效应管的栅极-源极电流与栅极-源极电压之间的关系。
输入特性包括漏极特性和截止特性。
-漏极特性:漏极特性是指场效应管的漏极电流与漏极电压之间的关系。
在正常工作区域内,漏极特性曲线呈现出线性区和饱和区两种不同的特性。
-截止特性:截止特性是指场效应管的栅极-源极电流与栅极-源极电压之间的关系。
在截止区,栅极电流非常小,基本上可以忽略不计。
3.输出特性:输出特性描述了场效应管的漏极电流与漏极电压之间的关系。
输出特性通常以漏极特性曲线表示。
-漏极特性:漏极特性是指场效应管的漏极电流与漏极电压之间的关系。
漏极特性曲线可以显示出场效应管的饱和区和线性区。
此外,还有一些次要参数:4. 最大漏极电流(Maximum Drain Current,IDmax):场效应管能够承受的最大漏极电流。
简述场效应管的主要参数
场效应管(Field Effect Transistor,简称FET)是一种基于半导体物理学原理的集成电路器件,是晶体管的一种。
它是一种通过电子在半导体材料表面电场的作用下进行移动来调节电流的器件。
FET具有高输入阻抗、低噪声、低功耗、高可靠性等特点,因此在许多计算机、通信和电子设备中得到了广泛的应用。
FET的主要参数包括:
1. 栅极电压(Gate-to-Channel voltage):栅极电压是控制电流流动的关键参数,它决定了FET的导电性能。
通常,栅极电压越高,FET的导电性能越好,但也会使其功耗增加。
2. 漏极电压(Channel-to-Source voltage):漏极电压是FET的输入电压,它决定了FET的放大倍数。
FET具有输入电阻大、非线性低等特点,因此漏极电压较低时,FET的放大倍数较高。
3. 漏极电流(Channel-to-Source电流):漏极电流是FET的放大倍数和输出能力的重要参数。
当漏极电压较低时,FET的电流较小,因此输出能力较弱;当漏极电压较高时,FET的电流较大,因此输出能力增强。
4. 工作频率:FET的工作频率取决于栅极和漏极之间的电阻和栅极电压。
FET的电阻较大,因此其工作频率较高。
5. 功率:FET的功率取决于栅极和漏极之间的电流和工作频率。
FET的功率较小,因此在小型设备中应用广泛。
除了以上主要参数外,FET还有其他参数,如栅极材料、漏极材料、极化方向等。
这些参数的选择会影响到FET的性能和应用。
此外,FET还具有可编程、反向输入等特点,因此广泛应用于控制和调节电路中。