WiFi-Mesh 无线自组网系统关键技术综述
- 格式:docx
- 大小:36.85 KB
- 文档页数:2
无线自组网关键技术研究无线自组网已经成为了未来科技发展的重要方向之一。
通过无线自组网技术,各种设备可以互相通信,形成一个自组织、自修复、自适应的网络体系。
无线自组网技术的发展离不开关键技术的研究。
本文就无线自组网的关键技术展开阐述。
一、路由技术在无线自组网中,路由技术是关键中的关键。
不同于传统有线网络,无线自组网拓扑结构动态变化且线路不稳定。
这就要求无线自组网需要一套灵活可靠的路由机制,使网络中的数据包能够按照最优路径进行传递,并不断适应网络拓扑的变化。
近年来,一些新的路由协议也在不断出现。
诸如AODV等协议,在具有一些优秀特性的同时,也存在一些问题。
尤其是对于大型网络,路由协议的处理效率和速度亟待进一步提升。
因此,未来的研究重点将放在大型无线网络路由的设计和性能优化方面。
二、资源管理技术在无线自组网中,存在许多不同类型的网络设备和多种不同的应用需求。
因此,资源的管理和动态调配成为一项非常必要的技术。
资源管理技术包括对网络带宽、电量等限制条件的优化,以及对网络拓扑结构的实时变化进行监测和适应,使得网络的总资源得到最佳化利用。
资源管理技术将来会重点研究以下方面:首先,需要基于对应用需求和网络状况的实时分析,确定资源的分配策略;其次,需要考虑网络拓扑的动态变化,以及对节点间通讯效率的不断优化;最后,还需要从安全方面考虑资源的合理分配,避免恶意节点对网络资源的滥用。
三、能量和功耗管理技术在无线自组网中,节点的能量和功耗是一个严重的问题。
特别是对于低功耗设备来说,如何合理利用能量资源,延长设备续航时间成为一个重要的研究问题。
未来的研究方向包括以下两个方面:第一,通过对网络拓扑结构的动态调整,实现节点间的能量平衡;第二,将低功耗设备的节能机制融入整个网络的策略中,从而实现全网功耗的降低。
四、安全技术无线自组网的安全性是网络设计中非常重要的一方面,因为在无线自组网中,节点的数量和密度较大,网络的拓扑也相对复杂,非常容易被黑客攻击。
无线Mesh网络技术【摘要】无线Mesh网络技术是一种基于自组织的网络结构,可以实现节点之间的无线通信和数据传输。
本文首先介绍了无线Mesh网络技术的原理,即通过多个节点之间相互连接形成网状结构,实现数据传输和路由选择。
探讨了无线Mesh网络技术的特点,如自组织性、灵活性和容错性等。
然后,分析了无线Mesh网络技术在实际应用中的场景,如智能家居、物联网和应急通信等领域。
展望了无线Mesh网络技术的未来发展趋势,指出其在5G时代将发挥更重要的作用,对未来的通信技术发展具有重要意义。
无线Mesh网络技术的研究和应用具有重要意义,将为未来的通信网络带来新的突破和发展机遇。
【关键词】无线Mesh网络技术、技术概述、技术原理、技术特点、应用场景、发展趋势、未来、重要性1. 引言1.1 无线Mesh网络技术概述无线Mesh网络技术是一种新兴的无线网络通信技术,它将传统的星形网络结构转变为网状结构,可以实现节点之间的相互连接和通信。
在无线Mesh网络中,每个节点既可以作为终端设备,也可以作为路由器,这样就可以实现多跳传输,增强了网络的覆盖范围和稳定性。
无线Mesh网络技术具有很高的灵活性和可扩展性,可以根据实际需要简单地扩展或缩减网络规模。
由于节点之间可以直接通信,无需通过中心节点转发数据,因此可以减少网络延迟,提高数据传输效率。
无线Mesh网络技术是一种非常有前景和潜力的技术,可以广泛应用于智能家居、智能城市、物联网、工业控制等领域,为人们的生活和工作带来更多便利与效率。
在未来,随着技术的不断发展和完善,无线Mesh网络技术将会得到更广泛的应用和推广,成为无线通信领域的重要技术之一。
2. 正文2.1 无线Mesh网络技术原理无线Mesh网络技术原理是指通过一组连接在一起的无线节点来建立起一个分布式的网络结构。
这些节点可以相互通信,并且可以在不同节点之间进行数据传输。
无线Mesh网络技术的核心原理包括路由、互连性、和自组织性。
关于MESH无线网络技术的论文无线mesh网络,由mesh routers(路由器)和mesh clients(客户端)组成,其中mesh routers构成骨干网络,并和有线的internet网相连接,负责为mesh clients提供多跳的无线internet连接。
无线Mesh网络(无线网状网络)也称为"多跳(multi-hop)"网络,它是一种与传统无线网络完全不同的新型无线网络技术。
以下是店铺为大家整理到的关于MESH无线网络技术的论文,欢迎大家前来阅读。
关于MESH无线网络技术的论文:有线网络是目前油田广泛使用的网络,但有线网络始终存在两个不尽如人意的地方:一方面,因地理环境的限制,使得有线网络很难实现进一步的延伸;另一方面,随着移动计算设备的日益普及,有线接入点的固定性使得笔记本电脑等手持设备还不能成为真正意义上的自由存取网络的移动工具。
无线网络的出现解决了有线网络无法克服的困难。
首先无线网络适用于很难布线的地方,如复杂街区、建筑物群内外、家庭内等,或者经常需要变动布线结构的地方。
另外,因为无线网络支持十几公里的区域,因此对于油田这种点多线长的布线范围,Mesh无线网络非常适用。
虽然无线网络有诸多优势,但无线网络与有线网络是互补的关系,而不是竞争。
与有线网络相比,由于其具有部署快、成本低、覆盖广和带宽高等优点,受到学术和工业领域的广泛关注,更是给家庭宽带接入、社区网络建设、应急网络搭建等方面提供了便利。
Mesh的典型结构如图所示,整个网络由无线接入点(AP)-WGW、无线路由器(WR)、终端用户/设备(CLIENT)组成。
无线Mesh技术是一种与传统无线单跳网络结构完全不同的新型无线网络技术。
它的核心指导思想是让网络中的每个节点都可以发送和接收信号。
在无线Mesh网络中,任何无线设备节点都可同时作为路由器,网络中的每个节点都能发送和接收信号,每个节点都能与一个或多个对等节点进行直接通信。
一,无线mesh网络的原理无线mesh网络,由mesh routers(路由器)和mesh clients(客户端)组成,其中路由器构成骨干网络,并和有线的互联网相连接,负责为客户端提供多跳的无线互联网连接。
无线Mesh网络(无线网状网络WMN)也称为“多跳(multi-hop)”网络,它是一种与传统无线网络完全不同的新型无线网络技术。
在传统的无线局域网(WLAN)中,每个客户端均通过一条与接入点相连的无线链路来访问网络,形成一个局部的BSS(Basic Service Set)。
用户如果要进行相互通信的话,必须首先访问一个固定的接入点,这种网络结构被称为单跳网络。
而在无线Mesh网络中,任何无线设备节点都可以同时作为AP和路由器,网络中的每个节点都可以发送和接收信号,每个节点都可以与一个或者多个对等节点进行直接通信。
这种结构的最大好处在于:如果最近的AP由于流量过大而导致拥塞的话,那么数据可以自动重新路由到一个通信流量较小的邻近节点进行传输。
依此类推,数据包还可以根据网络的情况,继续路由到与之最近的下一个节点进行传输,直到到达最终目的地为止。
这样的访问方式就是多跳访问。
其实人们熟知的互联网就是一个Mesh网络的典型例子。
例如,当我们发送一份E-mail时,电子邮件并不是直接到达收件人的信箱中,而是通过路由器从一个服务器转发到另外一个服务器,最后经过多次路由转发才到达用户的信箱。
在转发的过程中,路由器一般会选择效率最高的传输路径,以便使电子邮件能够尽快到达用户的信箱。
与传统的交换式网络相比,无线Mesh网络去掉了节点之间的布线需求,但仍具有分布式网络所提供的冗余机制和重新路由功能。
在无线Mesh网络里,如果要添加新的设备,只需要简单地接上电源就可以了,它可以自动进行自我配置,并确定最佳的多跳传输路径。
添加或移动设备时,网络能够自动发现拓扑变化,并自动调整通信路由,以获取最有效的传输路径。
从下图来看,传统的WLAN,主要是由固定存在的AP来做一个区域的接入,由AP来与设备进行数据交换,AP再与路由进行交换,路由又与路由交换。
2016年4月第27卷 第2期装 备 学 院 学 报J o u r n a l o fE q u i p m e n tA c a d e m y A pr i l 2016V o l .27 N o .2收稿日期 2015-12-08作者简介 刘作学(1962-),男,教授,主要研究方向为军事无线通信技术㊂l z x 626@s o h u .c o mW i F i -M e s h 无线自组网系统关键技术综述刘作学, 代健美(装备学院信息装备系,北京101416) 摘 要 W i F i -M e s h 无线自组网系统是基于802.11协议和无线路由协议实现的一类自组织网络系统的统称㊂按照分层的方法对系统的多天线技术㊁多载波调制技术㊁媒体接入控制机制和路由算法等关键技术进行了分析和讨论,对多天线条件下信道状态信息的获取技术㊁正交频分复用条件下的降低峰均比技术㊁载波侦听多址接入/冲突避免和时分多址的改进机制,以及混合无线M e s h 协议和最佳移动网络路由协议的研究现状㊁难点和未来改进方向进行了重点阐述,对可能用于W i F i -M e s h 无线自组网系统的新技术进行了展望㊂关 键 词 信道状态信息;峰均比;载波侦听多址接入/冲突避免;时分多址;路由协议中图分类号 T P 393.0文章编号 2095-3828(2016)02-0095-07文献标志码 AD O I 10.3783/j .i s s n .2095-3828.2016.02.021C o m p r e h e n s i v eS t u d y o nK e y T e c h n o l o gi e s o fW i F i -M e s hW i r e l e s sN e t w o r k L I UZ u o x u e , D A I J i a n m e i(D e p a r t m e n t o f I n f o r m a t i o nE q u i p m e n t ,E q u i p m e n tA c a d e m y ,B e i j i n g 101416,C h i n a )A b s t r a c t W i F i -M e s hw i r e l e s s n e t w o r k i s a c o l l e c t i v e n a m e f o r a t y p e o f a d -h o c n e t w o r k s y s t e m s b a s e do n 802.11p r o t o c o l a n dw i r e l e s s r o u t i n gp r o t o c o l .W i t h a l a y e r e d a p p r o a c h ,t h e p a p e rm a k e s a -n a l y s i sa n dd i s c u s s i o no nt h e m u l t i -a n t e n n a lt e c h n o l o g y ,m u l t i -c a r r i e rt e c h n o l o g y ,m e d i a -a c c e s s e d c o n t r o lm e c h a n i s m ,r o u t i n g a l g o r i t h ma n d s o m e o t h e r k e y t e c h n o l o g i e s f o r t h e s y s t e ma n d p u t s p r i o r i -t y o n t h e s t a t u s q u o ,c h a l l e n g e s a n d f u t u r e d e v e l o p m e n t d i r e c t i o n o n i n f o r m a t i o n a c q u i s i t i o n t e c h n o l o -g y o f c h a n n e l s t a t e i n f o r m a t i o n (C S I )i nm u l t i -a n t e n n a l c o n d i t i o n ,p e a k t o a v e r a g e p o w e r r a t i o r e d u c -i n g t e c h n i q u e i no r t h o g o n a l f r e q u e n c y d i v i s i o n m u l t i p l e x i n g (O F D M ),c a r r i e r s e n s em u l t i p l ea c c e s s /c o l l i s i o na v o i d a n c e ,i m p r o v e m e n tm e c h a n i s mo f t i m e d i v i s i o nm u l t i p l e a c c e s s (T D MA ),h y b r i dw i r e -l e s sM e s h p r o t o c o l a n do p t i m i z e dm o b i l en e t w o r kr o u t i n gp r o t o c o l .I n t h e e n d ,t h e p a p e r s h o w s t h e o u t l o o ko f t h en e wt e c h n o l o g i e sw h i c hm a y b eu s e d f o rW i F i -M e s hw i r e l e s s a d -h o c n e t w o r ks y s t e m.K e yw o r d s c h a n n e l s t a t e i n f o r m a t i o n (C S I );p e a k t o a v e r a g e p o w e r r a t i o (P A P R );c a r r i e r s e n s e m u l t i p l e a c c e s s /c o l l i s i o na v o i d a n c e (C S MA /C A );t i m ed i v i s i o n m u l t i p l ea c c e s s (T D MA );r o u t i n gpr o t o c o l W i F i -M e s h 无线自组网系统,既具有a dh o c 网络自组织㊁自愈㊁自管理和多跳中继的特性,又具有W i F i 网络带宽高㊁接入简单㊁容易实现等特点,在飞行器组网㊁车联网㊁智慧城市构建㊁抢险救灾应急通信㊁战场战术分队组网等方面有着广阔的应用空间㊂目前,国内外已经研发了一些实用的W i F i -M e s h 产品(如美国s t r i x 公司系列产品),装备学院自主研发的 无线M e s h 自组网系统”已经在多个野战部队㊁试验基地,以及多次通信保障任务中使用,取得了良好的应用效果㊂随着信息技术的不断发展,以及无线自组网用户数和大容量高速业务的持续增加,人们对W i F i-M e s h自组网提出了更高的要求,如何使其具有更快的传输速度㊁更大的系统接入能力㊁更高的频谱效率以及更强的无线信道抗干扰能力,还需要进行大量㊁深入的研究㊂W i F i-M e s h无线自组网系统的关键技术主要包括遵循802.11标准的物理层(P h y s i c a lL a y-e r,P H Y)技术和媒体访问控制(M e d i a A c c e s s C o n t r o l,MA C)技术,以及网络路由技术等,本文将对上述三方面关键技术的研究现状及难点㊁改进方向和应用策略等进行分析和阐述,为W i F i-M e s h无线自组网系统的后续研究提供参考㊂1 物理层技术802.11的物理层技术经历了从单载波直接序列扩频(D i r e c tS e q u e n c e S p r e a d S p e c t r u m, D S S S)到正交频分复用(O r t h o g o n a lF r e q u e n c y D i v i s i o n M u l t i p l e x i n g,O F D M)㊁二进制相移键控(B i n a r y P h a s eS h i f tK e y i n g,B P S K)到高阶正交幅度调制(Q u a d r a t u r e A m p l i t u d e M o d u l a t i o n, Q AM)㊁单天线到多输入输出(M u l t i p l eI n p u t M u l t i p l eO u t p u t,M I MO)天线的发展过程,相比较调制效率已接近理论极限的调制技术,M I MO 多天线技术和O F D M技术还有很大的发展空间㊂1.1 M I M O多天线的C S I获取技术M I MO多天线技术是在不增加频谱资源和天线发射功率的情况下,通过增加收发天线数提高系统容量的下一代移动通信核心技术㊂由于能有效提高系统的频谱利用率和功率效率, 802.11n和802.11a c标准相继完整引入了单用户M I MO通信技术和多用户M I MO(M u l t i-u s e r M I MO,MU-M I MO)通信技术㊂自M I MO提出以来,C S I的有效获取问题一直是M I MO研究的焦点和难点,也是制约M I MO使用性能的重要因素㊂802.11n和I E E E 802.11a c标准使用 基于接收端有限反馈”的方法获取信道状态信息,该方法与文献[1-3]相似,都是基于信号处理直接获取C S I信息的思路,其精度和准确度受输入参数和环境影响明显㊂在现有机制下,发送节点(如M e s h节点或M e s h接入点)并不能获知各用户信道是否有波动,即无法精确快速获取C S I信息,从而无法通过发送端的预编码来减小或者消除用户间的干扰,难以满足现实需要;文献[4]给出了另一种解决思路,通过利用信干比反馈和功率最优分配策略,间接获取C S I信息,也达到了提升系统性能的目的㊂尽管该算法仅考虑了传统无线局域网接入点(多天线)与客户端(单天线)的通信过程,但其思想完全可用于多天线M e s h节点间的通信㊂1.2 O F D M的抗P A P R技术O F D M是一种多载波调制技术,该技术利用快速傅里叶反变换(I n v e r s eF a s tF o u r i e rT r a n s-f o r m,I F F T)将一个宽的带宽分割成多个紧密相邻(甚至部分重合)㊁相互正交的子载波,有效提升了频谱利用效率;利用串并变换将高速的信息流变换成多路低速的数据流,有效提高了抗频率选择性衰落的能力㊂基于O F D M在频率利用率和抗干扰能力上的优势,802.11a/g/n/a c/a d等系列标准将O F D M作为必选的另一物理层关键技术㊂在802.11系统中,O F D M子载波的频率间隔设定为312.5k H z,子载波数根据带宽的不同从52个(802.11a/g)到484个(802.11a c)不等,其中数据子载波最高达468个,O F D M与M I MO 的结合,大幅度提升了数据传输速率㊂但是, O F D M普遍存在P A P R高的问题,较高的P A P R 容易引起器件的非线性失真,降低功放效率,从而造成频谱 外泄”和子载波间的干扰,造成O F D M 系统的误码性能下降,缩短电池的工作时间㊂降低P A P R的技术主要包括信号畸变类技术㊁概率类技术和混合类技术㊂1)信号畸变技术[5-6]㊂典型的有,文献[7]提出的 限幅+扩幅”组合方法,该方法通过设置适当的波峰和波谷阈值来改善P A P R性能,这类方法具有实现过程简单㊁降低P A P R效果明显的特点,但会产生带内畸变和带外扩展;文献[8]设计了一种联合抑制P A P R算法,该算法通过对信号进行编码来降低P A P R,不会产生限幅噪声,但计算复杂度非常高,编解码比较复杂,而且信息速率降低很快,只适用于子载波数比较少的情况㊂2)概率类技术㊂典型的有,利用A l a m o u t i 空频分组码(S p a c e-f r e q u e n c y B l o c k C o d e s, S F B C)固有的冗余性而提出的不需传输边信息的选择映射法(S e l e c t i v eM a p p i n g,S L M)方法[9],利用交织㊁时域备选技术的 半盲S L M方法”[10],多级寻优的改进部分传输序列法(P a r t i a lT r a n s m i t S e q u e n c e,P T S)方法[11],以及能够大幅度减少I F F T次数的 基于时域子块信号部分循环移位的部分传输序列算法”(M o d i f i e dP a r t i a lT r a n s-m i t S e q u e n c e,M P T S)[12]等方法,其思路是通过69装 备 学 院 学 报 2016年破坏子载波相位之间的相关性来降低高O F D M 信号幅值出现的概率,具有较好的降P A P R性能,改进算法相对于经典算法的计算量有所减少,但实现复杂度仍然较大㊂3)混合类技术是上述方法的联合,包括信号畸变类和概率类的联合㊁限幅类和编码类的联合,以及概率类与编码类的联合等[13],目前相关成果不多㊂2 M A C层技术802.11的MA C层基于C S MA/C A机制实现,这种机制在高负荷的网络中会产生大量的节点碰撞,导致不公平㊁不可预测和不稳定[14]问题,很多文献从改进C S MA/C A性能的角度进行了研究;但该协议不能从根本上解决冲突问题,而将T D MA机制引入802.11协议,可以达到保证信息数据的无冲突传输,并使系统适于室外长距离㊁多跳传输的目的㊂2.1 C S M A/C A机制的公平性改善技术1)竞争窗口调节法[15]㊂这种方法通过每次成功传输后禁止竞争窗口复位到最小值来提高吞吐量,但没有考虑短期的公平性,使某些节点由于经历连续的碰撞而被迫处于长时间的退避阶段,造成传输速率更低㊂2)竞争参数调整法[16]㊂这种方法通过估计竞争者(用户)的数量并调整竞争参数来提高吞吐量并兼顾公平性,但复杂度大幅提高,而且当出现信道错误时,会使估计结果的准确性大大降低㊂3)确定性退避法㊂这类方法通过将随机退避机制改为确定性退避来实现近似无碰撞传输,从而提高系统的吞吐量,文献[17-18]提出了一种具有碰撞避免增强功能的确定性退避方法(C S-MA/E C A);文献[19]在此基础上考虑了公平性问题,也考虑了多跳特性,但存在系统用户数不能超过确定性退避值的限制;文献[20]提出了迟滞确定性退避的方法,通过修改C S MA/E C A实现了系统容纳用户数的增加,结合公平分享(f a i r-s h a r e)策略,进一步保证了长期的公平性㊂目前,有些方法已经进行了软硬件实现,下一步有望被802.11标准协议接纳㊂但需要注意的是,上述方法主要考虑了C S MA/C A的退避机制和公平性问题,并没有突破C S MA/C A本身的限制,无法从根本上解决数据碰撞的问题,在大容量用户情况下提升吞吐量的能力有限㊂2.2 基于802.11的T D M A改进技术M o r a e s等[21]率先证明了T D MA用于802.11系统的可行性,R O S A L N e t[22]㊁公路链状网[23]㊁点对点长距离系统[24]等应用进一步证明,相比较C S MA/C A机制,基于T D MA的W i F i-M e s h无线自组网系统具有更好的延时㊁抖动和健壮性,传输距离更远,对移动性支持更好㊂T D-MA的实现难点是同步精度难以保证,D j u k i c 等[25]提出了基于软件的T D MA MA C协议(S o f t-T D MA C),该协议通过锁相环实现了节点的两两同步,然后通过建立基于最小跳数的全网同步树,实现了全网的紧同步,降低了全网的同步错误,提高了同步精度和分配效率,但可靠性不高;文献[26]讨论了L i T-MA C的原理和具体实现问题,该方法能够提高时间同步的可靠性,并兼顾了多信道㊁长距离传输等问题,但需要统一的集中管理器进行时间调度,抗干扰性不足㊂上述改进思路主要是对802.11协议进行修改以支持高同步精度T D MA,但仍存在互相无法兼容㊁系统灵活性低等问题,如果基于软件定义网络(S o f t-w a r e-D e f i n e dN e t w o r k i n g,S D N)思想,在不改变原有架构的基础上叠加一个统一的控制层来实现T D MA,再利用精准时间协议(P r e c i s eT i m eP r o-t o c o l,P T P)和一些新技术实现微秒量级的定时精度,将大幅提高系统的通用性,促进多网融合㊂2.3 C S M A/T D M A结合技术将C S MA和T D MA结合使用是另一种研究思路,这种方法是对实现复杂度和性能的折中考虑,比较适合节点数量不多的多跳网络㊂S a y a d i 等[27]提出了基于T D MA的单触发时隙预留(O n es h o tS l o tT D MA-b a s e d R e s e r v a t i o n,O S-T R)方案,该方案将时间帧分为2种子帧,一种是遵循C S MA/C A信道接入方案的C O N T R O L子帧,主要完成控制命令等数据量较少的短报文传输;另一种是按照固定调度的方式进行接入的D A T A子帧,主要完成业务数据的传输㊂这种方案既利用T D MA实现了固定时隙分配,又利用C S MA实现了全网节点时隙的动态按需分配,增加了系统带宽,比较适合多跳传输的应用场景,但该算法并没有考虑业务的服务质量(Q u a l i t y o f S e r v i c e,Q o S)问题㊂文献[28]也利用确定性退避的方法结合T D MA固定时隙调度思想提出了一种不间断无冲突MA C自适应算法,在无需考虑流量类型和终端数量的情况下能保证无碰撞的数据传输㊂79第2期 刘作学,等:W i F i-M e s h无线自组网系统关键技术综述3 网络路由技术网络路由技术是实现W i F i-M e s h无线自组网系统多跳㊁自组织特性的决定性技术,目前的路由协议主要有基于网络层设计的三层路由协议和基于链路层设计的二层路由协议2类㊂相比较三层路由协议,二层路由协议不需要在用户空间和内核空间频繁地进行数据读取㊁写入和交换,可极大地降低数据包处理开销,并实现对网络层的透明性,大大提高了协议的可扩展性[29]㊂其中最有代表性的二层路由协议是混合无线M e s h协议(H y b r i d W i r e l e s sM e s hP r o t o c o l,HWM P)[30]和最佳移动网络路由协议(B e t t e r A p p r o a c h T o M o b i l e A d-h o c N e t w o r k i n g A d v a n c e d,B A T-MA N-a d v)[31]路由协议㊂3.1 HWM P路由协议及其改进技术HWM P协议是802.11s工作组专门为W i F i-M e s h网络开发制定的综合路由协议,该协议结合了反应式路由协议和基于树状拓扑的先验式路由协议的优点,能较好地适应无线M e s h网络㊂当前的改进思路主要是通过增加不同的路由判据来实现性能的优化:基于预留的HWM P (R e s e r v a t i o n-b a s e d HWM P,R-HWM P)协议[32]通过在路由请求和转发包中引入R S p e c和T S p e c 字段,提高了端到端的服务质量(Q o S);HWM P-E T X路由协议[33]㊁Q-HWM P[34]和HWM P+协议[35]分别通过引入期望传输数量(E x p e c t e d T r a n s m i s s i o n c o u n t,E T X)㊁时延特性㊁链路质量和吞吐量等路由判据,降低了时延和丢包率;E l-t a h i r等[36]将链路消亡时间(L i n k E x p i r a t i o n T i m e,L E T)引入路由判据,利用L E T决定链路的稳定性,提高了移动性适应能力㊂此外,能量有效的HWM P(e n e r g y-e f f i c i e n t HWM P, e HWM P)协议[37]通过将节点剩余能量作为路由判据,提高了能量有效性㊂上述改进协议能够在一定程度上提高Q o S㊁时延㊁吞吐量㊁能量有效性等性能,但与传统的协议一样,它们都缺乏有效的拥塞控制策略,也没有充分考虑负载均衡的问题,当网络中有大量数据需传输时,将产生网络根节点流量过载的情况㊂3.2 B A T M A N-a d v路由协议及其改进技术B A T MA N-a d v协议是一种新的引入了综合人工智能(c o l l e c t i v e i n t e l l i g e n c e)思想的路由协议㊂基本思路是通过整个网络的所有节点共同维护网络拓扑信息,来达到更好地对抗由于网络波动而引起的边界效应并补偿不稳定性的目的,非常适用于传输质量不稳定的W i F i-M e s h网络[38]㊂国外很多学者对这种路由算法的实用性进行了测试[39-41],并与一些开源的路由协议进行了对比分析,证明该算法在丢包率㊁延迟㊁网络的吞吐量等方面具有很好的表现,与HWM P相比,具有更优的稳定性[42-43]㊂但这种路由协议还存在网络拓扑变化后,收敛速度慢的问题[44-45],可以从以下几个方面进行改进:1)探测包(O r i g i n a t o rM e s s a g e,O GM)发送间隔优化㊂协议默认设置的O GM发送间隔是1s,缩小发送间隔能够加快路径发现的时间,但是会降低2个终端的带宽㊂研究发现,当O GM 发送间隔设置为0.2s[46]时,能够取得收敛速度和带宽的平衡㊂2)滑动窗口机制优化㊂研究发现,当节点刚开始工作时,由于尚未收到任何本地邻居节点传来的O GM报文,本节点记录的最新序列号尚未完成赋值初始化工作,因此当收到O GM报文时,计算收到的O GM报文与节点记录的最新序列号的差值将产生超出窗口范围的错误,从而引发滑动窗口复位,进入保护周期,丢弃O GM报文,路由收敛速度降低㊂文献[47]在代码中增加了一个负责检查节点的本地邻居列表的开关,当本地邻居列表为空时,关闭窗口保护机制;当存在新的邻居时,再打开窗口保护,避免了源节点列表更新的延迟,提高了路由的收敛速度㊂3)链路传输质量(T r a n s m i tQ u a l i t y,T Q)计算方式优化㊂通过改进本地T Q㊁传输T Q和全局T Q的计算方法[48-49],可实现对路径变化的快速感知,从而达到快速切换㊁提升路由收敛速度的目的㊂此外,改进信号强度㊁改进消息处理机制也可以对路由收敛速度进行优化㊂4 W i F i-M e s h系统关键技术展望W i F i-M e s h系统性能的提升需要从物理层技术㊁MA C层技术和网络路由技术等多方面进行优化和改进㊂由上述分析可以看出:1)M I MO和O F D M技术将得到更快发展㊂除了解决C S I的有效获取问题,为了进一步提升M I MO性能,在有效解决因收发天线数量增加所带来的收发机波束矩阵计算复杂度问题,以及因天线数量和移动用户终端节点增加所带来的能量消耗问题的前提下[50-51],综合考虑更多天线带来89装 备 学 院 学 报 2016年的体积㊁重量增加问题,将贝尔实验室科学家M a-r z e t t a提出的大规模M I MO(M a s s i v e-M I MO)[52]技术引入系统具有很大的可行性㊂解决O F D M 的P A P R问题需要考虑应用环境特点:针对能量有效性要求高而数据带宽要求相对低的军事战术通信场合,利用信号畸变技术降低P A P R具有较大的可行性和合理性;随着处理器运算能力的大幅度提升,运用联合类算法将是降低P A P R㊁保证系统性能的可靠手段㊂2)C S MA和T D MA各有优势㊂在负载较小㊁传输距离较近㊁实时性要求不高的情况下,可通过优化C S MA满足W i F i-M e s h无线自组网系统的使用需求,并保证系统的通用性和可扩展性;在负载较多㊁传输距离较远㊁实时性要求高的场合,引入T D MA的性能优势更加明显,但要考虑实现的复杂度和同步精度问题;对于节点数不多的多跳网络,C S MA/T D MA的组合方式在一定程度上能够取得实现复杂度和系统性能的平衡㊂3)二层路由协议是未来系统应用的首选㊂从目前情况看,尽管HWM P是802.11s的标准路由协议,人们对其进行了广泛的研究,但其实际使用性能较弱㊁稳定性不高,距离实际部署及应用差距较大;而对于目前已发布2015.1r e l e a s e版的开源B A T MA N-a d v协议,得益于其轻量化㊁跨平台的设计思想和基于统计方法的路由查找策略,在对收敛速度进行根本性优化的前提下,其发展空间更加广阔,是非常值得关注的一种实用路由协议㊂5 结束语随着信息科技的不断进步,包括蜂窝通信系统㊁宽带无线接入系统在内的多种无线网络发展迅猛,上述关键技术性能的提高,将使基于802.11的W i F i-M e s h无线自组网系统继续得以长足发展㊂未来,通过引入新技术,还将使W i F i-M e s h 无线自组网系统性能得到更大程度的提高㊂如,引入协作通信技术,通过为系统提供 用户合作分集”[53]实现无线资源(信道容量优化和频谱共享)的高效管理;引入认知无线电技术,通过使系统快速识别和调整可用频率而大幅度提升频谱利用效率;引入内容缓存技术[54-55],通过动态缓存重要数据有效降低因链路异常中断,而导致消息丢失的概率;引入延时容忍网络(D e l a y T o l e r a n tN e t-w o r k,D T N)技术[56],通过某种存储感知路由协议对端到端的链路变化进行预估,也可实现波动链路状态下信息传输的鲁棒性㊂需要说明的是,安全性技术也是W i F i-M e s h 无线自组网系统的关键技术之一,限于篇幅和研究方向,本文对此并未涉及㊂参考文献 (R e f e r e n c e s)[1]S AMA R D Z I J A D,MA N D A Y AM N.P i l o ta s s i s t e de s t i m a-t i o no fM I MOf a d i n g c h a n n e l r e s p o n s ea n da c h i e v a b l ed a t a r a t e s[J].I E E E T r a n s a c t i o n so nS i g n a lP r o c e s s i n g,2003,51 (11):2882-2890.[2]MA R Z E T T A TL.B l a s t t r a i n i n g:e s t i m a t i n g c h a n n e l c h a r a c-t e r i s t i c s f o r h i g h-c a p a c i t y s p a c e-t i m ew i r e l e s s[C]//37t hA n-n u a l A l l e r t o n C o n f e r e n c eo n C o mm u n i c a t i o n,C o n t r o la n dC o m p u t i n g.M o n t i c e l l o:I E E E,1999:958-966.[3]B A L T E R S E EJ,F O C K G,M E Y R H.A c h i e v a b l e r a t e o fM I-MOc h a n n e l sw i t hd a t a-a i d e d c h a n n e l e s t i m a t i o na n d p e r f e c t i n t e r l e a v i n g[J].I E E EJ o u r n a l o nS e l e c t e dA r e a s i nC o mm u-n i c a t i o n,2001,19(12):2358-2368.[4]冀保嶂,宋康,黄永明,等.基于I E E E802.11a c的多用户M I MO传输方案的优化设计及其性能分析[J].通信学报. 2013,34(5):96-106.[5]R A HMA T A L L A H Y,MO H A N S.P e a k-t o-a v e r a g e p o w e r r a t i o r e d u c t i o ni n O F D M s y s t e m s:as u r v e y a n dt a x o n o m y [J].I E E E C o mm u n i c a t i o n sS u r v e y s&T u t o r i a l s,2013,15 (4):1567-1592.[6]Y A N GL,S O O K,L ISQ,e t a l.P A P Rr e d u c t i o nu s i n g l o wc o m p l e x i t y P T S t o c o n s t r u c to fO F D M s i g n a l sw i t h o u t s ide i nf o r m a t i o n[J].I E E E T r a n s a c t i o n so nB r o a d c a s t i n g,2011, 57(2):284-290.[7]J A B E R A Y,L A T I F FL A,A HMA D N,e t a l.J o i n t c l i p p i n ga n da m p l i f y i n g t e c h n i q u e sf o r P A P R r e d u c t i o ni n O F D M s y s t e m s[C]//1s tI n t e r n a t i o n a l C o n f e r e n c e o n T e l e m a t i c s a n dF u t u r eG e n e r a t i o nN e t w o r k s(T A F G E N).K u a l aL u m-p u r:I E E E,2015:54-58.[8]车轩,胡铁森,张敏.一种O F D M系统P A P R抑制技术联合算法研究[J].无线电通信技术,2015,41(2):29-31.[9]N A E I N Y M F,MA R V A S T IF.S e l e c t e d m a p p i n g a l g o r i t h mf o rP A P Rr e d u c t i o no fs p a c e-f r e q u e n c y c o d e d O F D M s y s-t e m sw i t h o u t s i d e i n f o r m a t i o n[J].I E E ET r a n s o nV e h i c u l a r T e c h n o l og y,2011,60(3):1211-1216.[10]纪金伟,任光亮,张会宁.一种降低M I MO-O F D M系统P A-P R的半盲S L M方法[J].西安电子科技大学学报,2015,42(5):16-22.[11]李恩玉,杨士中,吴皓威,等.一种基于P T S技术降低O F D M系统峰均比的改进算法[J].电子与信息学报,2011, 33(10):2511-2515.[12]何向东,杨霖.O F D M系统中基于时域信号部分循环移位的低复杂度P T S算法[J].系统工程与电子技术,2015,37(9):2135-2140.[13]程思敏.基于编码和概率技术联合降低O F D M系统峰均比的研究[D].哈尔滨:哈尔滨工业大学,2013:33-43. [14]刘委婉.基于I E E E802.11p协议的退避算法研究[D].南99第2期 刘作学,等:W i F i-M e s h无线自组网系统关键技术综述京:南京邮电大学,2014:17-18.[15]WA N GC,L I B,L I L.An e wc o l l i s i o n r e s o l u t i o nm e c h a n i s mt o e n h a n c e t h e p e r f o r m a n c e o f I E E E802.11D C F[J].I E E E T r a n s a c t i o n s o n V e h i c u l a r T e c h n o l o g y,2004,53(4): 1235-1246.[16]T O L E D O A L,V E R C A U T E R E N T,WA N G X.A d a p t i v eo p t i m i z a t i o no f I E E E802.11D C Fb a s e do nB a y e s i a ne s t i-m a t i o no ft h en u m b e ro fc o m p e t i n g t e r m i n a l s[J].I E E E T r a n s a c t i o n s o nM o b i l eC o m p u t i n g,2006,5(9):1283-1296.[17]B A R C E L OJ,B E L L A L T A B,S F A I R O P O U L O U A,e t a l.C S MA w i t h e n h a n c e d c o l l i s i o n a v o i d a n c e:a p e r f o r m a n c e a s-s e s s m e n t[C]//I E E E V e h i c u l a r T e c h n o l o g y C o n f e r e n c e.B a r c e l o n a:I E E E,2009:1-5.[18]H E Y,Y U A N R,S U N J,e ta l.S e m i-r a n d o m b a c k o f f:t o-w a r d sr e s o u r c er e s e r v a t i o nf o rc h a n n e la c c e s si n w i r e l e s s L A N s[C]//17t hI E E EI n t e r n a t i o n a lC o n f e r e n c eo n N e t-w o r kP r o t o c o l.P r i n c e t o n:I E E E,2009:21-30.[19]HU IK,L IT,G U O D,e ta l.E x p l o i t i n gp e e r-t o-p e e rs t a t ee x c h a n g ef o r d i s t r i b u t e dm e d i u ma c c e s s c o n t r o l[C]//I E E EI n t e r n a t i o n a l S y m p o s i u m o nI n f o r m a t i o n T h e o r y P r o c e e d-i n g s(I S I T).P e t e r s b u r g:I E E E,2011:2368-2372.[20]S A N A B R I A-R U S S O L,F A R I D IA,B E L L A L T A B,e t a l.F u t u r e e v o l u t i o no fC S MA p r o t o c o l s f o r t h e I E E E802.11s t a n d a r d[C]//I E E E I n t e r n a t i o n a l C o n f e r e n c e o nC o mm u n i-c a t i o n s.B ud a pe s t:I E E E,2013:1274-1279.[21]MO R A E S R,V A S Q U E S F,P O R T U G A L P.A T D MA-b a s e dm ec h a n i s mt o e n f o r c e r e a l-t i m e b e h a v i o r i nW i F i n e t-w o r k s f a c t o r y c o mm u n i c a t i o ns y s t e m s[C]//I E E EI n t e r n a-t i o n a lW o r k s h o p o nF a c t o r y C o mm u n i c a t i o nS y s t e m s.D r e s-d e n:I E E E,2008:109-112.[22]R A K H E J A N,B H A T I A P.R O S A L N e t:as p e c t r u ma w a r eT D MA M e s hn e t w o r kf o r r u r a l i n t e r n e t c o n n e c t i v i t y c o m-m u n i c a t i o n s[C]//20t hN a t i o n a l C o n f e r e n c e o nC o mm u n i c a-t i o n s.K a n p u r:I E E E,2014:1-6.[23]S A F R O N O V R,B A K H T I N A.D e s i g n i n g r o a d s i d e M e s hn e t w o r kw i t h T D MA[C]//6t hI n t e r n a t i o n a lC o n g r e s so n U l t r a M o d e r n T e l e c o mm u n i c a t i o n sa n d C o n t r o lS y s t e m sa n d W o r k s h o p s(I C UM T).P e t e r sb u r g:I E E E,2014:131-135.[24]A HM E DSS,HU S S A I NI,A HM E D N.D r i v e r l e v e l i m p l e-m e n t a t i o no fT D MA MA Ci nl o n g d i s t a n c e W i F i[C]//I n-t e r n a t i o n a lC o n f e r e n c eo n C o m p u t a t i o n a lI n t e l l i g e n c ea n d N e t w o r k s(C I N E).B h u b a n e s w a r:I E E E,2015:80-85.[25]D J U K I C P,MO H A P A T R A P.S o f t-T D MA C:as o f t w a r e-b a s e d802.11o v e r l a y T D MA MA C w i t h m ic r o s e c o n ds y n-c h r o n i z a t i o n[J].I E E E T r a n s a c t i o n s o n M o b i l eC o m p u t i n g,2012,11(3):478-491.[26]S E V A N IV,R AMA N B,J O S H IP.I m p l e m e n t a t i o n-b a s e de v a l u a t i o nof a f u l l-f l e dg e dm u l t ih o p T D MA-MA C f o rWi F iM e s hn e t w o r k s[J].I E E E T r a n s a c t i o n so n M o b i l eC o m p u-t i n g,2014,13(2):392-406.[27]S A Y A D IA,W E H B IB,L A O U I T IA.O n es h o ts l o tT D-MA-b a s e dr e s e r v a t i o n MA C p r o t o c o lf o r w i r e l e s sa d h o cn e t w o r k s[C].//I E E E73r d V e h i c u l a rT e c h n o l o g y C o n f e r-e n c e(V T CS p r i n g).Y o k o h a m a,I E E E,2011:1-5.[28]T U Y S U Z M F,MA N T A R H A.A nu n i n t e r r u p t e dc o l l i-s i o n-f r e e c h a n n e l a c c e s s s c h e m e o v e r I E E E802.11W L A N s[C]//I E E E W i r e l e s s C o mm u n i c a t i o n s a n d N e t w o r k i n gC o n f e r e n c e(W C N C).S h a n g h a i:I E E E,2013:386-391.[29]P O J D AJ,WO L F FA,S B E I T IM,e t a l.P e r f o r m a n c e a n a l y-s i s o fM e s hr o u t i n gp r o t o c o l s f o rU A Vs w a r m i n g a p p l i c a-t i o n s[C]//20118t hI n t e r n a t i o n a lS y m p o s i u m o n W i r e l e s sC o mm u n i c a t i o nS y s t e m s(I S W C S).A a c h e n:I E E E,2011:317-321.[30]L A N/MA N S t a n d a r d sC o mm i t t e eo f t h eI E E E C o m p u t e rS o c i e t y.I E E E802.11s(t m)/D2.0.d r a f t s t a n d a r d f o r i n f o r-m a t i o n t e c h n o l o g y-t e l e c o mm u n i c a t i o n s a n d i n f o r m a t i o ne x-c h a n g eb e t w e e ns y s t e m s-l o c a la nd me t r o p o l i t a na r e an e t-w o r k s-s p e c i f i cr e q u i r e m e n t s-p a r t11:w i r e1e s sL A N m e d i-u ma c c e s s c o n t r o l(MA C)a n d p h y s i c a l1a y e r(P H Y)s p e c i-f i c a t i o n s a m e n d m e n t:M e s hn e t w o r k s[Z].N e w Y o r k:T h ei n s t i t u t e o f E l e c t r i c a l a n dE l e c t r o n i c s E n g i n e e r s,I n c.,2008.[31]N E UMA N N A,A I C H E L E C,L I N D N E R M,e ta l.B e t t e ra p p r o a c h t om ob i l eA d-h oc n e t w o r k i n g[E B/O L].[2013-10-01].h t t p://d a t a t r a c k e r.i e t f.o r g/d o c/d r a f t w u n d e r l i c h-o p e n M e s h-m a n e t-r o u t i n g/.[32]K I M BC,C H O IH S,M I NS H,e t a l.R-HWM P:r e s e r v a-t i o n-b a s e d HWM Ps u p p o r t i n g e n d-t o-e n d Q o Si n w i r e l e s s M e s hN e t w o r k s[C]//2013I n t e r n a t i o n a lC o n f e r e n c eo n I n-f o r m a t i o n N e t w o r k i n g(I C O I N).B a ng k o k:I E E E,2013:385-390.[33]N A R A G U N DJG,B A N A K A R R M.A n a l y s i so fHWM P-E T Xr o u t i n g i n w i r e l e s s M e s hn e t w o r k sa d v a n c e dc o m p u-t i n g[C]//20132n d I n t e r n a t i o n a l C o n f e r e n c e o nN e t w o r k i n ga n dS e c u r i t y(A D C O N S).M a n g a l o r e:I E E E,2013:208-213.[34]B E N-O T HMA N J,MO K D A D L,C H E I K H M O.Q-HWM P:i m p r o v i n g e n d-t o-e n dQ o S f o r802.11s b a s e dM e s h n e t w o r k s[C]//I E E E G l o b a lT e l e c o mm u n i c a t i o n sC o n f e r-e n c e(G L O B E C OM2010).M i a m i:I E E E,2010:1-6.[35]Y A N GL H,C HU N GS H.HWM P+:a n i m p r o v e dt r a f f i cl o a d s c h e m e f o rw i r e l e s s M e s hn e t w o r k s[C]//2012I E E E 14t hI n t e r n a t i o n a lC o n f e r e n c eo n H i g hP e r f o r m a n c eC o m-p u t i n g a n dC o mm u n i c a t i o n&2012I E E E9t h I n t e r n a t i o n a lC o n f e r e n c eo n E m b e d d e dS o f t w a r ea n dS y s t e m s(H P C C-I C E S S).L i v e r p o o l:I E E E,2012:722-727.[36]E L T A H I R A A,S A E E D R A,A L AW IM A.A ne n h a n c e dh y b r i d w i r e l e s s M e s h p r o t o c o l(E-HWM P)p r o t o c o lf o rm u l t i h o p v e h i c u l a r c o mm u n i c a t i o n s[C]//2013I n t e r n a t i o n a lC o n f e r e n c e o nC o m p u t i n g,E l e c t r i c a l a n dE l e c t r o n i c sE n g i-n e e r i n g(I C C E E E).K h a r t o u m:I E E E,2013:1-8. [37]M I N G A N N,Y A U KLA.A n e n e r g y-e f f i c i e n t h y b r i dw i r e-l e s sM e s hP r o t o c o l(HWM P)f o r I E E E802.11sM e s hn e t-w o r k s[C]//I E E EI n t e r n a t i o n a l C o n f e r e n c e o nC o n t r o l S y s-t e m,C o m p u t i n g a n d E n g i n e e r i n g(I C C S C E).M i n d e b:I E E E,2013:17-21.[38]刘作学,代健美,盛懿君,等.一种轻量化无线M e s h网络路001装 备 学 院 学 报 2016年由协议的设计与实现[J].装备学院学报.2014,25(2): 65-70.[39]B A R O L L IL,I K E D A M.P e r f o r m a n c ea n a l y s i so f O L S Ra n dB A T MA N p r o t o c o l s c o n s i d e r i n g l i n k q u a l i t yp a r a m e t e r[C]//P r o c e e d i n g s o f I n t e r n a t i o n a l C o n f e r e n c e o nA d v a n c e dI n f o r m a t i o nN e t w o r k i n g a n dA p p l i c a t i o n s.B r a d f o r d:I E E E,2009:307-314.[40]C H I S S U N G OE,B L A K EE,L EH.I n v e s t i g a t i o n i n t oB A T-MA N-a d v p r o t o c o l p e r f o r m a n c e i na ni n d o o r M e s h p o t a t o t e s t b e d[C]//P r o c e e d i n g s o fC o n f e r e n c eo nI n t e l l i g e n tN e t-w o r k i n g a n dC o l l a b o r a t i v eS y s t e m s.F u k u o k a:I E E E,2011: 8-13.[41]A N A S N M,H A S H I M F K.P e r f o r m a n c ea n a l y s i so fo u t-d o o rw i re l e s s M e s hn e t w o r ku s i n g B.A.T.M.A.N.a d-v a n c e d[C]//16t hI E E E/A C I SI n t e r n a t i o n a lC o n f e r e n c eo n S o f t w a r e E n g i n e e r i n g,A r t i f i c i a lI n t e l l i g e n c e,N e t w o r k i n ga n dP a r a l l e l/D i s t r ib u t e dC o m p u t i n g(S N P D).T a k a m a t s u:I E E E,2015:1-4.[42]N X UMA L O S,N T L A T L A P A N.P e r f o r m a n c ee v a l u a t i o no f r o u t i n g m e t r i c s f o r c o mm u n i t y w i r e l e s s M e s hn e t w o r k s[C]//17t h I n t e r n a t i o n a l C o n f e r e n c e o n I n t e l l i g e n t S e n s o r s,S e n s o r sN e t w o r k sa n dI n f o r m a t i o nP r o c e s s i n g(I S S N I P).A d e l a i d e:I E E E,2011:556-561.[43]S E I T H E R D,K O N I G A,H O L L I C k M.R o u t i n gp e r f o r m-a n c eo fw i r e l e s s M e s hn e t w o r k s:a p r a c t i c a le v a l u a t i o no fB A T MA Na d v a n c e d[C]//I E E E36t hC o n f e r e n c eo nL o c a lC o m p u t e rN e t w o r k s.B o n n:I E E E,2011:897-904.[44]G A R R O P P O R G,G I O R D A N O S,T A V A N T IL.E x p e r i-m e n t a l e v a l u a t i o no f t w oo p e n s o u r c e s o l u t i o n s f o rw i r e l e s s M e s hr o u t i n g a tl a y e rt w o[C]//5t hI E E E I n t e r n a t i o n a l S y m p o s i u m o n W i r e l e s s P e r v a s i v e C o m p u t i n g.M o d e n a:I E E E,2010:232-237.[45]V A D I M G,O L E G G,L E O N I D K,e ta l.A ne x p e r i m e n t a lc o m p a r i s o no fd y n a m i cr o u t i n g p r o t o c o l si n m o b i le n e t-w o r k s[C]//I E E E11t hI n t e r n a t i o n a lC o n f e r e n c eo nI n f o r-m a t i c s i nC o n t r o l,A u t o m a t i o n a n dR o b o t i c s(I C I N C O).V i-e n n a:I E E E,2014(2):775-782.[46]陈宇.基于B A TMA N-a d v的铁路干线无线M e s h网络切换机制研究[D].长沙:中南大学,2014:43-52. [47]申爽,李绍文,罗军.无线M e s h网络B.A.T.M.A.N.a d v路由协议的分析与优化[J].微计算机信息,2012(10): 327-329.[48]高健.基于无线M e s h网的B.A.T.M.A.N.路由协议的研究与优化[D].武汉:武汉理工大学2013:22-51.[49]张天宇.一种基于b a t m a n的M e s h网络路由协议改进方法[D].大连:大连理工大学,2014:23-34.[50]J I A N GZ,MO L I S C H AF,C A I R EG,e t a l.O n t h e a c h i e v a-b l e r a t e s o f F D Dm a s s i v eM I MOs y s t e m sw i t h s p a t i a lc h a n-n e l c o r r e l a t i o n[C]//2014I E E E/C I CI n t e r n a t i o n a lC o n f e r-e n c eo n C o mm u n i c a t i o n si n C h i n a(I C C C).S h e n z h e n:I E E E,2014:276-280.[51]K AMMO U N A,MÜL L E R A,B J R N S O N E,e ta l.L i n e a rp r e c o d i n g b a s e do n p o l y n o m i a l e x p a n s i o n:l a r g e-s c a l em u l t i-c e l lM I MOs y s t e m s[J].I E E EJ o u r n a l o nS e l e c t e dT o p i c s i nS i g n a l P r o c e s s i n g,2014,8(5):861-875.[52]B J O R N S O N E,K O U N T O U R I S M,D E B B A H M.M a s s i v eM I MOa n d s m a l l c e l l s:i m p r o v i n g e n e r g y e f f i c i e n c y b y o p t i-m a l s o f t-c e l l c o o r d i n a t i o n[C]//20t hI n t e r n a t i o n a lC o n f e r-e n c eo n T e l e c o mm u n i c a t i o n s(I C T).C a s a b l a n c a:I E E E,2013:1-5.[53]F E T TW E I SG,A L AMO U T IS.5G:p e r s o n a lm o b i l e i n t e r-n e t b e y o n dw h a t c e l l u l a rd i dt ot e l e p h o n y[J].I E E E C o m-m u n i c a t i o n M a g a z i n e,2014,52(2):140-145. [54]张国强,李杨,林涛,等.信息中心网络中的内置缓存技术研究[J],软件学报,2014,25(1):154-175.[55]C A R O F I G L I O G,MO R A B I T O G,MU S C A R I E L L O L,e ta l.F r o mc o n t e n td e l i v e r y t o d a y t o i n f o r m a t i o nc e n t r i cn e t-w o r k i n g[J].C o m p u t e r N e t w o r k s,2013,57(16): 3116-3127.[56]MA U R I C EJ,C H A D I M,F AWA Z F.D i s r u p t i o n-t o l e r a n tn e t w o r k i n g:a c o m p r e h e n s i v e s u r v e y o n r e c e n t d e v e l o p-m e n t s a n d p e r s i s t i n g c h a l l e n g e s[J].I E E E C o mm u n i c a t i o n s S u r v e y s&T u t o r i a l s,2012,14(2):2-15.(编辑:李江涛)101第2期 刘作学,等:W i F i-M e s h无线自组网系统关键技术综述。
0 引言随着无线通信技术的不断发展,通信模块的集成处理能力也得到很大提升,使通信节点的成本不断下降。
因而在实际的应用中,如何通过仅部署低成本的通信节点就可以实现特定场景要求下的无线通信,并且能够满足信息采集、信息回传等需求,已成为我们首先考虑的问题。
对于电网信息传输而言,其具有以下几个特点[1]:一是节点位置相对固定;二是通信信道基本为单径信道,多普勒效应不明显;三是节点数量庞大且密度较高;四是数据量小,数量庞大,存在多用户并发的状况。
除上述特点以外,很多的电力网络中存在多用户并发的情形,其并发量可能达到几百甚至上千,因而就要求通信系统必须具备在短时间内处理多用户并发情况的能力。
同时,考虑到电网的部署要求和其自身情况的特殊性,与移动通信网络相类似的网络规划的方法难以在网络拓扑的提前部署中采用,因此,在实际应用中,就需要另外设计相应的无线自组网通信协议。
在现有的无线自组网技术标准中,802.15.4g是一种较为流行的通信协议,我们首先对802.15.4g进行介绍,然后对无线自组网的物理层设计与路由技术进行总体描述,最后给出当前具有实用化特征的自组网结构并对比其特点。
1 政策法规及监管为适应无线电技术发展趋势,深入贯彻“放管服”精神,落实《中华人民共和国无线电管理条例》,切实减轻企业负担,2019年11月19日,工业和信息化部发布了2019年第52号公告,对微功率短距离无线电发射设备(以下简称微功率设备)生产、进口、销售和使用进行了规范。
该公告充分考虑频率使用现状、系统间干扰共存要求、应用发展需要等因素,在广泛征求了各行业、各部门的意见,并公开向社会征求意见后发布。
公告对原有微功率设备目录进行了调整,并对微功率设备的频率、台站和设备管理要求,干扰处理原则,使用要求和技术指标等方面内容进行了规定。
802.15.4g技术的应用应符合国家无线电管理的相关规定。
2 802.15.4g概述802.15.4g[3]-[9]标准定义了物理层的用于数据传输的无线物理信道以及MAC层间的接口,它提供了PHY层数据服务和PHY层管理服务[2]两种功能服务。
无线Mesh网络关键技术研究随着无线通信技术的不断发展,无线Mesh网络也越来越被广泛关注。
无线Mesh网络可以通过多个节点之间的自组织和协作来实现数据传输,这种网络结构具有很好的容错性和可扩展性,被广泛应用于各个领域。
但是,无线Mesh网络的实现还存在一些关键技术难题,本文将从几个方面来介绍相关研究。
节点发现技术无线Mesh网络中,节点的位置不被事先确定,需要进行节点发现。
节点发现技术是整个Mesh网络中至关重要的技术之一。
节点发现技术可以通过广播查询的方式进行,但是引入了大量的广播,对网络性能产生较大的影响。
近年来,研究人员提出了很多新的节点发现技术,例如基于位置信息的节点发现技术、基于可信度的节点发现技术等。
这些方法可以有效减少广播消息的数量,降低对网络性能的影响。
路由协议优化在Mesh网络中,路由协议优化也是非常重要的技术。
由于无线网络的特殊性质,路由协议的效率和可靠性都需要得到充分保证。
目前,有很多路由协议被应用于Mesh网络中。
例如基于距离向量的协议、基于链路状态的协议、基于采样的协议等。
不同的协议具有不同的优点和缺点,需要根据具体应用选择合适的协议。
在路由协议中,也需要解决一些问题,例如路由环路问题、路由黑洞问题等。
这些问题的解决可以通过协议优化的方式来实现。
网络拓展技术在一些特殊的场景下,Mesh网络的节点数量可能需要不断扩展,这就需要进行网络拓展。
网络拓展技术也是Mesh网络中非常重要的技术之一。
网络拓展技术可以通过节点排列和网络纵深方向上的扩展来实现。
在节点排列方面,可以采用网状排列、环形排列、星形排列等不同的方式。
在网络纵深方面,可以通过引入中继节点、增加网络协议等方式来实现网络的拓展。
在进行网络拓展时,也需要考虑安全性等因素。
无线传输技术Mesh网络中,无线传输技术同样非常重要。
无线传输的可靠性和速率对整个Mesh网络的性能都有很大的影响。
传统的无线传输技术,往往采用单个天线进行数据传输。
无线Mesh网络的概念及关键技术作者:电信快报祁超摘要无线Mesh网络是一种新型的无线宽带接入网络,它融合了无线局域网和Adhoc网络的优势,具有自组网、自修复、多跳级联、节点自我管理等智能优势以及移动宽带、无线定位等特点,成为无线宽带接入的一种有效手段。
文章简要介绍无线Mesh网络的概念和系统特性,详细阐述摩托罗拉Mesh技术的系统结构、频率配置和关键技术等。
0、引言无线Mesh网络(WMN)技术曾是一项军事技术,战场上的移动网络需要很高的数据速率、很低的被检出概率和防止人为干扰的能力,而Mesh技术就具备了这些能力。
随着人们对802.11a、802.11b和802.11g 等局域网(LAN)技术了解的深入,Mesh技术才逐步成为企业界和消费者瞩目的焦点,并沿着不同的分支演进。
目前,业界讨论最多的“无线网状网”技术是一种灵活的广域无线局域网(WLAN)解决方案,它突破了Wi-Fi技术对每个接入点的有线连接要求,将多个接入点通过无线方式连接在一起,无需进行布线就可形成一个无线网络或“热区”,从而在室内和室外提供宽广的无线覆盖。
目前,许多知名厂商(如摩托罗拉、思科、Strix、Tropos等)都已经有成熟产品问世,促进各个行业组织制订标准,以推进网状网技术的可操作性。
目前,基于Mesh技术的无线网络集成了健壮的安全性和全面的可管理性,可提供移动宽带和灵活的自组网通信,并拥有对局部区域可靠和安全的覆盖能力,已成为符合国际电联(ITU)公众保护及救灾(PPDR)业务要求的一项优秀解决方案。
Mesh网络不仅有助于改善城市信息化的应用环境,而且对提升城市的综合服务能力也有十分明显的作用。
1、无线Mesh网络的概念无线Mesh网络是基于IP协议的无线宽带接入技术,它融合了WLAN和Adhoc网络的优势,支持多点对多点的网状结构,具有自组网、自修复、多跳级联、节点自我管理等智能优势以及移动宽带、无线定位等特点,是一种大容量、高速率、覆盖范围广的网络,成为宽带接入的一种有效手段。
无线Mesh网的关键技术分析作者:陈彦来源:《硅谷》2014年第09期摘要作为一种新的无线网络技术,无线Mesh网(WMN)引入了WLAN与ad-hoc网络两者的长处,在很大程度上解决了网络资源受限与覆盖面积等方面的困境,其方便进行架设、传输率相对较高、强大的容错性能、覆盖区域相对较好等长处,使其为业界人士所普遍赞同的一个组网技术。
但其自身所具有的特征为业界人士开发工作也带来非常严峻的挑战。
虽然现阶段的探讨已有了非常明显的成效,然而其中依旧具有一系列问题,其中涉及到每一层协议的修改、安全性等问题。
关键词无线Mesh网;网络资源;组网技术;严峻挑战中图分类号:TP393 文献标识码:A 文章编号:1671-7597(2014)09-0045-01作为一种新的无线网络技术,无线Mesh网(WMN)为有效满足特定的商业需求产生的,其中引入了WLAN与ad-hoc网络两者的长处,在很大程度上解决了网络资源受限与覆盖面积等方面的困境,为广大用户提供了与无线“最后一英里”相似的网络接入平台。
其应用大体上涉及到战场通信、公共紧急通信、WMAN等诸多领域。
其具有诸多方面的优点,例如非常方便进行架设、传输率相对较高、强大的容错性能、覆盖区域相对较好等,恰恰是由于其所具有的这一系列长处,使其成为业界人士所普遍赞同的一个组网技术。
1 无线Mesh网络的特点对于无线Mesh网络来说,其和传统的组网技术以及方法具有一定的差异,它属于动态的自配置、自组织网络。
其内部节点自动实现网络连接的建立。
在很大程度上方便了终端用户,具体来说,该种技术手段在前期投入经费有所减少,网络覆盖区域与管理等方面都得到很大的改进。
另一方面,因其能够与诸多类型的无线技术兼容,正是由于这个原因,在很大程度上提高了网络的带宽。
同时,用户能够利用诸多类型的网络方法与WMN进行连接,非常便捷。
2 无线Mesh网的关键技术其自身所具有的特征为业界人士开发工作带来非常严峻的挑战。
文章结构:1.背景2.Mesh基本原理及关键技术3.Mesh组网方案及性能分析4.Mesh产品应用摘要:本文对Mesh网络的组网技术及系统性能进行了详细分析。
首先介绍了Mesh网络的基本原理和系统结构,并对其关键技术进行了分析;然后在分析Mesh组网方案的基础上,结合产品试验结果对各方案的系统性能进行了综合评估;最后给出Mesh产品的应用建议。
关键词:无线Mesh,性能,关键技术,单频,双频组网1. 背景在无线通信网络的发展过程中,先后涌现出多种多样的无线接入技术,通过各种灵活便捷的接入手段,使用户体验到无处不在的通信网络及服务。
然而,接入网络的多样性使得异构网络的互通和融合成为构建下一代无线通信网络时必须重点考虑的问题。
此外,如何突破传统蜂窝网络结构的局限性,构建低成本的下一代无线网络也成为了关注的焦点。
Mesh组网技术以其自组织、自管理、鲁棒性等独特的性能,成为实现宽带无线接入网络连续覆盖的一种有效手段,可以灵活地应用于多种无线环境,极有可能成为构建下一代宽带移动通信网络的关键技术之一[1]。
目前,Mesh组网已逐步从概念走向产品实用化,各主流设备供应商也已纷纷推出各自的解决方案并开始商用。
本文将结合运营商的实际需求以及对各主流厂家Mesh设备的试验情况,从理论和实际两方面综合分析Mesh组网方案和关键技术性能,为Mesh技术的进一步成熟和应用提供参考。
2. Mesh基本原理及关键技术2.1 Mesh基本原理Mesh网络结构主要由Mesh AP、Root AP(根AP)及相关的认证、网管系统组成,如图1所示。
其中,Mesh AP主要负责为终端和其他Mesh AP提供接入和回传服务,与传统网络的最大差别在于Mesh AP 可以根据无线信道和干扰情况灵活选择最佳无线路由,最终通过不同的Mesh AP和有线接入点Root AP连接到因特网。
有线接入点Root AP与Mesh AP的区别在于它一端提供无线接入,另一端提供了Mesh网络最终与有线因特网连接的桥梁,实际上在一个Mesh网络中可以同时存在多个Root AP以保证与外界网络的通信流量。
无线Mesh网络的网络架构网络特点与关键技术无线Mesh网络,即无线网状网,也称为无线多跳网,它可以和多种宽带无线接入技术如802.11、802.16、802.20以及3G移动通信等技术相结合,组成一个含有多跳无线链路的无线网状网络。
这种无线网状网,可以大大增加无线系统的覆盖范围,同时可以提高无线系统的带宽容量以及通信可靠性,是一种非常有发展前途的宽带无线接入技术。
1无线Mesh网络的网络构架传统的无线接入技术中,主要采用点到点或者点到多点的拓扑结构。
这种拓扑结构中一般都存在一个中心节点,例如移动通信系统中的基站、802.11WLAN 中的AP等等。
中心节点一方面与各个无线终端通过单跳无线链路相连,控制各无线终端对无线网络的访问就;另一方面,中心节点又通过有线链路与有线骨干网相连,提供到骨干网的连接。
而在无线Mesh网络中,采用网状Mesh拓扑结构,也可以说是一种多点到多点网络拓扑结构。
在这种Mesh网络结构中,各网络节点通过相临其他网络节点,以无线多跳方式相连。
无线Mesh网络中个站点间通过多跳无线连接形成网状拓扑,按站点的功能可分为Mesh路由器、Mesh终端和Mesh网关三类。
Mesh路由器(Mesh Router)是具有路由功能的Mesh站点。
它具有一个或多个无线接收发器,构成无线Mesh网络的主干网络,负责终端的接入和数据的转发。
Mesh终端(Mesh Client)是用户直接使用的设备,通过Mesh路由器访问Internet。
某些Mesh终端也具备路由功能,在特殊情况下能够为其他不能直接接入无线Mesh网络的终端提供路由转发。
Mesh终端设备具有多样性,可以是普通PC、笔记本电脑、PDA、IP电话等。
Mesh网关(Mesh Gateway)是无线Mesh网络与有线网络的连接点,提供路由和网关功能。
无线Mesh网络中可以有多个网关,数据流可以选择通过最合适的网关来获得与有线网络之间的通信。
探讨宽带无线Mesh网络的关键技术与应用摘要: 无线Mesh网络作为一种新的网络结构,正在成为下一代无线接入研究中的一个热点。
本文结合无线Mesh 网络的特点,对其关健技术与应用进行了探讨。
关键词:无线Mesh网络特点关键技术应用一.引言无线Mesh 网络作为一种具有新型多跳拓扑结构的无线网络,其最重要的设计目标之一是在不牺牲当前信道容量的情况下,扩展网络的覆盖范围。
因此,如何考虑不同业务汇聚模式下通过空间复用来抵消中继转发对容量的损失,是配置一个无线Mesh 网络首先要解决的容量机制研究问题,也是贯穿无线Mesh关键机制研究的核心研究点。
本文结合无线Mesh网络的特点,对其关健技术与应用进行了探讨。
二.Mesh网络的特点与传统的WLAN相比,无线Mesh网络具有几个无可比拟的特点:(1)快速部署和易于安装。
安装Mesh节点非常简单,将设备从包装盒里取出来,接上电源就行了。
用户可以很容易增加新的节点来扩大无线网络的覆盖范围和网络容量。
Mesh的设计目标就是将有线设备和有线AP的数量降至最低,因此大大降低了总拥有成本和安装时间,仅这一点带来的成本节省就是非常可观的。
无线Mesh网络的配置和其他网管功能与传统的WLAN相同,用户使用WLAN的经验可以很容易应用到Mesh网络上。
(2)非视距传输(NLOS)。
利用无线Mesh技术可以很容易实现NLOS配置,因此在室外和公共场所有着广泛的应用前景。
与发射台有直接视距的用户先接收无线信号,然后再将接收到的信号转发给非直接视距的用户。
按照这种方式,信号能够自动选择最佳路径不断从一个用户跳转到另一个用户,并最终到达无直接视距的目标用户。
这样,具有直接视距的用户实际上为没有直接视距的邻近用户提供了无线宽带访问功能。
无线Mesh网络能够非视距传输的特性大大扩展了无线宽带的应用领域和覆盖范围。
(3)健壮性。
实现网络健壮性通常的方法是使用多路由器来传输数据。
如果某个路由器发生故障,信息由其他路由器通过备用路径传送。
题目:无线Mesh网络关键技术分析姓名:学院:信息科学与技术学院系:通信工程系专业:年级:2011级学号:2012年6月30日无线Mesh网络关键技术分析摘要随着计算机和通信技术的发展,无线广域网、无线城域网、无线局域网、卫星通信网、蓝牙网络等多种无线网络系统正逐步代替传统有线网络成为互联网接入的最后一跳。
而作为“最后一公里”的无线Mesh网络正在备受科学家和工程师的关注。
无线Mesh网络又称为无线网状网或无线网格网,它融合了WLAN和Ad Hoc网络的优势,是一种大容量、高速率、覆盖范围广的网络[1]。
无线Mesh 网络技术已经成为下一代无线网络下不可或缺的技术,它是依赖于已有的基础设施布置大规模无线网络的重要解决方案,它使局域网可以快速、简单的扩展到一个广域网中。
在家庭宽带网、企业网、域域网、楼宇自动化以及智能交通系统中都有广泛的应用前景并成为下一代无线网络的研究热点。
关键词:无线Mesh网络多信道跨层接入1.无线Mesh网络概况1.1 无线Mesh网络概念无线Mesh网络(简称WMN、无线网状网、无线多条网或无线网格网)是一种多跳、具有自组织和自愈等特点的新型宽带无线网络,也是一种高容量、高速率的分布式网络。
无线Mesh网络不同于传统的无线网络,它可以看成是WLAN(单跳)和移动Ad Hoc网络(多跳)的融合,且发挥了两者的优势。
无线Mesh网络作为可以解决“最后一公里”网络接入瓶颈问题的方案,已被写入了IEEE 802.16(WiMax)无线宽带接入网络标准中,目前也纳入IEEEE 802.15Mesh[1]。
从技术特点来看,WMN将成为未来无线域域网(WMAN)中核心网的理想组网方式,它也是迄今为止唯一一种建设商用移动Ad Hoc网络的可行技术。
传统的无线网络必须首先访问集中的接入点才能进行无线连接。
这样,即使两个802.11b的节点互相都在彼此的通信范围内,它们也必须通过接入点才能进行通信。
WiFi-Mesh 无线自组网系统关键技术综述
刘作学;代健美
【期刊名称】《装备学院学报》
【年(卷),期】2016(027)002
【摘要】WiFi-Mesh 无线自组网系统是基于802.11协议和无线路由协议实现的一类自组织网络系统的统称。
按照分层的方法对系统的多天线技术、多载波调制技术、媒体接入控制机制和路由算法等关键技术进行了分析和讨论,对多天线条件下信道状态信息的获取技术、正交频分复用条件下的降低峰均比技术、载波侦听多址接入/冲突避免和时分多址的改进机制,以及混合无线 Mesh 协议和最佳移动网络路由协议的研究现状、难点和未来改进方向进行了重点阐述,对可能用于 WiFi-Mesh无线自组网系统的新技术进行了展望。
【总页数】7页(P95-101)
【作者】刘作学;代健美
【作者单位】装备学院信息装备系,北京 101416;装备学院信息装备系,北京101416
【正文语种】中文
【中图分类】TP393.0
【相关文献】
1.基于无线自组网的电力系统通信关键技术研究 [J], 段云飞;杨磊;李郓
2.WiFi-Mesh网络视频监控系统的设计 [J], 李维;张卫强;闫光来
3.基于WiFi-Mesh的视频监控系统在高速公路的应用 [J], 王俊;陈启美
4.基于无线自组网的电力系统通信关键技术研究 [J], 史海滨;王浩;杨洋
5.基于LoRa的无线自组网MAC层关键技术研究 [J], 晏然
因版权原因,仅展示原文概要,查看原文内容请购买。