证明等比数列的方法
- 格式:docx
- 大小:13.09 KB
- 文档页数:2
等差等比数列的证明在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。
一、基础知识:1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差),1n na q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =⋅≠(等比) (3)前n 项和:2n S An Bn =+(等差),n n S kq k =-(等比)(4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比)(2)也可利用等差等比中项来进行证明,即n N *∀∈,均有:122n n n a a a ++=+ (等差) 212n n n a a a ++=⋅ (等比)二、典型例题:例1:已知数列{}n a 的首项1133,,521nn n a a a n N a *+==∈+. 求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在1na 这样的倒数,所以考虑递推公式两边同取倒数:113121213n nn n n na a a a a a +++=⇒=+ 即112133n n a a +=+,在考虑构造“1-”:112111111333n n n a a a +⎛⎫-=+-=- ⎪⎝⎭即数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列思路二:代入法:将所证数列视为一个整体,用n b 表示:11n nb a =-,则只需证明{}n b 是等比数列即可,那么需要关于n b 的条件(首项,递推公式),所以用n b 将n a 表示出来,并代换到n a 的递推公式中,进而可从n b 的递推公式出发,进行证明 解:令11n n b a =-,则11n n a b =+ ∴ 递推公式变为:11311311113211n n n n n b b b b b +++=⇒=+++⋅++ 1113333n n n n b b b b ++⇒+=+⇒={}n b ∴是公比为13的等比数列。
等差等比数列的证明在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。
一、基础知识:1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差),1n na q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =⋅≠(等比)(3)前n 项和:2n S An Bn =+(等差),n n S kq k =-(等比)(4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比)(2)也可利用等差等比中项来进行证明,即n N *∀∈,均有:122n n n a a a ++=+ (等差) 212n n n a a a ++=⋅ (等比)二、典型例题:例1:已知数列{}n a 的首项1133,,521nn n a a a n N a *+==∈+. 求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在1na 这样的倒数,所以考虑递推公式两边同取倒数:113121213n n n n n na a a a a a +++=⇒=+即112133n n a a +=+,在考虑构造“1-”:112111111333n n n a a a +⎛⎫-=+-=- ⎪⎝⎭即数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列思路二:代入法:将所证数列视为一个整体,用n b 表示:11n nb a =-,则只需证明{}n b 是等比数列即可,那么需要关于n b 的条件(首项,递推公式),所以用n b 将n a 表示出来,并代换到n a 的递推公式中,进而可从n b 的递推公式出发,进行证明 解:令11n n b a =-,则11n n a b =+ ∴ 递推公式变为:11311311113211n n n n n b b b b b +++=⇒=+++⋅++1113333n n n n b b b b ++⇒+=+⇒={}n b ∴是公比为13的等比数列。
等比数列的判断和证明进阶洋葱数学1. 引言1.1 等比数列的概念等比数列是数学中常见的一种数列,指的是一个数列中每一项与它的前一项成等比例关系的数列。
换句话说,等比数列中任意相邻两项的比值都是恒定的,这个恒定比值称为公比,通常用字母q表示。
1,2,4,8,16就是一个公比为2的等比数列。
在等比数列中,首项表示数列中的第一个数,通常用字母a表示。
数列中第n项的表示一般为an=a*q^(n-1),其中n为项数。
等比数列的通项公式为an=a*q^(n-1),其中n为项数。
等比数列的前n项和公式为Sn=a*((q^n)-1)/(q-1)。
等比数列具有明显的规律性和对称性,能够通过一些性质和公式来描述和推导等比数列的特点和性质。
在接下来的文章中,我们将进一步讨论等比数列的判断方法、首项和公比的关系、等比中项的性质、等比数列的特点和应用以及如何进行等比数列的证明方法。
通过深入研究,我们可以更加全面地了解等比数列在数学中的重要性和应用价值。
1.2 等比数列的性质等比数列的性质包括等比数列的负项、任意项和等比中项的性质。
我们来看等比数列的负项。
如果一个数列是等比数列,那么它的任意一项和它的相反数都可以构成一个等比数列。
这是因为对于任意一项a,其相反数-b也是等比数列的一项,且它们的比值相同,即-b/a等于公比q。
等比数列的性质之一是每一项和其相反数构成一个等比数列。
等比数列的任意项也具有一定的性质。
假设一个等比数列的首项为a,公比为q,则它的第n项可以表示为a*q^(n-1)。
这个公式可以帮助我们快速计算等比数列任意一项的值,从而更好地理解等比数列的规律。
等比数列的等比中项也有着特殊的性质。
等比数列的等比中项是指两个相邻项的平方根,即等比数列中第n项与第n+1项的平方根。
这个性质有利于我们在不知道等比数列具体项的情况下,通过已知项求解中间项的值。
等比数列的性质包括每一项与其负项构成等比数列、任意项的计算公式以及等比中项的特殊性质。
等比数列中的四种思想方法作者:邱志华来源:《知识窗·教师版》2016年第02期一、分类讨论思想例1.设数列的前项和,则。
分析:利用数列中的项与前项和之间的关系,可以把题中的关系式转化为与之间的关系式,从而得知是等比数列,进而求出的通项公式。
解析:当时,,;当时,,,即。
又,是首项为1,公比为2的等到比数列,当时也满足此式,故数列的通项公式是。
点评:此类问题需要分类讨论,公式使用的前提条件是,所以当时,我们要看求出的数值能否满足求出的通项公式。
如果满足,该通项公式就是所求的通项公式;如果不满足,通项公式就要写成分段函数的形式。
二、方程思想例2.在等比数列中,,,,求和。
分析:将转化为,与66联立解方程组求解。
解析:由题意得:,即解得,或。
若,则,解得,此时,∴。
若,则,解得,此时,。
综上所述,,。
点评:关于等比数列的运算问题,一般利用通项公式和前项和公式构造方程求解,所以学生要灵活运用等比数列的性质。
三、对称思想例3.有四个数,前三个数是等比数列,其积为216,后三个数是等差数列,其和为36,求这四个数。
分析:若直接列方程组求解比较麻烦,注意到前三个数和后三个数都有个中间项,其他与中间项对称的前后两项可以由中间项加(乘)一个数或减(除)相同的这个数而得到。
解析:设这四个数分别为,,,,则即,这四个数别为3、6、12、18。
点评:利用对称性设这四个数,在进行乘积或加法运算的时候能消去一个参数,从而便于计算。
四、化归与转化思想例4.在数列中,,求通项公式。
分析:观察式子的特点,可知既不是等差数列,又不是等比数列,要对其进行构造。
在式子的两边同时加上1,就能发现数列是一个等比数列,从而可以求出数列的通项公式。
解析:,又,,数列是以2为首项,2为公比的等比数列。
,即。
点评:若数列满足p(p≠1,为非零常数),则可令来构造等比数列,并利用对应项相等求出λ的值,进而求出通项公式,这就是利用了化归与转化思想。
高中等比数列公式大全高中数列公式如下:一、等比数列:a(n+1)/an=q(n∈N)。
二、通项公式:an=a1×q^(n-1);推广式:an=am×q^(n-m)。
三、求和公式:Sn=n×a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an ×q)/(1-q)(q≠1)(q为公比,n为项数)。
四、性质:1、若m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq。
2、在等比数列中,依次每 k项之和仍成等比数列。
3、若m、n、q∈N,且m+n=2q,则am×an=aq^2五、“G是a、b的等比中项”“G^2=ab(G≠0)”。
六、在等比数列中,首项a1与公比q都不为零。
注意:上述公式中an表示等比数列的第n项。
等差数列的定义以及证明方法:一、定义1、如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列.2、求公差d时,因为d是这个数列的后一项与前一项的差,故有还有3、公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为增数列;当d<0时,数列为递减数列;4、是证明或判断一个数列是否为等差数列的依据;5、证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。
二、等差数列求解与证明的基本方法:1、学会运用函数与方程思想解题。
2、抓住首项与公差是解决等差数列问题的关键。
3、等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,an,Sn,知道其中任意三个就可以列方程组求出另外两个(俗称“知三求二’)。
等比数列的概念和计算等比数列是数学中重要的概念之一,它在各种实际问题中都有广泛的应用。
在本文中,我们将介绍等比数列的概念、性质和计算方法,帮助读者更好地理解和运用等比数列。
一、等比数列的概念等比数列是指一系列的数按比例递增或递减的数列。
它的特点是每个数都是前一个数与同一个非零常数的乘积。
设首项为a,公比为r,则等比数列的通项公式为:an = ar^(n-1)其中,an表示第n个数,r表示公比。
二、等比数列的性质等比数列有许多有趣的性质,下面我们来介绍几个常见的性质:1. 公比的性质:对于等比数列,如果公比r>1,那么数列是递增的;如果0<r<1,数列是递减的。
当r=-1时,数列交替增减;当r=1时,数列是等差数列。
2. 等比数列的比与比与项的关系:等比数列中,任意两项的比等于它们的比的m次方,即an/am=a^(n-m)。
3. 等比数列的前n项和:等比数列的前n项和公式为Sn=a(1-r^n)/(1-r),其中S表示前n项和。
这个公式可以通过数列的递推关系和等差数列的求和公式推导得出。
三、等比数列的计算方法计算等比数列的各项值是数列问题中的重要环节,下面我们将介绍两种常见的计算方法。
1. 递推法:通过已知项计算下一项。
首先确定首项a和公比r,然后根据递推关系an = an-1 * r计算每一项的值。
这种方法适用于已知首项和公比的情况。
2. 公式法:利用等比数列的通项公式,直接计算任意项的值。
首先确定首项a和公比r,然后根据通项公式计算特定项的值。
这种方法适用于已知首项和公比,但需要计算某一特定项的情况。
四、应用举例等比数列在实际问题中有广泛的应用。
例如,金融领域中的复利计算就涉及到等比数列。
假设你存入一笔本金,每年的利率固定为r,那么n年后的本金总额可以表示为Sn=a(1-r^n)/(1-r)。
通过等比数列的计算,可以帮助我们了解到本金随时间的变化情况。
另外,等比数列还可以应用于计算机科学中的数据结构和算法设计中。
等比数列是指一个数列中任意两个相邻的数之比都是一个常数,这个常数称为公比。
等比数列在数学中有着重要的地位,而等比数列的前n项和公式是研究等比数列的一个重要内容。
下面我们将围绕这个主题进行详细的探讨和推导。
一、等比数列的定义1. 一个数列{a1, a2, a3, ...}称为等比数列,如果存在一个常数r,使得对于任意正整数n,有an/an-1=r。
2. 等比数列的通项公式是an=a1*r^(n-1),其中a1为首项,r为公比。
3. 2, 6, 18, 54, ...是一个等比数列,首项为2,公比为3。
二、等比数列的前n项和公式的推导1. 首先考虑公比r等于1的情况,此时等比数列就是一个普通的等差数列。
等差数列的前n项和公式是Sn = n*(a1+an)/2。
2. 当公比r不等于1时,我们来推导等比数列的前n项和公式。
3. 设等比数列的前n项和为Sn,则有Sn = a1 + a1*r + a1*r^2 + ... + a1*r^(n-1)。
4. 乘以公比r,得到r*Sn = a1*r + a1*r^2 + a1*r^3 + ... + a1*r^n。
5. 两式相减,得到(1-r)Sn = a1*(1-r^n)。
6. 可以解得Sn = a1*(1-r^n)/(1-r),这就是等比数列的前n项和公式。
7. 对于等比数列2, 6, 18, 54, ...,首项a1=2,公比r=3,前5项和为S5 = 2*(1-3^5)/(1-3) = 242。
三、等比数列的前n项和公式的应用1. 等比数列的前n项和公式在实际问题中有着广泛的应用。
2. 在财务领域中,等比数列的前n项和公式可以用来计算贷款每期的偿还金额,以及计算存款的本利和。
3. 在工程领域中,等比数列的前n项和公式可用于计算复利增长,评估工程投资的收益情况。
4. 在数学建模中,等比数列的前n项和公式也是常用的工具,可以用来描述和解决许多实际问题。
四、总结等比数列的前n项和公式是等比数列重要的性质之一,它的推导和应用都具有重要的意义。
初中数学中的等比数列等比数列是初中数学中非常重要的一个概念,它是由公比不为零的一组数字依次排列而成的。
在学习等比数列的过程中,不仅要掌握等比数列的概念和性质,还要学习如何求和、如何推导等比数列的通项公式等知识。
本文将从这些方面来详细介绍等比数列。
概念和性质等比数列是一组数字按照相同比例的方式递增或递减的数列,其中每一项与它前面的项之比都相等,这个相等的比叫做公比,通常用字母q表示,比如下面这个数列:1,3,9,27,81这个数列的公比为3,因为后一项除以前一项等于3。
在等比数列中,具有如下性质:1. 第n项可以用公比q和首项a1来表示:an=a1q^(n-1)2. 任意两项之比等于它们所在的位置之差的项之比:a(m+n)/am=an/amq^n3. 等比数列的前n项和为Sn=a1(q^n-1)/(q-1)求和公式和通项公式如果我们要求等比数列的前n项和,可以使用公式Sn=a1(q^n-1)/(q-1),其中a1是首项,q是公比。
这个公式可以通过数学归纳法得到,具体证明过程在这里不做赘述。
另外,我们还可以通过求通项公式得到等比数列前n项和的公式。
通项公式是指可以用一个公式表示等比数列中第n项的值的公式。
对于等比数列来说,通项公式可以通过找规律或递归法求得。
比如我们观察刚才那个等比数列1,3,9,27,81,可以发现它的通项公式是an=3^(n-1),这个公式可以通过数学归纳法证明。
当我们知道了通项公式,就可以很容易地求出等比数列的前n项和。
推导通项公式的方法有很多,其中比较常见的方法是递推法。
递推法是指通过已知的一些项或一些公式来求得下一项或下一个公式的方法。
对于等比数列,我们一般从前两项出发,通过观察公比q的特点来得到通项公式。
比如,如果已知等比数列的前两项a1和a2,那么它的公比可以通过a2/a1求得。
进一步地,我们可以发现等比数列的第n项可以由第n-1项和公比q求得,即an=a(n-1)q。
等差、等比数列的判断和证明一、 1、等差数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
即)2,*(1≥∈=--n N n d a a n n 且.(或)*(1N n d a a n n ∈=-+). 2、等差数列的判断方法:①定义法:)(1常数d a a n n =-+⇔{}a n 为等差数列。
②中项法:等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
a a a n n n 212+++=⇔{}a n 为等差数列。
③通项公式法:等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
公式变形为:b an a n +=. 其中a=d, b= a 1-d.b an a n +=(a,b 为常数)⇔{}a n 为等差数列。
④前n 项和公式法:等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
公式变形为Sn=An 2+Bn 其中A=2d ,B=21da -. Bn n A s n +=2(A,B 为常数)⇔{}a n 为等差数列。
3.等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 项和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0.(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
(3)对称性:若{}a n 是有穷数列,则与首末两项等距离的两项之和都等于首末两项之和.当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=(4) ①项数成等差,则相应的项也成等差数列.即),,...(,,*2N m k a a a m k m k k ∈++成等差,公差为md ;②若{}n a 是等差数列,则﹛ka n +p ﹜(k 、p 是非零常数)为等差数列,公差为kd.③若{}n a 、{}n b 是等差数列,则{}n n ka pb + (k 、p 是非零常数)为等差数列,公差为kd 1+pd 2 (d 1、d 2 分别为{}n a 、{}n b 的公差)④232,,n n n n n S S S S S -- 也成等差数列.⑤{}n a a 成等比数列;若{}n a 是等比数列,且0n a >,则{lg }n a 是等差数列.(5)在等差数列{}n a 中,当项数为偶数2n 时, )(1a a n n n n s ++=;nd s s =-奇偶;a a n n s s 1+=奇偶. 当项数为奇数21n -时, a n n n s )12(12-=-;a s s 1-=-奇偶 ;nn s s 1-=奇偶(6)项数间隔相等或连续等长的片段和仍构成等差数列,eg :a 1,a 3,a 5…构成等差数列,a 1+a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9…也构成等差数列.二、1、等比数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫等比数列的公比,即)2,(*1≥∈=-n n q N a a n n2、等比数列的判断方法: ①定义法:1(n na q q a +=为常数),其中0,0n q a ≠≠⇔{}a n 为等比数列。
等比数列知识点总结与典型例题1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法: 依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。
(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
等比数列知识点总结与典型例题1、等比数列的定义:,称为公比()()*12,nn a q q n n N a -=≠≥∈0且q 2、通项公式:,首项:;公比:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠1a q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果成等比数列,那么叫做与的等差中项,即:或,,a A b A a b 2A ab=A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列是等比数列{}n a 211n n n a a a -+⇔=⋅4、等比数列的前项和公式:n n S (1)当时,1q =1n S na =(2)当时,1q ≠()11111n n n a q a a qS q q--==--(为常数)11''11n n n a aq A A B A B A q q=-=-⋅=---,,','A B A B 5、等比数列的判定方法:(1)用定义:对任意的,都有为等比数n 11(0){}n n n n n na a qa q qa a a ++==≠⇔或为常数,列(2)等比中项:为等比数列21111(0){}n n n n n n a a a a a a +-+-=≠⇔(3)通项公式:为等比数列()0{}n n n a A B A B a =⋅⋅≠⇔6、等比数列的证明方法:依据定义:若或为等比数列()()*12,nn a q q n n N a -=≠≥∈0且1{}n n n a qa a +=⇔7、等比数列的性质:(2)对任何,在等比数列中,有。
*,m n N ∈{}n a n m n m a a q -=(3)若,则。
特别的,当时,得*(,,,)m n s t m n s t N +=+∈n m s t a a a a ⋅=⋅2m n k += 注:2n m k a a a ⋅=12132n n n a a a a a a --⋅=⋅=⋅⋅⋅等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列中,, ,求.{}n a 1964a a ⋅=3720a a +=11a 思路点拨:由等比数列的通项公式,通过已知条件可列出关于和的二元方程组,解出1a q 和,可得;或注意到下标,可以利用性质可求出、,再求.1a q 11a 1937+=+3a 7a 11a 等差数列等比数列定义da a n n =-+1)0(1≠=+q q a a nn 递推公式d a a n n +=-1;mda a n m n +=-q a a n n 1-=;mn m n q a a -=通项公式dn a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(0,,*f f k n N k n ∈))0(f k n k n k n k n a a a a G +-+-±=(0,,*f f k n N k n ∈)前n 项和)(21n n a a nS +=dn n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≥--=--==)2(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a qp n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1】{a n }为等比数列,a 1=3,a 9=768,求a 6。
2023届高考数学复习讲义5.6数列的证明及判定1.等差数列通项公式:a n ==.2.等差数列前n 项和公式:nd a n d d n n na aa n S n )2(22)1(2)(12121-+=-+=+=3.等比数列通项公式:a n ==..4.等比数列前n 项和公式:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q q q a q naS n n 一.判定一个数列为等差数列的常见方法:(1)定义法:若d a a n n =-+1(d 是定值),则数列{a n }是等差数列;(2)等差中项法:若n n n a a a 211=++-(2≥n ),则数列{a n }是等比数列;(3)通项公式法:若a n =pn +q (p ,q 为常数)对任意的正整数n 都成立,则数列{a n }是等差数列.(4)前n 项和公式法:若S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立,则{a n }是等差数列二、判定一个数列为等比数列的常见方法:(1)定义法:若a n +1a n=q (q 是非零常数),则数列{a n }是等比数列;(2)等比中项法:若a 2n +1=a n a n +2(n ∈N *,a n ≠0),则数列{a n }是等比数列;(3)通项公式法:若a n =Aq n (A ,q 为非零常数),则数列{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列考向一等差数列的判定与证明例1若数列{a n }的前n 项和为S n ,a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.思维升华判断数列{a n }是等差数列的常用方法方法解读定义法对于任意自然数n (n ≥2),a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列等差中项法2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列前n 项和公式法验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立⇔{a n }是等差数列【举一反三】1、已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n .(1)求a 2,a 3;(2)证明数列⎭⎫⎩⎨⎧n a n 是等差数列,并求{a n }的通项公式.2、(2021·台州模拟)已知数列{a n }满足a 1=2,a n +1=2a n -1a n .(1)求证:数列⎭⎬⎫⎩⎨⎧-11n a 是等差数列;(2)求数列{a n }的通项公式.考向二等比数列的判定与证明例2已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n=a n n .(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.感悟升华等比数列的4种常用判定方法定义法若a n+1a n=q(q为非零常数,n∈N*)或a na n-1=q(q为非零常数且n≥2,n∈N*),则{a n}是等比数列中项公式法若数列{a n}中,a n≠0且a2n+1=a n·a n+2(n∈N*),则数列{a n}是等比数列通项公式法若数列通项公式可写成a n=c·q n-1(c,q均是不为0的常数,n∈N*),则{a n}是等比数列前n项和公式法若数列{a n}的前n项和S n=k·q n-k(k为常数且k≠0,q≠0,1),则{a n}是等比数列【举一反三】1、(2022·威海模拟)记数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+1.设b n=a n+1-2a n.求证:数列{b n}为等比数列;2、已知各项都为正数的数列{a n }满足a n +2=2a n +1+3a n .(1)证明:数列{a n +a n-1}为等比数列;(2)若a 1=12,a 2=32{a n }的通项公式.A 组1、(2022届河南调研,18)已知数列{a n }满足a 1=4,a n+1=2a n +2n+1(n ∈N *),设数列{a n }的前n 项和为S n .(1)证明:数列⎭⎬⎫⎩⎨⎧n n a 2是等差数列.(2)求S n .2、已知数列{a n }中,a 1=1,a n ·a n +1=n⎪⎭⎫ ⎝⎛21,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.判断数列{b n }是否为等比数列,并求出b n ;3、(2022届哈尔滨期中,20)在数列{a n }中,a 1=4,na n+1-(n+1)a n =2n 2+2n.(1)求证:;(2)n 项和S n .4、(2020哈尔滨香坊月考,17)已知数列{a n }的前n 项和为S n ,且S n =2a n -n(n ∈N *).证明:数列{a n +1}是等比数列,并求数列{a n }的通项公式;B 组5、(2022届陕西宝鸡月考,18)已知正项数列{a n }的前n 项和为S n ,且S n =14(a n +1)2(n ∈N *).(1)求a 1,a 2;(2)求证:数列{a n }是等差数列.6、(2021·全国统一考试模拟演练)已知各项都为正数的数列{a n }满足a n +2=2a n +1+3a n .(1)证明:数列{a n +a n +1}为等比数列;(2)若a 1=12,a 2=32{a n }的通项公式.7、(2021吉林白山第三次联考,19)在数列{a n }中,已知a 1=1,且a n+1a n =2n+1a n -2n a n +1.,并求出{a n }的通项公式;8、(2017课标Ⅰ,17,12分)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.9、(2021·全国甲卷)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{S n}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.10、(2021全国百强名校联考,18)已知数列{a n}满足a1=2,a n+1=12a n-12×3,b n=a n-13t1.求证:数列{b n}是等比数列;11、(2022·烟台模拟)已知在数列{a n}中,a1=1,a n=2a n1+1(n≥2,n∈N*),记b n=log2(a n+1).-(1)判断{b n}是否为等差数列,并说明理由;(2)求数列{a n}的通项公式.12、(2021全国甲,18,12分)记S n 为数列{a n }的前n 项和,已知a n >0,a 2=3a 1,且数列{}是等差数列.证明:{a n }是等差数列.13、(2021·全国乙卷)记S n 为数列{a n }的前n 项和,b n 为数列{S n }的前n 项积,已知2S n +1b n=2,证明:数列{b n }是等差数列;14、(2020河南名校联盟调研)已知首项为2的正项数列{a n }的前n 项和为S n ,且当n ≥2时,3S n -2=2-3S n-1.证明:数列{a n }是等差数列;C 组15、(2021·温州调研)已知数列{a n },{b n }满足a 1=1,a n +1=1-14a n ,b n =22a n -1,其中n ∈N *.求证:数列{b n }是等差数列,并求出数列{a n }的通项公式.16、已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n1=λS n-1,其中λ为常数.+(1)证明:a n2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.+17、若S n为等比数列{a n}的前n项和,已知a4=9a2,S3=13,且公比q>0.(1)求a n及S n;(2)是否存在常数λ,使得数列{S n+λ}是等比数列?若存在,求λ的值;若不存在,请说明理由.方法与技巧。
等比数列前n项和公式的七种推导方法
等比数列前n项和是指一组等比数列a_0,a_1,a_2···a_n的前n项之和.它是由等比数列理论
中关于数列前n项和及其计算方法而定义的重要概念.关于等比数列前n项和公式可利用
以下七种方法推导出来.
首先,可以利用求和符号推导法来推导等比数列前n项和公式,即a_0+a_1+a_2+a_3+…+
a_n=(a_0+a_n)(1+q+q^2+…+q^(n-1)) ,其中q表示等比数列的公比。
其次,利用数论中的规律性推导法可推导出等比数列前n项和公式,即a_0+a_1+…+
a_n=(a_n-a_0+a_0)/(1-q) *(1-q^n) 。
再者,递推证明可以推导出等比数列前2项和公式,即a_0+a_1=(a_0+a_1)q 。
从而推导出
a_0+a_1+…+ a_n=a_n(1-q^(n+1))/(1-q).
此外,可以利用比较法、占位法、归纳法、变化法等其他的推导方法来证明等比数列前n 项和公式.
此外,特殊情况下,当q为1时,a_0+a_1+…+ a_n=a_0+a_1+…+ a_n=n*a_0(n+1)/2 ,当q
为-1时,a_0+a_1+…+ a_n=(-a_0+a_n)n/2。
最后,可使用其他技术,如雅可比自然迭代方法和高等数学技术推导法等可推导出等比数
列前n项和公式。
以上就是对于等比数列前n项和公式的七种推导方法的介绍,总结起来有求和符号推导法、数论规律性推导、递推证明与比较法、占位法、归纳法、变化法及雅可比自然迭代方法和
高等数学技术推导法等七种方法。
高中数学:等比数列的判定与证明(2019·潍坊质检)设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.(1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列;(2)求数列{a n }的通项公式.解:(1)证明:由a 1=1及S n +1=4a n +2, 得a 1+a 2=S 2=4a 1+2.∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2,①S n =4a n -1+2(n ≥2),② 由①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2). ∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列.(2)由(1)知b n =a n +1-2a n =3·2n -1, ∴a n +12n +1-a n 2n =34,故⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列. ∴a n 2n =12+(n -1)·34=3n -14,故a n =(3n -1)·2n -2.【条件探究】 若将本典例中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式.解:由已知得n ≥2时,S n =2S n -1+n . ∴S n +1-S n =2S n -2S n -1+1, ∴a n +1=2a n +1,∴a n +1+1=2(a n +1),n ≥2,(*) 又a 1=1,S 2=a 1+a 2=2a 1+2,即a 2+1=2(a 1+1), ∴当n =1时(*)式也成立,故{a n +1}是以2为首项,以2为公比的等比数列,∴a n+1=2·2n-1=2n,∴a n=2n-1.等比数列的判定与证明方法已知数列{a n}中,a1=1,a2=2,a n+1=3a n-2a n-1(n≥2,n∈N*).设b n=a n+1-a n.(1)证明:数列{b n}是等比数列;(2)设c n=b n(4n2-1)2n,求数列{c n}的前n项的和S n.解:(1)证明:因为a n +1=3a n -2a n -1(n ≥2,n ∈N *),b n =a n +1-a n ,所以b n +1b n =a n +2-a n +1a n +1-a n =(3a n +1-2a n )-a n +1a n +1-a n =2(a n +1-a n )a n +1-a n =2, 又b 1=a 2-a 1=2-1=1,所以数列{b n }是以1为首项,以2为公比的等比数列.(2)由(1)知b n =1×2n -1=2n -1,因为c n =b n (4n 2-1)2n, 所以c n =12(2n +1)(2n -1)=14⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以S n =c 1+c 2+…+c n=14⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =14⎝ ⎛⎭⎪⎫1-12n +1=n 4n +2.。
等比数列证明方法
嘿,朋友们!今天咱来唠唠等比数列证明这档子事儿。
你们想想啊,这等比数列就像一群排列整齐的小精灵,它们有着奇妙的规律呢!咱要证明它们的存在和特性,就像是解开一个神秘的谜团。
比如说,咱有一个等比数列,那每个数之间的比例关系就像一把神奇的钥匙,能打开好多知识的大门。
咱得找到这个比例,就像在茫茫数字海洋中找到那根定海神针。
你看啊,咱通过一步步计算,观察这些数字的变化,是不是感觉就像侦探在寻找线索一样刺激?如果能成功证明出等比数列,那成就感,简直爆棚啦!这可比玩游戏打通关还让人兴奋呢!
咱就拿个具体例子来说吧。
假设给你一串数字,你得通过各种运算和推理,去发现它们是不是等比数列呀。
这过程可不简单,但充满了乐趣呀!你得细心又耐心,不能放过任何一个小细节,就像在沙漠里找金子一样。
而且哦,等比数列的应用可广泛啦!在好多领域都能看到它的身影呢。
咱要是能熟练掌握证明方法,那可就像拥有了一把万能钥匙,可以打开好多知识宝库的大门。
你说,要是连等比数列都搞不定,那多遗憾呀!咱可不能在数学的世界里迷路呀,得紧紧抓住这根线索,一路向前冲。
等比数列证明就像是一场冒险,充满了未知和挑战。
但咱可不能退缩,要勇敢地迎接,去发现那些隐藏在数字背后的秘密。
咱得用心去感受每一个数字的跳动,去理解它们之间的奇妙联系。
就像听一首美妙的音乐,要听懂每个音符背后的情感。
哎呀,等比数列证明真的太有意思啦!只要你肯花时间和精力,就一定能在这个奇妙的世界里畅游,发现好多让人惊叹的东西。
所以呀,大家可别小瞧了等比数列证明这回事儿,它可是数学世界里的一颗璀璨明珠呢!好好去探索吧,相信你们会爱上它的!。
证明等比数列的方法
等比数列证明使用定义法,等比中项法,数学归纳法,和反证法四种都可以。
根据已知条件不同,可以选择不同的证明方法。
方法/步骤
.
方法1:(定义法)若后项a(n+1)与前项a(n)之比为定值q,则数列是等比数列;
.
.
方法2:(等比中项法)若前后三项关系满足:a(n)²=a(n-1)*a(n+1),则数列是等比数列;
.
.
方法3:(通项公式法)若数列通项公式类似于指数函数a(n)=m*q^(n),则数列是等比数列;
.
.
方法4:(前n项和特征法)若数列前n项和类似于函数S(n)=-A+A*q^(n),则数列是等比数列;
.
.
END
.
注意事项
•
1)我们把q
•
•
2)S是表示无穷等比数列的所有项的.和,这种无限个项的和与有限个项的和从意义上来说是不一样的,S是前n项和
Sn当n→∞的极限,即S=a/(1-q)
•。